114
Views
92
CrossRef citations to date
0
Altmetric
Research Article

Replication of Damaged DNA and the Molecular Mechanism of Ultraviolet Light Mutagenesis

, , &
Pages 465-513 | Published online: 26 Sep 2008

References

  • Andreev O. A., Tomilin N. V. Evidence for incompletely random distribution of photochemical lesions along Escherichia coli DNA chains. Stud. Biophys. 1980; 78: 223
  • Andreeva I. V., Rusina O. Y., Mirskaya E. E., Skavronskaya A. G. The effect of plasmid pKM101 on umuDC gene function enhancing precise excision of transposons. Mutat. Res. 1990; 230: 55
  • Arai K., Low R., Kobori J., Shlomai J., Kornberg A. Mechanism of dnaB protein action. V. Association of dnaB protein, protein n' and other prepriming proteins in the primisome of DNA replication. J. Biol. Chem. 1981; 256: 5273
  • Bagg A., Kenyon C. J., Walker G. C. Inducibility of a gene product required for UV and chemical mutagenesis in Escherichia coli. Proc. Natl. Acad. Sci. USA 1981; 78: 5749
  • Bailone A., Sommer S., Knezevic J., Devoret R. Substitution of UmuD' for UmuD does not affect SOS mutagenesis. Biochimie 1991; 73: 471
  • Bailone A., Sommer S., Knezevic J., Dutreix M., Devoret R. A Rec A protein mutant deficient in its interaction with the UmuDC complex. Biochimie 1991; 73: 479
  • Balmain A., Brown K. Oncogene activation in chemical carcinogenesis. Adv. Cancer Res. 1988; 51: 147
  • Banerjee S. K., Borden A., Christensen R. B., LeClerc J. E., Lawrence C. W. SOS-dependent replication past a single trans-syn T-T cyclobutane dimer gives a different mutation spectrum and increased error rate compared with replication past this lesion in uninduced cells. J. Bacteriol. 1990; 172: 2105
  • Banerjee S. K., Christensen R. B., Lawrence C. W., LeClerc J. E. Frequency and spectrum of mutations produced by a single cis-syn thymine-thymine cyclobutane dimer in a single-stranded vector. Proc. Natl. Acad. Sci. USA 1988; 85: 8141
  • Barbacid M. Ras. Genes. Annu. Rev. Biochem. 1987; 56: 779
  • Bates H., Bridges B. A., Woodgate R. Mutagenic DNA repair in Escherichia coli, XX. Overproduction of UmuD' protein results in suppression of the umuC36 mutation in excision defective bacteria. Mutat. Res. 1991; 250: 199
  • Bates H., Randall S. K., Rayssiguier C., Bridges B. A., Goodman M. F., Radman M. Spontaneous and UV-induced mutations in Escherichia coli K-12 strains with altered or absent DNA polymerase I. J. Bacteriol. 1989; 171: 2480
  • Battista J. R., Nohmi T., Donnelly C. E., Walker G. C. Role of UmuD and UmuC in UV and chemical mutagenesis. Mechanisms and Consequences of DNA Damage Processing, E. C. Friedberg, P. C. Hanawalt. Alan R. Liss, New York 1988; 455
  • Battista J. R., Nohmi T., Donnelly C. E., Walker G. C. Amino acid similarities to other proteins offer insight into roles of UmuD and UmuC in mutagenesis. Genome 1989; 31: 594
  • Battista J. R., Nohmi T., Donnelly C. E., Walker G. C. Genetic analyses of cellular functions required for UV mutagenesis in Escherichia coli. Basic Life Sci. 1990; 52: 269
  • Battista J. R., Ohta T., Nohmi T., Sun W., Walker G C. Dominant negative umuD mutations decreasing RecA-mediated cleavage suggest roles for intact UmuD in modulation of SOS mutagenesis. Proc. Natl. Acad. Sci. USA 1990; 87: 7190
  • Bedinger P., Mnnn M., Alberts B. M. Sequence-specific pausing during in vitro DNA replication on double-stranded DNA templates. J. Biol. Chem. 1989; 264: 16880
  • Ben-Hur E., Ben-Ishai R. Trans-syn thymine dimers in ultraviolet-irradiated denaturated DNA: identification and photoreactivability. Biochim. Biophys. Acta 1968; 166: 9
  • Bialy H., Kogoma T. RNaseH is not involved in the induction of stable DNA replication in Escherichia coli. J. Bacteriol. 1986; 165: 321
  • Billen D. Replication of the bacterial chromosome: location of new initiation sites after irradiation. J. Bacteriol. 1969; 97: 1169
  • Bioteux S., Laval J. Coding properties of poly(deoxycytidilic acid) templates containing uracil or apyrimidinic sites: in vitro modulation of mutagenesis by deoxyribonucleic repair enzymes. Biochemistry 1982; 21: 6746
  • Blanco M., Herrera G., Aleixandre V. Different efficiency of UmuDC and MucAB proteins in UV light induced mutagenesis in Escherichia coli. Mol. Gen. Genet. 1986; 205: 234
  • Blinkowa A. L., Walker J. R. Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III γ subunit within the τ subunit reading frame. Nucleic Acid Res. 1990; 18: 1725
  • Bockrath R., Wolff L., Farr A., Crouch R. J. Amplified RNaseH activity in Escherichia coli B/r increases sensitivity to ultraviolet radiation. Genetics 1987; 115: 33
  • Bockrath R. C., Palmer J. E. Differential repair of premutational UV-lesions at tRNA genes in E. coli. Mol. Gen. Genet. 1977; 156: 133
  • Bohr V. A., Wassermann K. DNA repair at the level of the gene. Trends Biochem. Sci. 1988; 13: 429
  • Bonner C. A., Hays S., McEntee K., Goodman M. F. DNA polymerase II is encoded by the DNA damage-inducible dinA gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 1990; 87: 7663
  • Bonner C. A., Randall S. K., Rayssiguier C., Radman M., Eritja R., Kaplan B. E., McEntee K., Goodman M. F. Purification and characterization of an inducible Escherichia coli DNA polymerase capable of insertion and bypass at abasic lesions in DNA. J. Biol. Chem. 1988; 263: 18946
  • Bonner C. A., Stukenberg P. T., Rajagopalan M., Eritja R., O'Donnell M., McEntee K., Echols H., Goodman M. F. Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins. J. Biol. Chem. 1992; 267: 11431
  • Bouche J. P., Rowen L., Kornberg A. The RNA primer synthesized by primase to initiate phage G4 DNA replication. J. Biol. Chem. 1978; 253: 765
  • Brash D. E., Haseltine W. A. UV-induced mutation hotspots occur at DNA damage hotspots. Nature (London) 1982; 298: 189
  • Brash D. E., Rudolph J. A., Simon J. A., Lin A., McKenna G. J., Baden H. P., Halperin A. J., Ponten J. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 1991; 88: 10124
  • Bresler S. E. Theory of misrepair mutagenesis. Mutat. Res. 1975; 29: 467
  • Bridges B. A. Mutagenic DNA repair in Escherichia coli. XVI. Mutagenesis by ultraviolet light plus delayed photoreversal in recA strains. Mutat. Res. 1988; 198: 343
  • Bridges B. A. Ultraviolet light mutagenesis in bacteria: the possible role of a DNA polymerase III complex lacking proofreading exonuclease. Mechanisms of Environmental Mutagenesis-Carcinogenesis, A. Kappas. Plenum Press, New York 1990; 27
  • Bridges B. A. Mutagenesis after exposure of bacteria to ultraviolet light and delayed photoreversal. Mol. Gen. Genet. 1992; 233: 331
  • Bridges B. A., Bates H. Mutagenic DNA repair in Escherichia coli. XVIII. Involvement of DNA polymerase in alpha-subunit (DnaE protein) in mutagenesis after exposure to UV light. Mutagenesis 1990; 5: 35
  • Bridges B. A., Brown G. M. Mutagenic DNA repair in Escherichia coli. XXI. A stable SOS-inducing signal persisting after excision repair of ultraviolet damage. Mutat. Res. 1992; 270: 135
  • Bridges B. A., Dennis R. E., Munson R. J. Differential induction and repair of ultraviolet damage leading to true reversion and external suppressor mutations of an ochre codon in Escherichia coli B/rWP2. Genetics 1967; 57: 897
  • Bridges B. A., Motershead R. P., Sedgwick S. G. Mutagenic DNA repair in E. coli. III. Requirement for a function of DNA polymerase III in ultraviolet light mutagenesis. Mol. Gen. Genet. 1976; 144: 53
  • Bridges B. A., Mottershead R. RecA+-dependent mutagenesis occurring before DNA replication in UV- and γ-irradiated Escherichia coli. Mutat. Res. 1971; 13: 1
  • Bridges B. A., Munson R. J. Excision-repair of DNA damage in an auxotrophic strain of E. coli. Biochem. Biophys. Res. Commun. 1966; 22: 268
  • Bridges B. A., Woodgate R. The two-step model of bacterial UV mutagenesis. Mutat. Res. 1985; 150: 133
  • Bridges B. A., Woodgate R., Ruiz R. M., Sharif F., Sedgwick S. G., Hubscher U. Current understanding of UV-induced base pair substitution mutation in E. coli with particular reference to the DNA polymerase III complex. Mutat. Res. 1987; 181: 219
  • Brotcorne-Lannoye A., Maenhaut-Michel G. Role of RecA protein in untargeted UV mutagenesis of bacteriophage τ evidence for the requirement of the dinB gene. Proc. Natl. Acad. Sci. USA 1986; 83: 3904
  • Brotcorne-Lannoye A., Maenhaut-Michel G., Radman M. Involvement of DNA polymerase III in UV-induced mutagenesis of bacteriophage lambda. Mol. Gen. Genet. 1985; 199: 64
  • Brunk C. Formation of dimers in ultraviolet irradiated DNA. Molecular Mechanisms for Repair of DNA, P. C. Hanawalt, R. B. Setlow. Plenum Press, New York 1975; 61
  • Brunner D. P., Traxler B. A., Holt S. M., Crose L. L. Enhancement of UV survival, UV- and MMS-mutability, precise excision of Tn10 and complementation of umuC by plasmids of different incompatibility groups. Mutat. Res. 1986; 166: 29
