98
Views
74
CrossRef citations to date
0
Altmetric
Research Article

The Physical Biochemistry and Molecular Genetics of Sulfate Activation

Pages 515-542 | Published online: 26 Sep 2008

References

  • De Meio R. M. Sulfate activation and transfer. Metabolic Pathways, 3rd ed., D. M. Greenberg. Academic Press, New York 1975; Vol. VII
  • Siegel L. M. Biochemistry of the sulfur cycle. Metabolic Pathways, 3rd ed., D. M. Greenberg. Academic Press, New York 1975; Vol. VII
  • Fauque G. D., Barton L. L., Le Gall J. Oxidative phosphorylation linked to the dissimilatory reduction of elemental sulfur by Desolfovibrio. Sulphur in Biochemistry. Excerpta Medica, New York 1980; 49
  • Postgate. The sulfur cycle. Inorganic Sulfur Chemistry, G. Nickless. Elsevier, Amsterdam 1968; 7
  • Mudd H. S. Diseases of sulphur metabolism: implications for the methionine-homocysteine cycle, and vitamin responsiveness. Sulphur in Biochemistry. Excerpta Medica, New York 1980; 239
  • Bernstein S., McGilvery R. W. Substrate activation in the synthesis of phenyl sulfate. J. Biol. Chem. 1952; 199: 745
  • Bernstein S., McGilvery R. W. The enzymatic conjugation of m-aminophenol. J. Biol. Chem. 1952; 198: 195
  • De Meio R. H., Tkacz L. Conjugation of phenol by rat liver slices and homogenates. J. Biol. Chem. 1952; 195: 175
  • Lipmann F. Metabolic generation and utilization of phosphate bond energy. Adv. Enzymol. 1949; 1: 99
  • Hiltz H., Lipmann F. The enzymatic activation of sulfate. Proc. Natl. Acad. Sci. U.S.A. 1955; 41: 880
  • Robbins P., Lipmann F. Identification of the enzymatically active sulfate as adenosine-3′-phos-phate-5′-phosphosulfate. JACS 1956; 78: 2652
  • Wilson L., Bandurski R. S. The mechanism of “active sulfate” formation. JACS 1956; 78: 6408
  • Wilson L., Bandurski R. S. An enzymatic reaction involving adenosine triphosphate and selenate. Arch. Biochem. Biophys. 1956; 62: 503
  • Robbins P., Lipmann F. The enzymatic sequence in the biosynthesis of active sulfate. JACS 1956; 78: 6409
  • Baddiley J. G., B. J., Letters R. Synthesis of adenosine-5′ sulphatophosphate. A degradation product of an intermediate in the enzymic synthesis of sulphuric esters. J. Chem. Soc. 1957; 1067
  • Robbins P. W., Lipman F. Separation of the two enzymatic phases in active sulfate synthesis. J. Biol. Chem. 1958; 233: 681
  • Robbins P. W., Lipmann F. Enzymatic synthesis of adenosine-5′-phosphosulfate. J. Biol. Chem. 1958; 233: 686
  • Satischandran S., Markham G. D. Adenosine 5′-phosphosulfate kinase from Escherichia coli K-12. J. Biol. Chem. 1989; 264: 15012
  • Alberty R. A. Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates. J. Biol. Chem. 1969; 244: 3290
  • Kukko-Kalske E., Lintunen M., Inen M. K., Lahti R., Heinonen J. Intracellular PPi concentration is not directly dependent on amount of inorganic pyrophosphatase in Escherichia coli K-12 cells. J. Bacteriol. 1989; 171: 4498
  • Barshop B. A., Wrenn R. F., Frieden C. Analysis of numerical methods for computer simulation of kinetic processes: development of KINSIM—a flexible, portable system. Anal. Biochem. 1983; 130: 134
  • Izatt R. M., Christensen J. J. Heats of proto-nation and ionization, pK, and related thermodynamic quantities. CRC Handbook of Biochemistry and Molecular Biology, 3rd ed., G. D. Fasman. CRC Press, Boca Raton 1976; Vol. I: 151
  • Cruickshank D. W. J., Webster B. C. Orbitals in sulphur and its compounds. Inorganic Sulfur Chemistry, G. Nickless. Elsevier, Amsterdam 1968; 7
  • Craig D. P., Maccoll A., Nyholm R. S., Orgel L. E., Sutton L. E. Chemical bonds involving d-orbitals. I. J. Chem. Soc. 1954; 332
  • Craig D. P., Magnusson E. A. d-Orbital contraction in chemical bonding. J. Chem. Soc. 1956; 4895
  • Cilento G. The expansion of the sulfur outer shell. Chem. Rev. 1960; 60: 147
  • Pauling L. C. The Chemical Bond. Cornell University Press, Ithaca 1956; 64
  • Pauling L. C. Interatomic distances and bond character in the oxygen acids and related substances. J. Phys. Chem. 1952; 56: 361
  • Benkovic S. J., Hevey R. C. Studies in sulfate esters: the mechanism of hydrolysis of phenyl phosphosulfate, a model system for 3′-phos-phoadenosine 5′-phosphosulfate. JACS 1970; 92: 4971
  • Fendler E. J., Fendler J. H. Hydrolysis of nitrophenyl and dinitrophenyl sulfate esters. J. Org. Chem. 1968; 33: 3852
  • Benkovic S. J., Benkovic P. A. Studies on sulfate esters. I. Nucleophilic reactions of amines with p-nitrophenyl sulfate. JACS 1966; 88: 5504
  • Schaleger L. L., Long F. A. Entropies of activation and mechanisms of reactions in solution. Adv. Phys. Org. Chem. 1963; 1: 1
  • Schiff J. A. Pathways of assimilatory sulphate reduction in plants and microorganisms. Sulphur in Biochemistry. Excerpta Medica, New York 1980; 49
  • Jones-Mortimer M. C. Positive control of sulphate reduction in Escherichia coli. Biochem. J. 1968; 110: 589
  • Kreditch N. M. Regulation of L-cysteine biosynthesis in Salmonella typhimurium. J. Biol. Chem. 1971; 246: 3474
  • Ostrowski J., Jagura-Burdzy G., Kredich N. M. DNA sequences of the cysB regions of Salmonella typhimurium and Escherichia coli. J. Biol. Chem. 1987; 262: 5999
  • Miller B. E., Kredich N. M. Purification of the cysB protein from Salmonella typhimurium. J. Biol. Chem. 1987; 262: 6006
  • Heinkoff S., Haughn G. W., Calvo J. M., Wallace J. C. A large family of bacterial activator proteins. Proc. Natl. Acad. Sci. U.SA. 1988; 85: 6602
  • Ostrowski J., Kreditch N. M. Negative autoregulation of cysB in Salmonella typhimurium: in vitro interactions of CysB protein with the cysB promoter. J. Bacteriol. 1991; 173: 2212
  • Ostrowski J., Kreditch N. M. Molecular characterization of the cysJIH promoters of Salmonella typhimurium and Escherichia coli: regulation by cysB protein and N-acctyl-L-serine. J. Bacteriol. 1989; 171: 130
  • Ostrowski J., Kreditch N. M. In vitro interactions of CysB protein with the cysJIH promoter of Salmonella typhimurium: inhibitory effects of sulfide. J. Bacteriol. 1990; 172: 779
  • Hryniewicz M. M., Kreditch N. M. The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate. J. Bacteriol. 1991; 173: 5876
  • Jagura-Burdzy G., Hulanicka D. Use of gene fusions to study expression of cysB, the regulatory gene of the cysteine regulon. J. Bacteriol. 1981; 147: 744
  • Leyh T. S., Vogt T. F., Suo Y. The DNA sequence of the sulfate activation locus from Escherichia coli K-12. J. Biol. Chem. 1992; 267: 10405
  • Raibaud O., Schwartz M. Positive control of transcription initiation in bacteria. Annu. Rev. Genet. 1984; 18: 173
  • Hawley D. K., McClure W. R. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983; 11: 2237
  • Shine J., Dalgarno L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 1341
  • Malo M. S., Loughlin R. E. Promoter elements and regulation of expression of the cysD gene of Escherichia coli K-12. Gene 1990; 87: 127
  • Oppenheim D. S., Yanofsky C. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics 1980; 95: 785
  • Yates J. L., Nomura M. Feedback regulation of ribosomal protein synthesis in E. coli: localization of the mRNA target sites for repressor action of ribosomal protein LI. Cell 1981; 21: 243