  • Brutlag D., Schekman R., Kornberg A. A possible role for RNA polymerase in the initiation of M13 DNA synthesis. Proc. Natl. Acad. Sci. USA 1971; 68: 2826
  • Bryan S., Chen H., Sun Y., Moses R. E. Alternate pathways of DNA replication in Escherichia coli. Biochim. Biophys. Acta 1988; 951: 249
  • Bryan S. K., Hagensee M., Moses R. E. Holoenzyme DNA polymerase III fixes mutations. Mutat. Res. 1990; 243: 313
  • Bryan S. K., Moses R. E. Sufficiency of the Klenow fragment for survival of polC(Ts) pcbAl Escherichia coli at 43°C. J. Bacteriol. 1988; 170: 456
  • Burckhardt S. E., Woodgate R., Scheuermann R. H., Echols H. UmuD mutagenesis protein of Escherichia coli: overproduction, purification, and 40. cleavage of RecA. Proc. Natl. Acad. Sci. USA 1988; 85: 1811
  • Burgers P. M., Kornberg A., Sakakibara Y. The dnaN gene codes for the β subunit of DNA polymerase III holoenzyme of E. coli. Proc. Natl. Acad. Sci. USA 1981; 78: 5391
  • Burgers P. M. J., Kornberg A. ATP activation of DNA polymerase III holoenzyme of Escherichia coli. J. Biol. Chem. 1982; 257: 11468
  • Burnet M. Intrinsic Mutagenesis: A Genetic Approach to Aging. John Wiley, New York 1974
  • Caillet-Fauquet P., Defais M., Radman M. Molecular mechanism of induced mutagenesis. Replication in vivo of bacteriophage ΨX174 single-stranded, ultraviolet light-irradiated DNA in intact and irradiated host cells. J. Mol. Biol 1977; 117: 95
  • Caillet-Fauquet P., Maenhaut-Michel G., Radman M. SOS mutator effect in E. coli mutants deficient in mismatch correction. EMBO J. 1984; 3: 707
  • Campbell J. L., Soil L., Richardson C. C. Isolation and partial characterization of a mutant of Escherichia coli deficient in DNA polymerase II. Proc. Natl. Acad. Sci. USA 1972; 69: 2090
  • Casaregola S., Khidhir M., Holland I. B. Effects of modulation of RNaseH production on the recovery of DNA synthesis following UV-irradiation in Escherichia coli. Mol. Gen. Genet. 1987; 209: 494
  • Chase J. W., Williams K. R. Single-stranded DNA binding proteins required for DNA replication. Annu. Rev. Biochem. 1986; 55: 103
  • Chen H., Bryan S. K., Moses R. E. Cloning the polB gene of Escherichia coli and identification of its product. J. Biol. Chem. 1989; 264: 20591
  • Chen H., Sun Y., Stark T., Beattie W., Moses R. E. Nucleotide sequence and deletion analysis of the polB gene of Escherichia coli. DNA Cell. Biol. 1990; 9: 631
  • Christensen J. R., LeClerc J. E., Valone Tata P., Christensen R. B., Lawrence C. W. UmuC function is not essential for the production of all targeted lacl mutations induced by ultraviolet light. J. Mol. Biol. 1988; 203: 635
  • Christensen R. B., Christensen J. R., Koenig I., Lawrence C. W. Untargeted mutagenesis induced by UV in the lacl gene of Escherichia coli. Mol. Gen. Genet. 1985; 201: 30
  • Clark J. M. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eukaryotic DNA polymerases. Nucleic Acids Res. 1988; 16: 9677
  • Clark J. M., Beardsley G. P. Template length, sequence context, and 3′ → 5′ exonuclease activity modulate replicative bypass of thymine glycol lesions in vitro. Biochemistry 1989; 28: 775
  • Claverys J. P., Lacks S. A. Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria. Microbiol. Rev. 1986; 50: 133
  • Cohen-Fix O. The Biochemical Analysis of UV Mutagenesis Using a Newly Developed In Vitro Mutagenesis System. M.Sc. thesis, The Feinberg Graduate School of The Weizmann Institute of Science, RehovotIsrael 1989
  • Cohen-Fix O., Livneh Z. Biochemical analysis of UV mutagenesis in Escherichia coli by using a cell-free reaction coupled to a bioassay: identification of a DNA repair-dependent, replication-independent pathway. Proc. Natl. Acad. Sci. USA 1992; 89: 3300
  • Cooper P. K. Characterization of long patch excision repair of DNA in ultraviolet-irradiated Escherichia coli: an inducible function under Rec-Lex control. Mol. Gen. Genet. 1982; 185: 189
  • Cooper P. K., Hanawalt P. C. Heterogeneity of patch size in repair replicated DNA in Escherichia coli. J. Mol. Biol. 1972; 67: 1
  • Cooper P. K., Hanawalt P. C. Role of DNA polymerase I and the rec system in excision repair in Escherichia coli. Proc. Natl. Acad. Sci. USA 1972; 69: 1156
  • Cornells J. J., Su Z. Z., Rommelaere J. Direct and indirect effects of ultraviolet light on the mutagenesis of parvovirus H-1 in human cells. EMBO J. 1982; 1: 693
  • Coulondre C., Miller J. H. Genetic studies of the lac repressor IV. Mutagenic specificity in the lacl gene of Escherichia coli. J. Mol. Biol. 1977; 117: 577
  • Cox E. C. Bacterial mutator genes and the control of spontaneous mutation. Annu. Rev. Genet. 1976; 10: 135
  • Cox M. M., Lehman I. R. Enzymes of general recombination. Annu. Rev. Biochem. 1987; 56: 229
  • Cuniasse P., Fazakerley G. V., Guschlbauer W., Kaplan B. E., Sowers L. C. The abasic site as a challenge to DNA polymerase. A nuclear magnetic resonance study of G, C and T opposite a model abasic site. J. Mol. Biol. 1990; 213: 303
  • D'Ari R., Huisman O. DNA replication and indirect induction of the SOS response in Escherichia coli. Biochimie 1982; 64: 623
  • Dasgupta U. B., Summers W. C. UV reactivation of herpes simplex virus is mutagenic and inducible in mammalian cells. Proc. Natl. Acad. Sci. USA 1978; 75: 2378
  • de Massy B., Fayet O., Kogoma T. Multiple origin usage for DNA replication in sdrA(rnh) mutants of Escherichia coli K-12: initiation in the absence of oriC. J. Mol Biol. 1984; 178: 227
  • Defais M., Lesca C., Monsarrat B., Hanawalt P. Translesion synthesis is the main component of SOS repair in bacteriophage lambda DNA. J. Bacteriol. 1989; 171: 4938
  • DiFrancesco R., Bhatnagar S. K., Brown A., Bessman M. J. The interaction of DNA polymerase III and the product of the Escherichia coli mutator gene mutD. J. Biol. Chem. 1984; 259: 5567
  • Dixon K., Roilides E., Miskin R., Levine A. S. Analysis of induced mutagenesis in mammalian cells, using a simian virus 40-based shuttle vector. DNA Replication and Mutagenesis, R. E. Moses, W. C. Summers. American Society for Microbiology, Washington, DC 1988; 472
  • Donnelly C. E., Walker G. C. groE mutants of Escherichia coli are defective in umuDC-dependent UV mutagenesis. J. Bacteriol. 1989; 171: 6117
  • Donnelly C. E., Walker G. C. Coexpression of UmuD' with UmuC suppresses the UV mutagenesis deficiency of groE mutants. J. Bacteriol. 1992; 174: 3133
  • Doudney C. O. Macromolecular synthesis in bacterial recovery from ultraviolet light. Nature 1959; 184: 189
  • Doudney C. O. Recovery of deoxyribonucleic acid synthesis in ultraviolet-light-exposed bacteria. Biochem. Biophys. Res. Commun. 1961; 5: 410
  • Doudney C. O. Deoxyribonucleic acid replication in UV-damaged bacteria revisited. Mutat. Res. 1971; 12: 121
  • Doudney C. O. Chloramphenicol effects on DNA replication in UV-damaged bacteria. Mutat. Res. 1973; 17: 1
  • Dutreix M., Moreau P. L., Bailone A., Galibert F., Battista J. R., Walker G. C., Devoret R. New recA mutations that dissociate the various RecA protein activities in Escherichia coli provide evidence for an additional role for RecA protein in UV mutagenesis. J. Bacteriol. 1989; 171: 2415
  • Echols H. SOS functions, cancer, and inducible evolution. Cell 1981; 25: 1
  • Echols H., Goodman M. F. Mutation induced by DNA damage: a many protein affair. Mutat. Res. 1990; 236: 301
  • Echols H., Goodman M. F. Fidelity mechanisms in DNA replication. Annu. Rev. Biochem. 1991; 60: 477
  • Echols H., Lu C., Burgers P. M. J. Mutator strains of Escherichia coli. mutD and dnaQ, with defective exonucleolytic editing by DNA polymerase III holoenzyme. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 2189
  • Eisenberg S., Scott J. F., Romberg A. An enzyme system for replication of duplex circular DNA: the replicative form of phage ΦX174. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 1594
  • Eisenstadt E., Wolf M., Goldberg I. H. Mutagenesis by neocarzinostatin in Escherichia coli and Salmonella typhimurium: requirement for umuC+ or plasmid pKM101. J. Bacteriol. 1980; 144: 656
  • Elledge S. J., Walker G. C. Proteins required for ultraviolet light and chemical mutagenesis: identification of the products of the umuC locus of Escherichia coli. J. Mol. Biol. 1983; 164: 175
  • Erlich H. A., Cox E. C. Interaction of an Escherichia coli mutator gene with a deoxyribonucleotide effector. Mol. Gen. Genet. 1980; 178: 703
  • Fay P. J., Johanson K. O., McHenry C. S., Bambara R. Size classes products synthesized processively by two subassemblies of Escherichia coli DNA polymerase in holoenzyme. J. Biol. Chem. 1982; 257: 5692
  • Fay P. J., Johanson K. O., McHenry C. S., Bambara R. A. Size classes of products synthesized processively by DNA polymerase m and DNA polymerase III holoenzyme of Escherichia coli. J. Biol. Chem. 1981; 256: 976