  • Yager T. D., von Hippel P. H. Transcript elongation and termination in Escherichia coli. Escherichia coli and Salmonella typhimurium, F. C. Neidhardt. Am. Soc. for Microbiol., Washington, DC 1987; Vol. 2: 1241
  • Brendel V., Hamm G. H., Trifonov E. N. Terminators of transcription with RNA polymerase from Escherichia coli: what they look like and how to find them. J. Biomol. Struct. Dynamics 1986; 4: 705
  • Bourne H. R., Sanders D., McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 1990; 348: 125
  • Bourne H. R., Sanders D., McCormick F. The GTPase superfamily: a conserved structure and molecular mechanism. Nature 1991; 349: 117
  • Birnbaumer L., Codina J., Mattera R., Yatani A., Scherer N., Toro M., Brown A. M. Signal transduction by G proteins. Kidney Int. 1987; 32: S-14
  • Birnbaumer L. Transduction of receptor signal into modulation of effector activity by G proteins: the first 20 years or so. FASEB J. 1990; 4: 3178
  • Gilman A. G. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 1987; 56: 615
  • Iyengar R., Birnbaumer L. Roles of G proteins and G protein subunits in signal transduction. Lymphokine Res. 1990; 9: 533
  • Balch W. E. Small GTP-binding proteins in vesicular transport. TIBS 1990; 15: 473
  • Riis B., Rattan S. I. S., Clark B. F. C., Merrick W. C. Eukaryotic protein elongation factors. TIBS 1990; 15: 420
  • Barbacid M. Ras. Genes. Annu. Rev. Biochem. 1987; 56: 779
  • Dever T. E., Glynias M. J., Merrick W. C. GTP-binding domain: three consensus sequence elements with distinct spacing. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 1814
  • Halliday K. R. Regional homology in GTP-binding proto-oncogene products and elongation factors. J. Cyclic Nucleotide Protein Phosphor. Res. 1984; 9: 435
  • Valencia A., Chardin P., Wittinghoffer A., Sander C. The ras protein family: evolutionary tree and role of conserved amino acids. Biochemistry 1991; 30: 4637
  • Arai K., Clark B. F. C., Duffy L., Jones M. D., Kaziro Y., Laursen R. A., L'Italien J., Miller D. L., Nagarkatti S., Nakamura S., Nielsen K. M., Petersen T. E., Takahasi K., Wade M. Primary structure of elongation factor Tu from Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 1326
  • Ovchinnikov Y. A., Alakhov Y. B., Bundulis Y. P., Bundule M. A., Dovgas N. V., Kozlov V. P., Motuz L. P., Vinokurov L. M. The primary structure of elongation factor G from Escherichia coli. FEBS Lett. 1982; 139: 130
  • Brands J. H. G. M., Maassen J. A., Van Hemert F. J., Amons R., Moller W. The primary structure of the α subunit of human elongation factor 1. Eur. J. Biochem. 1986; 155: 167
  • Leyh T. S., Suo Y. GTPase-mediated activation of ATP sulfurylase. J. Biol. Chem. 1992; 267: 542
  • Bridger W. B. Succinyly-CoA synthetase. The Enzymes, 3rd ed., P. D. Boyer. Academic Press, New York 1974; Vol. X: 581
  • Frey P. A. Nucleotidyl transferases and phosphotransferases: stereochemical and covalent adducts. The Enzymes, 3rd ed., D. S. Sugman. Academic Press, New York 1992; Vol. XX: 141
  • Arnell D. R., O'Leary M. H. Binding of carbon dioxide to phosphoenolpyruvate. Biochemistry 1992; 31: 4363
  • Jencks W. P. The utilization of binding energy in coupled vectorial processes. Adv. Enzymol. 1980; 51: 75
  • Kaziro Y. The role of guanosine 5′-triphosphate in polypeptide chain elongation. Biochem. Biophys. Acta 1978; 505: 95
  • Hopfield J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 4135
  • Thompson R. EFTu provides an internal kinetic standard for translational accuracy. TIBS 1988; 13: 91
  • Jurnak F. Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins. Science 1985; 230: 32
  • la Cour T. F. M., Nyborg J., Thirup S., Clark B. F. C. Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography. EMBO J. 1885; 4: 2385
  • Pai E. F., Wittinghofer A. The structure of Ras protein: a model for a universal switch. TIBS 1992; 32: 382
  • Valencia A., Kjeldgaard M., Pai E. F., Sander C. A. GTPase domains of ras p21 oncogene protein and elongation factor Tu: analysis of three-dimensional structures, sequence families, and functional sites. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 5443
  • Fisher R. F., Long S. R. Rhizobium-plant signal exchange. Nature 1992; 357: 655
  • Long S. R. Rhizobium-legume nodulation: life together in the underground. Cell 1989; 56: 203
  • Schwedock J., Long S. R. Nucleotide sequence and protein products of two new nodulation genes of Rhizobium meliloti, nodP and nodQ. Mol. Plant-Microbe Interact. 1989; 2: 181
  • Schwedock J., Long S. R. ATP sulfurylase activity of the nodP and nodQ gene products of Rhizobium meliloti. Nature 1990; 348: 644
  • Schewedoc J., Leyh T. S., Liu C., Long S. R. 1993, unpublished data
  • Renosto F. R., Martin R. L., Segel I. H. Sulfate-activating enzymes of Penicillium chrysogenum. J. Biol. Chem. 1989; 264: 9433
  • Seubert P. A., Renosto F., Knudson P., Segel I. H. APS kinase substrate inhibition. Arch. Biochem. Biophys. 1985; 240: 509
  • Lerouge P., Roche P., Faucher C., Maillet F., Truchet G., Promé J. C., Deénarié J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 1990; 344: 781
  • Vieille C., Emerich C. Characterization of two Axzospirillum brasilinse Sp7 plasmid genes homologous to Rhizobium meliloti nodPQ. Mol. Plant-Microbe Interact. 1990; 3: 389
  • Burnell J. N., Roy A. B. Purification and properties of the ATP sulfurylase of rat liver. Biochem. Biophys. Acta 1978; 527: 239
  • Geller D. H., Henry J. G., Belch J., Schwartz N. B. Co-purification and characterization of ATP-sulfurylase and adenosine-5′-phosphosulfate kinase from rat chondrosarcoma. J. Biol. Chem. 1987; 262: 7374
  • Kanno N., Sato M., Sato Y. Properties of ATP-sulfurylase from marine alga Porphyrayezoensis. Nippon Susian Gakkaishi 1988; 54: 1635
  • Leyh T. S., Taylor J. T., Markham G. H. The sulfate activation locus of Escherichia coli K-12: cloning, genetic and enzymatic characterization. J. Biol. Chem. 1987; 263: 2409
  • Nozawa A. Purification and some properties of ATP-sulfurylase from developing sea urchin embryos. Biochim. Biophys. Acta 1980; 611: 309
  • Renosto F., Martin R. L., Borrell J. L., Nelson D. C., Segel I. H. ATP sulfurylase from trophosome tissue of Riftia pachyptila (hydrothermal vent tube worm). Arch. Biochem. Biophys. 1991; 290: 66
  • Shaw W. H., Anderson J. W. Purification, properties and substrate specificity of adeno-sinetriphosphate sulphurylase from spinach leaf tissue. Biochem. J. 1972; 127: 137
  • Shaw W. H., Anderson J. W. Comparative enzymology of the adenosine triphosphate sulphurylase from leaf tissue of selenium-accumulator and non-accumulator plants. Biochem. J. 1974; 139: 37
  • Shoyab M., Marx W. Purification and properties of ATP sulfurylase from furth mouse mastocytoma. Biochim. Biophys. Acta 1971; 258: 113
  • Tweedie J. W., Segel I. H. ATP sulfurylase from Penicillium chrysogenum. I. Purification and characterization. Prep. Biochem. 1971; 1: 91
  • Varma A. K., Nicholas D. J. D. Purification and properties of ATP-sulphurylase from Nitrobacter agilis. Biochim. Biophys. Acta 1971; 227: 373
  • Yu M., Martin R. L., Jain S., Chen L. J., Segel I. H. Rat liver ATP-sulfurylase: purification, kinetic characterization, and interaction with arsenate, selenate, phosphate and other inorganic oxyanions. Arch. Biochem. Biophys. 1989; 269: 156