  • Fersht A. R., Knill-Jones J. W. Contribution of 3′ → 5′ exonuclease activity of DNA polymerase III holoenzyme from Escherichia coli to specificity. J. Mol. Biol. 1983; 165: 669
  • Fix D. Thermal resistance of UV mutagenesis to photoreactivation in E. coli B/r uvrAung: estimate of activation energy and further analysis. Mol. Gen. Genet. 1986; 204: 452
  • Fix D., Bockrath R. Thermal resistance to photoreactivation of specific mutations potentiated in E. coli B/r ung by ultraviolet light. Mol. Gen. Genet. 1981; 182: 7
  • Flower A. M., McHenry C. S. The γ subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 3713
  • Formosa T., Alberts B. DNA synthesis dependent on genetic recombination of a reaction catalyzed by purified bacteriophage T4 proteins. Cell 1986; 47: 793
  • Foster P. L., Eisenstadt E., Miller J. H. Base substitution mutations induced by metabolically activated aflatoxin B1. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 2695
  • Foster P. L., Sullivan A. D., Franklin S. B. Presence of the dnaQ-rnh divergent transcriptional unit on a multicopy plasmid inhibits induced mutagenesis in Escherichia coli. J. Bacteriol. 1989; 171: 3144
  • Fraga C. G., Shigenaga M. K., Park J. W., Degan P., Ames B. N. Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 4533
  • Franklin W. A., Haseltine W. A. Removal of UV light-induced pyrimidine-pyrimidone (6–4) products from Escherichia coli DNA requires the uvrA, uvrB, and uvrC gene products. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 3821
  • Freitag N., McEntee K. “Activated”-RecA protein affinity chromatography of LexA repressor and other SOS-regulated proteins. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 8363
  • Friedberg E., Hanawalt P. C. Mechanisms and consequences of DNA damage processing. UCLA Symp. Mol. Cell. Biol. 1988; 83: 1
  • Friedberg E. C. DNA Repair. W. H. Freeman, New York 1985
  • Ganesan A. K. Persistence of pyrimidine dimers during post-replication repair in ultraviolet light-irradiated Escherichia coli K12. J. Mol. Biol. 1974; 87: 103
  • George D. L., Witkin E. L. Slow excision repair in a mfd mutant of Escherichia coli B/r. Mol. Gen. Genet. 1974; 133: 283
  • George D. L., Witkin E. M. Ultraviolet light-induced responses of an mfd mutant of Escherichia coli B/r having a slow rate of dimer excision. Mutat. Res. 1975; 28: 347
  • Gething M. J., Sambrook J. Protein folding in the cell. Nature 1992; 355: 33
  • Glickman B. W., Schaaper R. M., Haseltine W. A., Dunn R. L., Brash D. E. The C-C (6–4) photoproduct is mutagenic in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 6945
  • Gordon L. K., Haseltine W. A. Quantitation of cyclobutane pyrimidine dimer formation in double-and single-stranded DNA fragments of defined sequence. Radiat. Res. 1982; 89: 99
  • Gould S. J. Darwinism and the expansion of evolutionary theory. Science 1982; 216: 380
  • Greenberg J., Berends L., Donch J., Johnson B. Reversion studies with exrB in Escherichia coli. Genet. Res. 1975; 25: 109
  • Grossman L., Caron P. R., Mazur S. J., Oh E. Y. Repair of DNA-containing pyrimidine dimers. Faseb J. 1988; 2: 2696
  • Grossman L., Yeung A. T. The UvrABC endonuclease of Escherichia coli. Photochem. Photobiol. 1990; 51: 749
  • Grossman L., Yeung A. T. The UvrABC endonuclease system of Escherichia coli—a view from Baltimore. Mutat. Res. 1990; 236: 213
  • Hagensee M. E., Bryan S. K., Moses R. E. DNA polymerase III requirement for repair of DNA damage caused by methyl methanesulfonate and hydrogen peroxide. J. Bacteriol. 1987; 169: 4608
  • Hagensee M. E., Timme T. L., Bryan S. K., Moses R. E. DNA polymerase III of Escherichia coli is required for UV and ethyl methanesulfonate mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 4195
  • Hall J. D., Mount D. W. Mechanism of DNA replication and mutagenesis in ultraviolet-irradiated bacteria and mammalian cells. Prog. Nucleic Acid Res. Mol. Biol. 1981; 25: 53
  • Hall Z. W., Lehman I. R. An in vitro transversion by a mutationally altered T4-induced DNA polymerase. J. Mol. Biol. 1968; 36: 321
  • Hanawalt P. C. Preferential DNA repair in expressed genes. Environ. Health Perspect. 1987; 76: 9
  • Hartwell L. H., Weinert T. A. Checkpoints: controls that ensure the order of cell cycle events. Science 1989; 246: 629
  • Herrlich P., Mallick U., Ponta H., Rahmsdorf H. J. Genetic changes in mammalian cells reminiscent of an SOS response. Hum. Genet. 1984; 67: 360
  • Hevroni D., Livneh Z. Bypass and termination at apurinic sites during replication of single-stranded DNA in vitro: a model for apurinic site mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 5046
  • Hill R. F. Ultraviolet-induced lethality and reversion to prototrophy in Escherichia coli strains with normal and reduced dark repair ability. Photochem. Photobiol. 1965; 4: 563
  • Hillebrand G. G., Beattie K. L. Influence of template primary and secondary structure on the rate and fidelity of DNA synthesis. J. Biol. Chem. 1985; 260: 3116
  • Hiom K. J, Sedgwick S. G. Alleviation of EcoK DNA restriction in Escherichia coli and involvement of umuDC activity. Mol. Gen. Genet. 1992; 231: 265
  • Hirota Y., Gefter M., Mindich L. A mutant of Escherichia coli defective in DNA polymerase II activity. Proc. Natl Acad. Sci. U.S.A. 1972; 69: 3238
  • Honjo T., Habu S. Origin of immune diversity: genetic variation and selection. Annu. Rev. Biochem. 1985; 54: 803
  • Hooper I., Egan J. B. Coliphage infection requires host initiation functions dnaA and dnaC. J. Virol. 1981; 40: 599
  • Hooper I., Woods W. H., Egan J. B. Coliphage 186 replication is delayed when the host cell is UV irradiated before infection. J. Virol. 1981; 40: 341
  • Horiuchi T., Maki H., Sekiguchi M. RNaseH-defective mutants of E. coli: a possible discriminatory role of RNaseH in initiation of DNA replication. Mol. Gen. Genet. 1984; 195: 17
  • Hughes A. J., Bryan S. K., Chen H., Moses R. E., McHenry C. S. Escherichia coli DNA polymerase II is stimulated by DNA polymerase in holoenzyme auxiliary subunits. J. Biol Chem. 1991; 266: 4568
  • Huisman O., D'Ari R., Gottesman S. Cell division control in E. coli: specific induction of the SOS function SfiA protein is sufficient to block septation. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 4490
  • Hutchinson F. Chemical changes induced in DNA by ionizing radiation. Prog. Nucleic Acid Res. Mol. Biol. 1985; 32: 115
  • Hutchinson F., Yamamoto K., Stein J., Wood R. D. Effect of photoreactivation on mutagenesis of lambda phage by ultraviolet light. J. Mol Biol. 1988; 202: 593
  • Hwang D. S., Kornberg A. A novel protein binds a key origin sequence to block replication of an E. coli minichromosome. Cell 1990; 63: 325
  • Hwang D. S., Thony B., Kornberg A. IciA protein, a specific inhibitor of initiation of Escherichia coli chromosomal replication. J. Biol. Chem. 1992; 267: 2209
  • Ichikawa-Ryo H., Kondo S. Indirect mutagenesis in phage lambda by UV preirradiation of host bacteria. J. Mol. Biol. 1975; 97: 77
  • Ikeda J. E., Yudelevich A., Hurwitz J. Isolation and characterization of the protein coded by gene A of bacteriophage ΦX174 DNA. Proc. Natl. Acad. Sci. U.S.A. 1977; 73: 2669
  • Itaya M. Isolation and characterization of a second RNaseH (RNaseH II) of Escherichia coli K-12 encoded by the rnhB gene. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 8587
  • Iwasaki H., Ishino Y., Toh H., Nakata A., Shinagawa H. Escherichia coli DNA polymerase II is homologous to alpha-like DNA polymerases. Mol. Gen. Genet. 1991; 226: 24
  • Iwasaki H., Nakata A., Walker G. C., Shinagawa H. The Escherichia coli polB gene, which encodes DNA polymerase II, is regulated by the SOS system. J. Bacteriol. 1990; 172: 6268
  • Iyer V. N., Rupp W. D. Usefulness of benzoylated naphthoylated DEAE-cellulose to distinguish and fractionate double-stranded DNA bearing different extents of single-stranded regions. Biochim. Biophys. Acta 1971; 228: 117
  • Johanson K. O., McHenry C. S. Purification and characterization of the β subunit of the DNA polymerase III holoenzyme of Escherichia coli. J. Biol. Chem. 1980; 255: 10984
  • Jones C. A., Holland I. B. Role of the SulB (FtsZ) protein in division inhibition during the SOS response in Escherichia coli: FtsZ stabilizes the inhibitor SulB in maxicells. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 6045
  • Jonczyk P., Ciesla Z. DNA synthesis in UV irradiated E. coli K12 strains carrying dnaA mutations. Mol. Gen. Genet. 1979; 171: 53
  • Jonczyk P., Fijalkowska I., Ciesla Z. Overproduction of the E subunit of DNA polymerase III counteracts the SOS mutagenic response of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 9124