  • Seubert P. A., Renosto F., Knudson P., Segel I. H. Adenosinetriphosphate sulfurylase from Penicillium chrysogenum: steady-state kinetics of the forward and reverse reactions, alternative substrate kinetics and equilibrium binding studies. Arch. Biochem. Biophys. 1985; 240: 509
  • Seubert P. A., Hoang L., Renosto F., Segel I. H. ATP sulfurylase from Penicillium chrysogenum: measurements of the true specific activity of an enzyme subject to potent product inhibition and a reassessment of the kinetic mechanism. Arch. Biochem. Biophys. 1983; 225: 679
  • Bicknell R., Cullis P. M., Jarvest R. L., Lowe G. The stereochemical course of nucleotidyl transfer catalyzed by ATP sulfurylase. J. Biol. Chem. 1982; 257: 8922
  • Renosto F., Martin R. L., Segel I. H. ATP sulfurylase from Penicillium chrysogenum. J. Biol. Chem. 1987; 262: 16279
  • Martin R. L., Daley L. A., Lovric Z., Wailes L. M., Renosto F., Segel I. H. The “regulatory” sulfhydryl group of Penicillium chrysogenum ATP sulfurylase. J. Biol. Chem. 1989; 264: 11768
  • Renosto F., Martin R. L., Wailes L. M., Daley L. A., Segel I. Regulation of inorganic sulfate activation in filamentous fungi. J. Biol. Chem. 1990; 265: 10300
  • Gillespie D. M., Demerec M., Itakawa H. Appearance of double mutants in aged cultures of Salmonella typhimurium cysteine-requiring mutants. Genetics 1968; 59: 433
  • Neuwald A. F., Krishnan B. R., Brikun I., Kulakauskas S., Suziedelis K., Tomcsanyi T., Leyh T. S., Berg D. E. cysQ, a gene needed for cysteine biosynthesis in Escherichia coli K-12 only during aerobic growth. J. Bact. 1992; 174: 415
  • Renosto F., Seubert P. A., Segel I. H. Adenosine 5′-phosphosulfate kinase from Penicillium chrysogenum. J. Biol. Chem. 1984; 259: 2113
  • Hommes F. A. L., M., Touchton J. Purification and some properties of liver adenylsulfate kinase. Biochim. Biophys. Acta 1987; 924: 270
  • Renosto F., Martin R. L., Segel I. H. Adenos-ine-5′-phosphosulfate kinase from Penicillium chrysogenum: ligand binding properties and the mechanism of substrate inhibition. Arch. Biochem. Biophys. 1991; 284: 30
  • Saticshandran S., Hickman Y. N., Markham G. D. Characterization of the phosphoryl enzyme intermediate formed in the adenosine 5′-phos-phosulfate kinase reaction. Biochemistry 1992; 31: 11684
  • Roth J. R., Rivett A. J. Does sulfate conjugation contribute to the metabolic inactivation of catecholamines in humans. Biochem. Pharm. 1982; 31: 3017
  • Unsworth C. D., Hughes J., Morley J. S. O-Sulfated Leu-enkephalin in brain. Nature 1982; 295: 519
  • Brand S. J., Andersen B. N., Rehfeld J. F. Complete Tyrosine-O-Sulphation of gastrin in neonatal rat pancreas. Nature 1984; 309: 456
  • Jensen R. T., Lemp G. F., Gardner J. D. Interactions of COOH-terminal fragments of cholecystokinin with receptors on dispersed acini from guinea pig pancreas. J. Biol. Chem. 1982; 257: 5554
  • Pasqualini J. R., Schatz B., Varin C., Nguyen B. L. Recent data on estrogen sulfatases and sulfotransferases activities in human breast cancer. J. Steroid Biochem. Mol. Biol. 1992; 41: 323
  • Leyete A., van Schijndel H. B., Niehrs C., Huttner W. B., Verbeet M. P., Mertens K., van Mourik J. A. Sulfation of Tyr1680 of human blood coagulation factor VIII is essential for the interaction of factor VIII with von Willebrand factor. J. Biol. Chem. 1991; 266: 740
  • Stone S. R., Hofsteenge J. Kinetics of inhibition of thrombin by hirudin. Biochemistry 1986; 25: 4622
  • Atha D. H., Lormeau J. C., Petitou M., Rosenberg R. D., Choay J. Contribution of monosaccharide residues in heparin binding to antithrombin III. Biochemistry 1985; 24: 6723