  • Jones C. A., Holland I. B. Inactivation of essential division genes. ftsA, ftsZ, suppresses mutation at sfiB, a locus mediating inhibition during the SOS response in E. coli. EMBO J. 1984; 3: 1181
  • Kaguni J. M., Kornberg A. The a subunit of RNA polymerase holoenzyme confers specificity in priming M13 viral DNA replication. J. Biol. Chem. 1982; 257: 5437
  • Kaguni L. S., Clayton D. A. Template-directed pausing in in vitro DNA synthesis by DNA polymerase α from Drosophila melanogaster embryos. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 983
  • Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991; 51: 6304
  • Kato A. C., Fraser M. J. Action of single-strand specific Neurospora crassa endonuclease on ultraviolet light-irradiated native DNA. Biochim. Biophys. Acta 1973; 312: 645
  • Kato T., Nakano E. Effects of the umuC36 mutation on ultraviolet radiation-induced base-change and frameshift mutations in Escherichia coli. Mutat. Res. 1981; 83: 307
  • Kato T., Rothman R. H., Clark A. J. Analysis of the role of recombination and repair in mutagenesis of Escherichia coli by UV irradiation. Genetics 1977; 87: 1
  • Kato T., Shinoura Y. Isolation and characterization of mutants of Escherichia coli deficient in induction of mutagenesis by ultraviolet light. Mol. Gen. Genet. 1977; 156: 121
  • Kenyon C. J., Walker G. C. DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 2819
  • Khidhir M. A., Casaregola S., Holland I. B. Mechanism of transient inhibition of DNA synthesis in ultraviolet-irradiated E. coli: inhibition is independent of recA while recovery requires RecA protein itself and an additional, inducible SOS function. Mol. Gen. Genet. 1985; 199: 133
  • Kitagawa Y., Akaboshi E., Shinagawa H., Horii T., Ogawa H., Kato T. Structural analysis of the umu operon required for inducible mutagenesis in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 4336
  • Klenow H, Henningsen I. Effect of monovalent cations on the activity of DNA polymerase of Escherichia coli. B. Eur. J. Biochem. 1969; 9: 133
  • Koehler D. R., Awadalla S. S., Glickman B. W. Sites of preferential induction of cyclobutane pyrimidine dimers in the nontranscribed strand of lacI correspond with sites of UV-induced mutations in Escherichia coli. J. Biol. Chem. 1991; 266: 11766
  • Koffel-Schwartz N., Verdier J. M., Bichara M., Freund A. M., Daune M. P., Fuchs R. P. Carcinogen-induced mutation spectrum in wild-type. uvrA and umuC strains of Escherichia coli. Strain-specificity and mutation-prone sequences. J. Mol. Biol. 1984; 177: 33
  • Kogoma T. RNaseH defective mutants of Escherichia coli. J. Bacteriol. 1986; 166: 361
  • Kogoma T., Lark K. G. Characterization of the replication of the Escherichia coli DNA in the absence of protein synthesis: stable DNA replication. J. Mol. Biol. 1975; 94: 243
  • Kogoma T., Skarstad K., Boye E., von Meyenburg K., Steen H. B. RecA protein acts at the initiation of stable DNA replication in rnh mutants of Escherichia coli K-12. J. Bacteriol. 1985; 163: 439
  • Kogoma T., Torrey T. A., Connaughton M. J. Induction of UV-resistant DNA replication in Escherichia coli: induced stable DNA replication as an SOS function. Mol. Gen. Genet. 1979; 176: 1
  • Kogoma T., von Meyenburg K. The origin of replication oriC and the dnaA protein are dispensible in stable DNA replication (sdrA) mutants of E. coli K-12. EMBO J. 1983; 2: 463
  • Kong X. P., Onrust R., O'Donnell M., Kuriyan J. Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 1992; 69: 425
  • Kornberg A., Baker T. DNA Replication. W. H. Freeman and Company, New York 1991
  • Kowalczykowski S. C. Mechanistic aspects of the DNA strand exchange activity of E. coli RecA protein. Trends Biochem. Sci. 1987; 12: 141
  • Kreuzer K. N., Yap W. P., Menkens A. E., Engman H. W. Recombination-dependent replication of plasmids during bacteriophage T4 infection. J. Biol. Chem. 1988; 263: 11366
  • Kuchta R. D., Benkovic P., Benkovic S. J. Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity. Biochemistry 1988; 27: 6716
  • Kuemmerle N., Ley R., Masker W. Analysis of resynthesis tracts in repaired Escherichia coli deoxyribonucleic acid. J. Bacteriol. 1981; 147: 333
  • Kuerbitz S. J., Plunkett B. S., Walsh W. V., Kastan M. B. Wild-type P53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 7491
  • Kunala S., Brash D. E. Excision repair at individual bases of the Escherichia coli lacI gene: relation to mutation hot spot and transcription coupling activity. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 11031
  • Kunkel T. A., Meyer R. R., Loeb L. A. Single-strand binding protein enhances fidelity of DNA synthesis in vitro. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 6331
  • Kunkel T. A., Schaaper R. M., Loeb L. A. Depurination-induced infidelity of deoxyribonucleic acid synthesis with purified deoxyribonucleic acid replication proteins in vitro. Biochemistry 1983; 22: 2378
  • Kunz B. A., Glickman B. W. The role of pyrimidine dimers as premutagenic lesions: a study of targeted vs. untargeted mutagenesis in the lacI gene of Escherichia coli. Genetics 1984; 106: 347
  • Lackey D., Krauss S. W., Linn S. Isolation of an altered form of DNA polymerase I from Escherichia coli cells induced for recA/lexA functions. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 330
  • Lackey D., Krauss S. W., Linn S. Characterization of DNA polymerase I*, a form of DNA polymerase I found in Escherichia coli expressing SOS functions. J. Biol. Chem. 1985; 260: 3178
  • LaDuca R. J., Fay P. J., Chuang C., McHenry C. S., Bambara R. A. Site-specific pausing of deoxyribonucleic acid synthesis catalyzed by four forms of Escherichia coli DNA polymerase III. Biochemistry 1983; 22: 5177
  • Lam L. H., Reynolds R. J. Bifilar enzyme-sensitive sites in ultraviolet-irradiated DNA are indicative of closely opposed cyclobutyl pyrimidine dimers. Biophys. J. 1986; 50: 307
  • Lam L. H., Reynolds R. J. A sensitive, enzymatic assay for the detection of closely opposed cyclobutyl pyrimidine dimers induced in human diploid fibroblasts. Mutat. Res. 1986; 166: 187
  • Lam L. H., Reynolds R. J. DNA sequence dependence of closely opposed cyclobutyl pyrimidine dimers induced by UV radiation. Mutat. Res. 1987; 178: 167
  • Lancy E., Lifsics M. R., Kehres D., Maurer R. Isolation and characterization of mutants with deletions in dnaQ, the gene for the editing subunit of DNA polymerase III in Salmonella typhimurium. J. Bacteriol. 1989; 171: 5572
  • Langeveld S. A., van Mansfeld A. D. M., Baas B. D., Jansz H. S., van Arkel G. A., Weisbeek P. J. Nucleotide sequence of the origin of replication in bacteriophage ΦX174 RF DNA. Nature 1978; 271: 417
  • Lark C. A., Riazi J., Lark K. G. dnaT, dominant conditional-lethal mutation affecting DNA replication in Escherichia coli. J. Bacteriol. 1978; 136: 1008
  • Lasken R. S., Kornberg A. The β subunit dissociates readily from the Escherichia coli DNA polymerase III holoenzyme. J. Biol. Chem. 1987; 262: 1720
  • Lawrence C. W., Borden A., Banerjee S. K., LeClerc J. E. Mutation frequency and spectrum resulting from a single abasic site in a single-stranded vector. Nucleic Acids Res. 1990; 18: 2153
  • Lawrence C. W., Christensen R. B., Christensen J. R. Identity of the photoproduct that causes lacI mutations in UV-irradiated Escherichia coli. J. Bacteriol. 1985; 161: 767
  • LeBowitz J., McMacken R. The Escherichia coli dnaB replication protein is a DNA helicase. J. Biol. Chem. 1986; 261: 4738
  • LeClerc J. E., Borden A., Lawrence C. W. The thymine-thymine pyrimidine-pyrimidone(6–4) ultraviolet light photoproduct is highly mutagenic and specifically induces 3′ thymine-to-cytosine transitions in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 9685
  • LeClerc J. E., Christensen J. R., Tata P. V., Christensen R. B., Lawrence C. W. Ultraviolet light induces different spectra of lacI sequence changes in vegetative and conjugating cells of Escherichia coli. J. Mol. Biol. 1988; 203: 619
  • LeClerc J. E., Istock N. L., Saran B. R., Allen R., Jr. Sequence analysis of ultraviolet-induced mutations in M131acZ hybrid phage DNA. J. Mol. Biol. 1984; 180: 217
  • Lehman I. R. DNA polymerase I of Escherichia coli. The Enzymes, XIV, A Part, P. D. Boyer. Academic Press, New York 1981; 15
  • Lieberman H. B., Witkin E. M. Variable expression of the ssb-1 allele in different strains of Escherichia coli K12 and B: differential suppression of its effects on DNA replication, DNA repair and ultraviolet mutagenesis. Mol. Gen. Genet. 1981; 183: 348
  • Lieberman H. B., Witkin E. M. DNA degradation, UV sensitivity and SOS-mediated mutagenesis in strains of Escherichia coli deficient in single-strand DNA binding protein: effects of mutations and treatments that alter levels of exonuclease V or RecA protein. Mol. Gen. Genet. 1983; 190: 92
  • Lindahl G., Lindahl T. Initiation of DNA replication in E. coli: RNaseH-deficient mutants do not require the dnaA function. Mol. Gen. Genet. 1984; 196: 283
  • Lindahl T. Repair of intrinsic DNA lesions. Mutat. Res. 1990; 238: 305
  • Lindahl T., Wood R. D. DNA repair and recombination. Curr. Opin. Cell Biol. 1989; 1: 475
  • Little J. W. Autodigestion of LexA and phage lambda repressors. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 1375
  • Little J. W., Mount D. W. The SOS regulatory system of Escherichia coli. Cell 1982; 29: 11
  • Liu S. K., Tessman I. groE genes affect SOS repair in Escherichia coli. J. Bacteriol. 1990; 172: 6135
  • Livneh Z. Mechanism of replication of ultraviolet-irradiated single-stranded DNA by DNA polymerase III holoenzyme of Escherichia coli. Implications for SOS mutagenesis. J. Biol. Chem. 1986; 261: 9526
  • Livneh Z. Replication of UV-irradiated single-stranded DNA by DNA polymerase III holoenzyme of Escherichia coli: evidence for bypass of pyrimi-dine photodimers. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 4599
  • Livneh Z., Lehman I. R. Recombinational bypass of pyrimidine dimers promoted by the RecA protein of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 3171
  • Livneh Z., Shwartz H., Hevroni D., Shavitt O., Tadmor Y., Cohen O. Bypass and termination at lesions during in vitro DNA replication. Implication for SOS mutagenesis. DNA Replication and Mutagenesis, R. E. Moses, W. C. Summers. American Society for Microbiology, Washington, DC 1988; 296
  • Lloyd R. G., Benson F. E., Shurvinton C. E. Effect of ruv mutations on recombination and DNA repair in Escherichia coli K12. Mol. Gen. Genet. 1984; 194: 303
  • Lodwick D., Owen D., Strike P. DNA sequence analysis of the imp UV protection and mutation operon of the plasmid TP110: identification of a third gene. Nucleic Acids Res. 1990; 18: 5045
  • Lohman T. M., Bujalowski W., Overman L. B. E. coli single strand binding protein: a new look at helix-destabilizing proteins. Trends Biochem. Sci. 1988; 13: 250
  • Lu C., Echols H. RecA protein and SOS. Correlation of mutagenesis phenotype with binding of mutant RecA proteins to duplex DNA and LexA cleavage. J. Mol. Biol. 1987; 196: 497
  • Lu C., Scheuermann R. H., Echols H. Capacity of RecA protein to bind preferentially to UV lesions and inhibit the editing subunit (ϵ) of DNA polymerase III: a possible mechanism for SOS-induced targeted mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 619
  • Luder A., Mosig G. Two alternative mechanisms for initiation of DNA replication forks in bacteriophage T4: priming by RNA polymerase and by recombination. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 1101
  • Lutkenhaus J. F. Coupling of DNA replication and cell division:sulB is an allele of ftsZ. J. Bacteriol. 1983; 154: 1339
  • Lytle C. D., Knott D. C. Enhanced mutagenesis parallels enhanced reactivation of herpes virus in a human cell line. EMBO J. 1982; 1: 701
  • Maenhaut-Michel G., Caillet-Fauquet P. Effect of umuC mutations on targeted and untargeted UV mutagenesis in bacteriophage λ. J. Mol. Biol. 1984; 177: 181
  • Maenhaut-Michel G., Caillet-Fauquet P. Genetic control of the UV-induced SOS mutator effect in single-and double-stranded DNA phages. Mutat. Res. 1990; 230: 241
  • Magee T. R., Kogoma T. Requirement of RecBC enzyme and an elevated level of activated RecA for induced stable DNA replication in Escherichia coli. J. Bacteriol. 1990; 172: 1834
  • Maher V. M., Sato K., Kateley-Kohler S., Thomas H., Michaud S., McCormick J., Kraemer M., Rahmsdorf H. J., Herrlich P. Evidence of inducible error-prone mechanisms in diploid human fibroblasts. DNA Replication and Mutagenesis, R. E. Moses, W. C. Summers. American Society for Microbiology, Washington, DC 1988; 465
  • Maki H., Bryan S. K., Horiuchi T., Moses R. E. Suppression of dnaE nonsense mutations by pcbAI. J. Bacteriol. 1989; 171: 3139
  • Maki H., Kornberg A. The polymerase subunit of DNA polymerase III of Escherichia coli. II Purification of the α subunit, devoid of nuclease activities. J. Biol. Chem. 1985; 260: 12987
  • Maki H., Kornberg A. Proofreading by DNA polymerase III of Escherichia coli depends on cooperative interaction of the polymerase and exonuclease subunits. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 4389
  • Maki H., Maki S., Romberg A. DNA polymerase III holoenzyme of Escherichia coli. IV. The holoenzyme is an asymmetric dimer with twin active sites. J. Biol. Chem. 1988; 263: 6570
  • Maki H., Mo J.-Y., Sekiguchi M. A strong mutator effect caused by an amino acid change in the α subunit of DNA polymerase III of Escherichia coli. J. Biol. Chem. 1991; 266: 5055
  • Maki H., Sekiguchi M. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature (London) 1992; 355: 273
  • Maki S., Kornberg A. DNA polymerase III holoenzyme of Escherichia coli. II. A novel complex including the γ subunit essential for processive synthesis. J. Biol. Chem. 1988; 263: 6555
  • Maki S., Kornberg A. DNA polymerase III holoenzyme of Escherichia coli. I. Purification and distinctive functions of subunits τ and γ, the dnaZX gene products. J. Biol. Chem. 1988; 263: 6547
  • Marians K. J. Prokaryotic DNA replication. Annu. Rev. Biochem. 1992; 61: 673
  • Marsh L., Nohmi T., Hinton S., Walker G. C. New mutations in cloned Escherichia coli umuDC genes: novel phenotypes of strains carrying a umuC125 plasmid. Mutat. Res. 1991; 250: 183
  • Marsh L., Walker G. C. Cold sensitivity induced by overproduction of UmuDC in Escherichia coli. J. Bacteriol. 1985; 162: 155
  • Masai H., Arai K. Operon structure of dnaT and dnaC genes essential for normal and stable DNA replication of Escherichia coli chromosome. J. Biol. Chem. 1988; 263: 15083
  • Masamune Y. Effect of ultraviolet irradiation of bacteriophage f1 DNA on its conversion to replicative form by extracts of Escherichia coli. Mol. Gen. Genet. 1976; 149: 335
  • Masker W., Hanawalt P. C., Shizuya H. Role of DNA polymerase II in repair replication in Escherichia coli. Nature New Biol. 1973; 244: 242
  • Matson S. W., Kaiser-Rogers K. A. DNA helicases. Annu. Rev. Biochem. 1990; 59: 289
  • McCall J. O., Witkin E. M., Kogoma T., Roenger-Maniscalco V. Constitutive expression of the SOS response in recA718 mutants of Escherichia coli requires amplification of RecA718 protein. J. Bacteriol. 1987; 169: 728
  • McCann J., Spingarn N. E., Kobori J. Detection of carcinogens as mutagens: bacterial tester strains with R factor plasmids. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 979
  • McElroy M. B., Salawitch R. J., Wofsy S. C., Logan J. A. Reduction of Antarctic ozone due to synergistic interaction of chlorine and bromine. Nature (London) 1986; 321: 759
  • McEntee K., Weinstock G. M. tif-1 mutation alters polynucleotide recognition by the recA protein of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 6061
  • McHenry C., Crow W. DNA polymerase III of Escherichia coli. Purification and identification of subunits. J. Biol. Chem. 1979; 254: 1748
  • McHenry C. S. Purification and characterization of DNA polymerase III'. Identification of τ as a subunit of the DNA polymerase III holoenzyme. J. Biol. Chem. 1982; 257: 2657
  • McHenry C. S. DNA polymerase III holoenzyme of Escherichia coli. Annu. Rev. Biochem. 1988; 57: 519
  • McHenry C. S. DNA polymerase III holoenzyme. Components, structure, and mechanism of a true replicative complex. J. Biol. Chem. 1991; 266: 19127
  • McMacken R., Uedo K., Kornberg A. Migration of Escherichia coli dnaB protein on the template DNA strand as a mechanism in initiating DNA replication. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 4190
  • Mellon I., Hanawalt P. C. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature 1989; 342: 95
  • Meyer R. R., Laine P S. The single-stranded DNA-binding protein of Escherichia coli. Microbiol. Rev. 1990; 54: 342
  • Michaels M. L., Lee M. S., Romano L. J. Contrasting effects of Escherichia coli single-stranded DNA binding protein on synthesis by T7 DNA polymerase and Escherichia coli DNA polymerase I (large fragment). Evidence that binding protein inhibits trans-lesion synthesis by polymerase I. J. Biol. Chem. 1986; 261: 4847
  • Miller J. H. Mutagenic specificity of ultraviolet light. J. Mol. Biol. 1985; 182: 45
  • Miller S. S., Eisenstadt E. Enhanced sensitivity of Escherichia coli umuC to photodynamic inactivation by angelicin (isopsoralen). J. Bacteriol. 1985; 162: 1307
  • Minton K., Friedberg E. C. Evidence for clustering of pyrimidine dimers on opposite strands of U.V.-irradiated bacteriophage DNA. Int. J. Radiat. Biol. 1974; 26: 81
  • Misuraca F., Rampolla D., Grimaudo S. Identification and cloning of a umu locus in Streptomyces coelicolor A3. Mutat. Res. 1991; 262: 183