  • Maarouei R. M., Tapon-Bretaudiere J., Mardiguian J., Sternberg C., Dartzenberg M. D., Fischer A. M. Influence of the oversulfation method and the degree of sulfation on the anticoagulant properties of dermatan sulfate derivatives. Thromb. Res. 1990; 59: 749
  • Brauer P. R., Keller K. A., Keller J. M. Concurrent reduction in the sulfation of heparan sulfate and basement membrane assembly in a cell model system. Development 1990; 110: 805
  • Meisheri K. D., Oleynek J. J., Puddington L. Role of protein sulfation in vasodilation induced by minoxidil sulfate, a K+ channel opener. J. Pharmacol. Exp. Ther. 1991; 258: 1091
  • Garay R. P., Labaune J. P., Mesangeau D., Nazaret C., Imbert T., Moinet G. CRE 10904 [2-(p-fluorophenoxy), 1-(o-hydroxyphenyl)-ethane]: a new diuretic and antihypertensive drug acting by in vivo sulfation. J. Pharmacol. Exp. Ther. 1990; 255: 415
  • Christensen C., Rozhin J., Pack B. A., Brooks S. C. In situ control of estrogen activity by sulfurylation in uterus and other targets. Sulfate Metabolism and Sulfate Conjugation, G. J. Mulder, J. Caldwell, G. M. J. Van Kempen, R. J. Vonk. Taylor Francis, London 1982; 145
  • Finkelstein J. D. Enzyme defects in sulfur amino acid metabolism in man. Metabolic Pathways, 3rd ed., D. M. Greenberg. Academic Press, New York 1975; Vol. VII
  • Mulder G. J., Meermen J. H. N. The role of sulfation in carcinogenesis by N-hydroxyy-2-acetylaminofluorine. Sulfate Metabolism and Sulfate Conjugation, G. J. Mulder, J. Caldwell, G. M. J. Van Kempen, R. J. Vonk. Taylor Francis, London 1982; 145
  • Hille A., Braulke T., von Figure K., Huttner W. B. Occurrence of tyrosine sulfate in proteins—a balance sheet. I. Secretory and lysosomal proteins. Eur. J. Biochem. 1990; 188: 577
  • Hille A., Huttner W. B. Occurrence of tyrosine sulfate in proteins—a balance sheet. 2. Membrane proteins. Eur. J. Biochem. 1990; 188: 577
  • Jakoby W. B., Ziegler D. M. The enzymes of detoxication. J. Biol. Chem. 1990; 265: 20715
  • Lindahl U., Hook M. Glycosaminoglycans and their binding to biological macromolecules. Annu. Rev. Biochem. 1978; 47: 385
  • Huttner W. B. Tyrosine sulfation and the secretory pathway. Annu. Rev. Physiol. 1988; 50: 363
  • Vote D., Vote J. Lipids and membranes. Biochemistry. John Wiley and Sons, New York 1990; 301
  • Baeuerle P. A., Huttner W. B. Tyrosine sulfation is a trans-Golgi-specific protein modification. J. Cell. Biol. 1987; 105: 2655
  • Niehrs C., Huttner W. B. Purification and characterization of tyrosylprotein sulfotransferase. EMBO J. 1990; 9: 35
  • Hortin G., Folz R., Gordon J. I., Strauss A. W. Characterization of sites of tyrosine sulfation in proteins and criteria for predicting their occurrence. Biochem. Biophys. Res. Commun. 1986; 141: 326
  • Niehrs C., Kraft M., Lee R. W., Huttner W. B. Analysis of the substrate specificity of tyrosylprotein sulfotransferase using synthetic peptides. J. Biol. Chem. 1990; 265: 8525
  • Griffith M. J., Noyes C. M., Church F. C. Reactive site structural similarity between heparin cofactor II and antithrombin III. J. Biol. Chem. 1985; 260: 2218
  • Vote D., Vote J. Molecular physiology. Biochemistry. John Wiley and Sons, New York 1990; 1087
  • Tollefesen D. M., Majerus D. W., Blank M. K. Heparin cofactor II. J. Biol. Chem. 1982; 257: 2162
  • Van Deerlin V. M. D., Tollefsen D. M. The N-terminal acidic domain of heparin cofactor II mediates the inhibition of anthrombin in the presence of glycosaminoglycans. J. Biol. Chem. 1991; 266: 20223