  • Miura A., Tomizawa J. I. Studies on radiation-sensitive mutants of E. coli. III. Participation of the rec system in induction of mutation by ultraviolet irradiation. Mol. Gen. Genet. 1968; 103: 1
  • Mizusawa S., Gottesman S. Protein degradation in E. coli: the lon gene controls the stability of SulA protein. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 358
  • Modrich P. DNA mismatch correction. Annu. Rev. Biochem. 1987; 56: 435
  • Mok M., Marians K. J. The Escherichia coli preprimisome and DNA B helicase can form replication forks that move at the same rate. J. Biol. Chem. 1987; 262: 16644
  • Molineux I. J., Friedman S., Getter M. L. Purification and properties of the Escherichia coli deoxyribonucleic acid-unwinding protein. Effects on deoxyribonucleic acid synthesis in vitro. J. Biol. Chem. 1974; 249: 6090
  • Moore P. D., Bose K. K., Rabkin S. D., Strauss B. S. Sites of termination of in vitro DNA synthesis on ultraviolet- and N-acetylaminofluorene-treated ΦX174 templates by prokaryotic and eukaryotic DNA polymerases. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 110
  • Moreau P. L., Roberts J. L. RecA protein-promoted τ repressor cleavage: complementation between RecA441 and RecA430 proteins in vitro. Mol. Gen. Genet. 1984; 198: 25
  • Moses R. E. The isolation and properties of DNA polymerase II from Escherichia coli. Meth. Enz. 1974; 29: 13
  • Nishioka H., Doudney C. O. Different modes of loss of photoreversibility of mutation and lethal damage in ultraviolet-light resistant and sensitive bacteria. Mutat. Res. 1969; 8: 215
  • Nishioka H., Doudney C. O. Different modes of loss of photoreversibility of ultraviolet light-induced true and suppressor mutations to tryptophan independence in an auxotrophic strain of Escherichia coli. Mutat. Res. 1970; 9: 349
  • Nohmi T., Battista J. R., Dodson L. A., Walker G. C. RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 1816
  • Nohmi T., Hakura A., Nakai Y., Watanabe M., Murayama S. Y., Sofuni T. Salmonella typhimurium has two homologous but different umuDC operons: cloning of a new umuDC-like operon (samAB) present in a 60-megadalton cryptic plasmid of S. typhimurium. J. Bacterial. 1991; 173: 1051
  • Nossal N. G., Alberts B. M. Mechanism of DNA replication catalyzed by purified T4 proteins. Bacteriophage T4, C. K. Mathews, E. M. Kutter, C. Mosig, P. B. Berget. American Society for Microbiology, Washington, DC 1983; 71
  • O'Donnell M. E. Accessory proteins bind a primed template and mediate rapid cycling of DNA polymerase III holoenzyme from Escherichia coli. J. Biol. Chem. 1987; 262: 16558
  • O'Donnell M. E., Romberg A. Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template. J. Biol. Chem. 1985; 260: 12875
  • Ogawa T., Okazaki T. Function of RNaseH in DNA replication revealed by RNaseH mutants of E. Coli. Mol. Gen. Genet. 1984; 193: 231
  • Ogawa T., Pichett G. G., Kogoma T., Kornberg A. RNaseH confers specificity in the dnaA-dependent initiation of replication at the unique origin of the E. coli chromosome in vivo and in vitro. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 1040
  • Oh E. Y., Grossman L. Helicase properties of the Escherichia coli UvrABC protein complex. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 3638
  • Ohmori H., Kimura M., Nagata T., Sakakibara Y. Structural analysis of the dnaA and dnaN genes of E. coli. Gene 1984; 28: 159
  • Oller A. R., Fijalkowska I. J., Dunn R. L., Schaaper R. M. Transcription-repair coupling determines the strandedness of ultraviolet mutagenesis in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 11036
  • Patrick M. H., Rahn R. O. Photochemistry of DNA and polynucleotides: photoproducts. Photochemistry and Photobiology of Nucleic Acids, II, S. Y. Wang. Academic Press, New York 1976; 35
  • Perrino F. W., Loeb L. A. Differential extension of 3′ mispairs is a major contribution to the high fidelity of calf thymus DNA polymerase a. J. Biol. Chem. 1989; 264: 2898
  • Perry R. L., Elledge S. J., Mitchell B. B., Marsh L., Walker G. UmuDC and mucAB operons whose products are required for UV light- and chemical-induced mutagenesis: UmuD, MucA, and LexA proteins share homology. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 4331
  • Perry K. L., Walker G. C. Identification of plasmid (pKM101)-coded proteins involved in mutagenesis and UV resistance. Nature 1982; 300: 278
  • Peterson R. R., Ossanna N., Thliveris A. T., Ennis D. G., Mount D. W. Derepression of specific genes promotes DNA repair and mutagenesis in Escherichia coli. J. Bacteriol. 1988; 170: 1
  • Phizicky E M., Roberts J. W. Induction of SOS functions; regulation of proteolytic activity of E. coli RecA protein by interaction with DNA and nucleoside triphosphate. Cell 1981; 25: 259
  • Piechocki R., Kupper D., Quinones A., Langhammer R. Mutational specificity of a proofreading defective Escherichia coli dnaQ49 mutator. Mol. Gen. Genet. 1986; 202: 162
  • Piette J. G., Hearst J. E. Termination sites of the in vitro nick-translation reaction on DNA that had photoreacted with psoralen. Proc. Natl. Acad. Sci U.S.A. 1983; 80: 5540
  • Poddar R. K., Sinsheimer R. L. Nature of the complementary strands synthesized in vitro upon the single-stranded circular DNA of bacteriophage ΦX174 after ultraviolet irradiation. Biophys. J. 1971; 11: 355
  • Quinones A., Kucherer C., Piechocki R., Messer W. Reduced transcription of the rnh gene in Escherichia coli mutants expressing the SOS regulon constitutively. Mol. Gen. Genet. 1987; 206: 95
  • Rabkin S. D., Moore P. D., Strauss B. S. In vitro bypass of UV-induced lesions by Escherichia coli DNA polymerase. I. Specificity of nucleotide incorporation. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 1541
  • Rabkin S. D., Strauss B. S. A role for DNA polymerase in the specificity of nucleotide incorporation opposite N-acetyl-2-aminofluorene adducts. J. Mol. Biol. 1984; 178: 569
  • Radding C. M. Homologous pairing and strand exchange promoted by Escherichia coli RecA protein. Genetic Recombination, R. Kucherlapati, G. R. Smith. American Society for Microbiology, Washington, DC 1988; 193
  • Rahn R. O. Nondimer damage in deoxyribonucleic acid caused by ultraviolet radiation. Photochemical and Photobiological Reviews, 4, K. C. Smith. Plenum Press, New York 1979; 267
  • Rajagopalan M., Lu C., Woodgate R., O'Donnell M., Goodman M. F., Echols M. Activity of the purified mutagenesis proteins UmuC, UmuD', and RecA in replicative bypass of an abasic site DNA lesion by DNA polymerase III. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 10777
  • Randall S. K., Eritja R., Kaplan B. E., Petruska J., Goodman M. F. Nucleotide insertion kinetics opposite abasic lesions in DNA. J. Biol. Chem. 1987; 262: 6864
  • Reckmann B., Grosse F., Krauss G. The elongation of mismatched primers by DNA polymerase α from calf thymus. Nucleic Acids Res. 1983; 11: 7251
  • Rideout W. M., III, Coetzee G. A., Olumi A. F., Jones P. A. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 1990; 249: 1288
  • Roca A. I., Cox M. M. The RecA protein: structure and function. CRC Crit. Rev. Biochem. Mol. Biol. 1990; 25: 415
  • Rosenberg M., Echols H. Differential recognition of ultraviolet lesions by RecA protein. Possible mechanism for preferential targeting of SOS mutagenesis to (6–4) dipyrimidine sites. J. Biol. Chem. 1990; 265: 20641
  • Rupp W. D., Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J. Mol. Biol. 1986; 31: 291
  • Rupp W. D., Wilde C. E., III, Reno D. L., Howard-Flanders P. Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J. Mol. Biol. 1971; 61: 25
  • Ruscitti T. M., Polayes D. A., Martin S. A., Linn S. Characterization of DNA polymerase I*. J. Cell. Biol. 1988; 107: 228
  • Rydberg B., Lindahl T. Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J. 1982; 1: 211
  • Sagher D., Strauss B. Insertion of nucleotides opposite apurinic/apyrimidinic sites in deoxyribonucleic acid during in vitro synthesis: uniqueness of adenine nucleotides. Biochemistry 1983; 22: 4518
  • Sancar A., Sancar G. B. DNA repair enzymes. Annu. Rev. Biochem. 1988; 57: 29
  • Sancar G. B. DNA photolyases: physical properties, action mechanism, and roles in dark repair. Mutat. Res. 1990; 236: 147
  • Sarasin A., Benoit A. Induction of an error-prone mode of DNA repair in UV-irradiated monkey kidney cells. Mutat. Res. 1980; 70: 71
  • Sargentini N. J., Smith K. C. umuC-dependent and umuC-independent γ- and UV-radiation mutagenesis in Escherichia coli. Mutat. Res. 1984; 128: 1
  • Sargentini N. J., Smith K. C. Role of ruvAB genes in UV- and gamma-radiation and chemical mutagenesis in Escherichia coli. Mutat. Res. 1989; 215: 115
  • Sarkar S. K., Dasgupta U. B., Summers W. C. Error-prone mutagenesis detected in mammalian cells by a shuttle vector containing the supF gene of Escherichia coli. Mol. Cell. Biol. 1984; 4: 2227
  • Sassanfar M., Roberts J. F. Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J. Mol. Biol. 1990; 212: 79
  • Schaaper R. M., Dunn R. L., Glickman B. W. Mechanism of ultraviolet-induced mutation. Mutational spectra in the Escherichia coli lacI gene for a wild-type and an excision-repair deficient strain. J. Mol. Biol. 1987; 198: 187
  • Schaaper R. M., Kunkel T. A., Loeb L. A. Infidelity of DNA synthesis associated with bypass of apurinic sites. Proc. Natl Acad. Sci. U.S.A. 1983; 80: 487
  • Schendel P. F., Defais M. The role of the umuC gene product in mutagenesis by simple alkylating agents. Mol. Gen. Genet. 1980; 177: 661
  • Scheuermann R., Echols H. A separate editing exonuclease for DNA replication: the epsilon subunit of Escherichia coli DNA polymerase III holoenzyme. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 7747
  • Scheuermann R., Tam S., Burgers P. M. J., Echols H. Identification of the ϵ-subunit of Escherichia coli DNA polymerase III holoenzyme as the dnaQ gene product: a fidelity subunit for DNA replication. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 7085
  • Schoemaker J. M., da Gay R. C., Markovitz A. Regulation of cell division in Escherichia coli: SOS induction and cellular localization of the sulA protein, a key to lon associated filamentation and death. J. Bacteriol. 1984; 158: 551
  • Sedgwick S. G. Inducible error-prone repair in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 2753
  • Sedgwick S. G. Misrepair of overlapping daughter strand gaps as a possible mechanism for UV induced mutagenesis in uvr strains of Escherichia coli: a general model for induced mutagenesis by misrepair (SOS repair) of closely spaced DNA lesions. Mutat. Res. 1976; 41: 185
  • Sedgwick S. G. Inducible DNA repair in microbes. Microbiol. Sci. 1986; 3: 76
  • Sedgwick S. G., Ho C., Woodgate R. Mutagenic DNA repair in enterobacteria. J. Bacterial. 1991; 173: 5604
  • Sedgwick S. G., Lodwick D., Doyle N., Crowne H., Strike P. Functional complementation between chromosomal and plasmid mutagenic DNA repair genes in bacteria. Mol. Gen. Genet. 1991; 229: 428
  • Sedliakova M., Brozmanova J., Masek F., Kleibl K. Evidence that dimers remaining in preinduced Escherichia coli B/r hcr+ become insensitive after DNA replication to the extract from Micrococcus luteus. Biophys. J. 1981; 36: 429
  • Selby C. P., Sancar A. Structure and function of the (A)BC exonuclease of Escherichia coli. Mutat. Res. 1990; 236: 203
  • Selby C. P., Sancar A. Gene- and strand-specific repair in vitro: partial purification of a transcription-repair coupling factor. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 8232
  • Selby C. P., Witkin E. M., Sancar A. Escherichia coli mfd mutant deficient in “mutation frequency decline” lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 11574
  • Setlow J. K. The molecular basis of biological effects of ultraviolet radiation and photoreactivation. Current Topics in Radiation Research, 2, M. Ebert, A. Howard. North Holland, Amsterdam 1966; 195
  • Setlow R. B., Carrier W. L. Pyrimidine dimers in ultraviolet-irradiated DNAs. J. Mol. Biol. 1966; 17: 237
  • Setlow R. B., Swenson P. A., Carrier W. L. Thymine dimers and inhibition of DNA synthesis by ultraviolet irradiation of cells. Science 1963; 142: 1464
  • Sharif F., Bridges B. A. Mutagenic DNA repair in Escherichia coli. XVII. Effect of temperature-sensitive DnaE proteins on the induction of streptomycin-resistant mutations by UV light. Mutagenesis 1990; 5: 31
  • Shavitt O., Livneh Z. The β subunit modulates bypass and termination at UV lesions during in vitro replication with DNA polymerase III holoenzyme of Escherichia coli. J. Biol. Chem. 1989; 264: 11275
  • Shavitt O., Livneh Z. Rolling-circle replication of UV-irradiated duplex DNA in the ΦX174 replicative form → single strand replication system in vitro. J. Bacterial. 1989; 171: 3530
  • Shiba T., Iwasaki H., Nakata A., Shinagawa H. Proteolytic processing of MucA protein in SOS mutagenesis: both processed and unprocessed MucA may be active in the mutagenesis. Mol. Gen. Genet. 1990; 224: 169
  • Shinagawa H., Iwasaki H., Ishino Y., Nakata A. SOS-inducible DNA polymerase II of E. coli is homologous to replicative DNA polymerase of eukaryotes. Biochimie 1991; 73: 433
  • Shinagawa H., Iwasaki H., Kato T., Nakata A. RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 1806
  • Shinagawa H., Kato T., Ise T., Makino K., Nakata A. Cloning and characterization of the umu operon responsible for inducible mutagenesis in Escherichia coli. Gene 1983; 23: 167
  • Shwartz H., Livneh Z. Dynamics of termination during in vitro replication of ultraviolet-irradiated DNA with DNA polymerase III holoenzyme of Escherichia coli. J. Biol. Chem. 1987; 262: 10518
  • Shwartz H., Livneh Z. RecA protein inhibits in vitro replication of single-stranded DNA with DNA polymerase III holoenzyme of Escherichia coli. Mutat. Res. 1989; 213: 165
  • Shwartz H., Shavitt O., Hevroni D., Tadmor Y., Cohen O., Livneh Z. In vitro replication of damaged DNA: a model for SOS mutagenesis. Mechanisms and Consequences of DNA Damage Processing, E. C. Friedberg, P. C. Hanawalt. Alan R. Liss, New York 1988; 471
  • Shwartz H., Shavitt O., Livneh Z. The role of exonucleolytic processing and polymerase-DNA association in bypass of lesions during replication in vitro. Significance for SOS-targeted mutagenesis. J. Biol. Chem. 1988; 263: 18277
  • Sigal N., Delius H., Kornberg T., Gefter M. L., Alberts B. A DNA-unwinding protein isolated from Escherichia coli: its interaction with DNA and with DNA polymerases. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 3537
  • Sinex F. M. Handbook of the Biology of Aging, C. E. Finch, L. Hayflick. Von Nostrand Reinhold Company. 1977; 37
  • Singer B., Essigmann J. M. Site-specific mutagenesis: retrospective and prospective. Carcinogenesis 1991; 12: 949
  • Skaliter R., Eichenbaum Z., Shwartz H., Ascarelli-Goell R., Livneh Z. Spontaneous transposition in the bacteriophage λ cro gene residing on a plasmid. Mutat. Res. 1992; 267: 139
  • Slater S. C., Maurer R. Requirements for bypass of UV-induced lesions in single-stranded DNA of bacteriophage ΦX174 in Salmonella typhimurium. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 1251
  • Smith C. M., Koch W. H., Franklin S. B., Foster P. L., Cebula T. A., Eisenstadt E. Sequence analysis and mapping of the Salmonella typhimurium LT2 umuDC operon. J. Bacteriol. 1990; 172: 4964
  • Smith K. C. DNA synthesis in sensitive and resistant mutants of Escherichia coli B after ultraviolet irradiation. Mutat. Res. 1969; 8: 481
  • Steinborn G. Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. Mol. Gen. Genet. 1978; 165: 87
  • Stolarski R. S., Krueger A. J., Schoeberl M. R., McPeters R. D., Newman P. A., Alpert J. C. Nimbus 7 satellite measurements of the spring Antarctic ozone decrease. Nature (London) 1986; 322: 808
  • Strauss B., Rabkin S., Sagher D., Moore P. The role of DNA polymerase in base substitution mutagenesis on non-instructional templates. Biochimie 1982; 64: 829
  • Strauss B. S. Repair of DNA adducts produced by alkylation. Aging, Carcinogenesis, and Radiation Biology, K. C. Smith. Plenum Press, New York 1976; 287
  • Strauss B. S. Translesion DNA synthesis: polymerase response to altered nucleotide. Cancer Surv. 1985; 4: 493
  • Strauss B. S. The “A rule” of mutagen specificity: a consequence of DNA polymerase bypass of non-instructional lesions. Bioessays 1991; 13: 79
  • Strauss B. S., Wang J. Role of DNA polymerase 3′→ 5′ exonuclease activity in the bypass of aminofluorene lesions in DNA. Carcinogenesis 1990; 11: 2103
  • Streisinger G., Okada Y., Emrich J., Newton J., Tsugita A., Terzaghi E., Inouye M. Frame-shift mutations and the genetic code. Cold Spring Harbor Symp. Quant. Biol. 1966; 31: 77
  • Strike P., Lodwick D. Plasmid genes affecting DNA repair and mutation. J. Cell Sci. 1987; 6(Suppl.)303
  • Studwell P. S., O'Donnell M. E. Processive replication is contingent on the exonuclease subunit of DNA polymerase III holoenzyme. J. Biol. Chem. 1990; 265: 1171
  • Studwell-Vaughan P. S., O'Donnell M. Constitution of the twin polymerase of DNA polymerase III holoenzyme. J. Biol. Chem. 1991; 286: 19833
  • Stukenberg P. T., Studwell-Vaughan P. S., O'Donnell M. Mechanism of the sliding β-clamp of DNA polymerase III holoenzyme. J. Chem. Biol. 1991; 266: 11328
  • Sweasy J. B., Witkin E. M., Sinha N., Roegner-Maniscalo V. RecA protein of Escherichia coli has a third essential role in SOS mutator activity. J. Bacteriol. 1990; 172: 3030
  • Tadmor Y., Ascarelli-Goell R., Skaliter R., Livneh Z. Overproduction of the β subunit of DNA polymerase III holoenzyme reduces UV mutagenesis in Escherichia coli. J. Bacteriol. 1992; 174: 2517