  • Mao S. J. T., Yates M. T., Owen T. J., Krstenansky J. L. Interaction of hirudin with thrombin: identification of a minimal binding domain of hirudin that inhibits clotting activity. Biochemistry 1988; 23: 8170
  • Rydel T. J., Ravichandran K. G., Tulinsky A., Bode W., Huber R., Roitsch C., Fenton J. W., II. The structure of a complex of recombinant hirudin and human α-thrombin. Science 1990; 249: 277
  • Grutter M. G., Priestle J. P., Rahuel J., Grossenbacher H., Bode W., Hofsteenge J., Stone S. R. Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibition. EMBO J. 1990; 9: 2361
  • Atha D. H., Stephens A. W., Rimon A., Rosenberg R. D. Sequence variation in heparin octasaccharides with high affinity for antithrombin III. Biochemistry 1984; 23: 5801
  • Oosta G. M., Gardner W. T., Beeler D. L., Rosenberg R. D. Multiple functional domains of the heparin molecule. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 829
  • Atha D. H., Lormeau J. C., Petitou M., Rosenberg R. D., Choay J. Contribution of 3-O- and 6-O-sulfated glucosamine residues on the heparin-induced conformational change in antithrombin III. Biochemistry 1987; 26: 6454
  • Villanueva G. B. Predictions of the secondary structure of antithrombin III and the location of the heparin-binding site. J. Biol. Chem. 1984; 259: 2531
  • Atkins E. D. T., Isaac D. H. X-ray diffraction studies on the connective tissue polysaccharides. Molecular conformation of dermatin sulfate. J. Mol. Biol. 1973; 80: 773
  • Tuddenham E. G. D., Cooper D. N., Gitschier J., Higuchi M., Hoyer L. W., Yoshioka A., Peake I. R., Schwaab R., Olek K., Kazazian H. H., Lavergne J. M., Giannelli F., Antonarakis S. E. Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene. Nucleic Acids Res. 1991; 19: 4821
  • Van Dieijen G., Tans G., Rosing J., Hemker H. C. The role of phospholipid and factor VIIIa in the activation of bovine factor X. J. Biol. Chem. 1981; 256: 3433
  • Eaton D., Rodriguez H., Vehar G. A. Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochemistry 1986; 25: 505
  • Pittman D. D., Kaufman R. J. Proteolytic requirements for thrombin activation of anti-hemophilic factor (factor VIII). Proc. Natl. Acad. Sci. U.SA. 1988; 85: 2429
  • Brinkhous K. M., Sandberg H., Garris J. B., Mattsson C., Palm M., Griggs T., Read M. S. Purified human factor VIII procoagulant protein: comparative hemostatic response after infusions into hemophilic and von Willebrand disease dogs. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 8752
  • Kandel E. Nerve cells and behavior. Principles of Neuroscience, 2nd ed., E. Kandel, J. Schwartz. Elsevier, New York 1985; 13
  • Grafstein B., Forman D. S. Intracellular transport in neurons. Physiol. Rev. 1980; 60: 1167
  • Perry G. W., Burmeister D. W., Grafstein B. Fast axonally transported proteins in regenerating goldfish axons. J. Neurosci. 1987; 7: 798
  • Perry G. W., Burmeister D. W., Grafstein B. Effect of target removal on goldfish optic nerve regeneration: analysis of fast axonally transported proteins. J. Neurosci. 1990; 10: 3439
  • Wenthold R. J., McGarvey M. L. Different polypeptides are rapidly transported in auditory and optic nerves. J. Neurochem. 1982; 39: 27
  • Stone G. C., Hammerschlag R., Bobinski J. A. Fast-transported glycoproteins and nonglycosylated proteins contain sulfate. J. Neurochem. 1983; 41: 1085
  • Stone G. C., Hammerschlag R., Bobinski J. A. Fast axonal transport of tyrosine sulfate-containing proteins: preferential routing of sulfoproteins toward nerve terminals. Cell Mol. Neurobiol. 1984; 4: 249

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.