  • Tait R. C., Harris A. L., Smith D. W. DNA repair in Escherichia coli mutants deficient in DNA polymerase I, II and/or III. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 675
  • Takeshita M., Chang C., Johnson F., Will S., Grollman A. P. Oligodeoxynucleotides containing synthetic abasic sites. Model substrates for DNA polymerases and apurinic/apyrimidinic endonucleases. J. Biol Chem. 1987; 262: 10171
  • Taylor A. F. Movement and resolution of Holliday junctions by enzymes from E. coli. Cell 1992; 69: 1063
  • Taylor J.-S., Cohrs M. P. DNA, light, and Dewar pyrimidinones: the structure and biological significance of TpT3. J. Am. Chem. Soc. 1987; 109: 2834
  • Taylor J., Garrett D. S., Cohrs M. P. Solution-state structure of the dewar pyrimidinone photo-product of thymidylyl-(3′-5′)-thymidine. Biochemistry 1988; 27: 7206
  • Taylor J. S., O'Day C. L. cis-syn thymine dimers are not absolute blocks to replication by DNA polymerase I of Escherichia coli in vitro. Biochemistry 1990; 29: 1624
  • Tessman I. (1976) A mechanism of UV reactivation. Abstracts of the Bacteriophage Meeting. 1976, A. Bukhari, E. Ljungquist. Cold Spring Harbor, New York, 87
  • Tessman I. UV-induced mutagenesis of phage S13 can occur in the absence of the recA and umuC proteins of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 6614
  • Tessman I., Kennedy M. A. The two-step model of UV mutagenesis reassessed: deamination of cytosine in cyclobutane dimers as the likely source of the mutations associated with photoreactivation. Mol. Gen. Genet. 1991; 227: 144
  • Tessman I., Liu S. K., Kennedy M. A. Mechanism of SOS mutagenesis of UV-irradiated DNA: mostly error-free processing of deaminated cytosine. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 1159
  • Thomas S. M., Crowne H. M., Pidsley S. C., Sedgwick S. G. Structural characterization of the Salmonella typhimurium LT2 umu operon. J. Bacteriol. 1990; 172: 4979
  • Thony B., Hwang D. S., Fradkin L., Kornberg A. iciA, an Escherichia coli gene encoding a specific inhibitor of chromosomal initiation of replication in vitro. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 4066
  • Trgovcevic Z., Petrovenovic D., Petranovic M., Salaj-Smic E. recA gene product is responsible for inhibition of deoxyribonucleic acid synthesis after ultraviolet irradiation. J. Bacteriol. 1980; 143: 1506
  • Tsuchihashi Z., Romberg A. Translational frameshifting generates the γ subunit of DNA polymerase III holoenzyme. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 2516
  • Upton C., Pinney R. J. Expression of eight unrelated Muc+ plasmids in eleven DNA repair-deficient E. coli strains. Mutat. Res. 1983; 112: 261
  • Van de Sande J. H., Loewen P. C., Khorana H. G. Studies on polynucleotides CXVIII. A further study of ribonucleotide incorporation into deoxyribonucleic acid by deoxyribonucleic acid polymerase I of Escherichia coli. J. Biol. Chem. 1972; 247: 6140
  • Van Houten B. Nucleotide excision repair in Escherichia coli. Microbiol. Rev. 1990; 54: 18
  • Verma M., Moffat K. G., Egan J. B. UV irradiation inhibits initiation of DNA replication from oriC in Escherichia coli. Mol. Gen. Genet. 1989; 216: 446
  • Villani G., Boiteux S., Radman M. Mechanism of ultraviolet-induced mutagenesis: extent and fidelity of in vitro DNA synthesis on irradiated templates. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 3037
  • Wacker A. Molecular mechanisms of radiation effects. Prog. Nucleic Acid Res. 1963; 1: 369
  • Walker G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 1984; 48: 60
  • Walker G. C. Inducible DNA repair systems. Annu. Rev. Biochem. 1985; 54: 425
  • Weaver D. T., DePamphlis M. L. Specific sequences in native DNA that arrest synthesis by DNA polymerase a. J. Biol. Chem. 1982; 257: 2075
  • Weinert T. A., Hartwell L. H. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage. Mol. Cell. Biol. 1990; 10: 6554
  • West S. C. Enzymes and molecular mechanisms of genetic recombination. Annu. Rev. Biochem. 1992; 61: 603
  • Whittier R. F., Chase J. W. DNA repair in E. coli strains deficient in single-strand DNA binding protein. Mol. Gen. Genet. 1981; 183: 341
  • Wickner R. B., Ginsberg B., Berkower L., Hurwitz J. Deoxyribonucleic acid polymerase II of Escherichia coli. I. The purification and characterization of the enzyme. J. Biol. Chem. 1972; 247: 489
  • Wickner R. B., Ginsberg B., Hurwitz J. Deoxyribonucleic acid polymerase II of Escherichia coli. II. Studies on the template requirements and the structure of the deoxyribonucleic acid polymerase. J. Biol. Chem. 1972; 247: 498
  • Wickner S. Mechanism of DNA elongation catalyzed by Escherichia coli DNA polymerase. III. dnaZ protein, and DNA elongation factors I and III. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 3511
  • Wickner S., Hurwitz J. Conversion of ΦX174 viral DNA to double-stranded form by purified Escherichia coli proteins. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 4120
  • Wickner W., Kornberg A. A holoenzyme form of deoxyribonucleic acid polymerase III. Isolation and properties. J. Biol. Chem. 1974; 249: 6244
  • Williams J. R., Dearfield K. L. CRC Handbook of Biochemistry in Aging, J. R. Florini, R. C. Adelman, G. S. Roth. CRC Press, Boca Raton, FL 1981; 25
  • Witkin E. M. Radiation-induced mutations and their repair. Science 1966; 152: 1345
  • Witkin E. M. Mutation-proof and mutation-prone modes of survival in derivatives of Escherichia coli B differing in sensitivity to ultraviolet light. Brookhaven Symp. Biol. 1967; 20: 17
  • Witkin E. M. The mutability toward ultraviolet light of recombination-deficient strains of Escherichia coli. Mutat. Res. 1969; 8: 9
  • Witkin E. M. Ultraviolet mutagenesis in strains of E. coli deficient in DNA polymerase. Nature New Biol. 1971; 229: 81
  • Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev. 1976; 40: 869
  • Witkin E. M. RecA protein in the SOS response: milestones and mysteries. Biochimie 1991; 73: 133
  • Witkin E. M., Farqubarson E. L. Enhancement and diminution of ultraviolet light-initiated mutagenesis by posttreatment with caffeine in Escherichia coli. Ciba Foundation Symposium on Mutation as Cellular Process, E. W. Wolstenholme, M. O'Connor. J. & A. Churchill, London 1969; 36
  • Witkin E. M., Rogoma T. Involvement of the activated form of RecA protein in SOS mutagenesis and stable DNA replication in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 7539
  • Witkin E. M., McCall J. O., Volkert M. R., Wermundsen I. E. Constitutive expression of SOS functions and modulation of mutagenesis resulting from resolution of genetic instability at or near the recA locus of Escherichia coli. Mol. Gen. Genet. 1982; 185: 43
  • Witkin E. M., Roegner-Maniscalo V., Sweasy J. B., McCall J. O. Recovery from ultraviolet light-induced inhibition of DNA synthesis requires umuDC gene products in recA718 mutant strains but not in recA+ strains of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 6805
  • Witkin E. M., Wermundsen I. E. Targeted and untargeted mutagenesis by various inducers of SOS functions in E. coli. Cold Spring Harbor Symp. Quant. Biol. 1978; 43: 881
  • Wong I., Patel S. S., Johnson K. A. An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry 1991; 30: 526
  • Wood R. D., Hutchinson F. Non-targeted mutagenesis of unirradiated lambda phage in E. coli host cells irradiated with UV light. J. Mol. Biol. 1984; 173: 293
  • Wood R. D., Hutchinson F. Ultraviolet light-induced mutagenesis in the Escherichia coli chromosome. Sequences of mutants in the cI gene of a lambda lysogen. J. Mol. Biol. 1987; 193: 637
  • Wood R. D., Skopek T. R., Hutchinson F. Changes in DNA base sequence induced by targeted mutagenesis of lambda phage by ultraviolet light. J. Mol. Biol. 1984; 173: 273
  • Woodgate R. Construction of a umuDC operon substitution mutation in Escherichia coli. Mutat. Res. 1992; 281: 221
  • Woodgate R., Bridges B. A., Herrera G., Blanco M. Mutagenic DNA repair in Escherichia coli. XIII. Proofreading exonuclease of DNA polymerase III holoenzyme is not operational during UV mutagenesis. Mutat. Res. 1987; 183: 31
  • Woodgate R., Ennis D. G. Levels of chromo-somally encoded Umu proteins and requirements for in vivo UmuD cleavage. Mol. Gen. Genet. 1991; 229: 10
  • Woodgate R., Rajagopalan M., Lu C., Echols H. UmuC mutagenesis protein of Escherichia coli: purification and interaction with UmuD and UmuD'. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 7301
  • Youngs D. A., Smith K. C. Involvement of DNA polymerase III in excision repair after ultraviolet irradiation. Nature New Biol. 1973; 244: 240
  • Yuspa S. H., Poirier M. C. Chemical carcinogenesis: from animal models to molecular models in one decade, Adv. Cancer Res. 1988; 50: 25

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.