94
Views
119
CrossRef citations to date
0
Altmetric
Research Article

The Nicotinic Acetylcholine Receptor: Structure and Autoimmune Pathology

, , , &
Pages 69-123 | Published online: 26 Sep 2008

References

  • Abramson S. N., Li Y., Culver P., Taylor P. An analog of lophotoxin reacts covalently with Tyr190 in the alpha-subunit of the nicotinic acetylcholine receptor. J. Biol. Chem. 1989; 264: 12666–12672
  • Adams P. R. Acetylcholine receptor kinetics. J. Memhr. Biol 1981; 58: 161–174
  • Aharonov A., Tarrab-Hazdai R., Abramsky O., Fuchs S. Immunological relationship between acetylcholine receptor and thymus: a possible significance in myasthenia gravis. Proc. Natl. Acad. Sci. U.S.A 1975; 72: 1456–1459
  • Akabas M. H., Stauffer D. A., Xu M., Karlin A. Acetylcholine receptor channel structure probed in cys-teine-substitution mutants. Scienc 1992; 258: 307–310
  • Altenbach C., Marti T., Khorana H. G., Hubbell W. L. Transmembrane protein structure: spin labeling of Bacteriorhodopsin mutants. Scienc 1990; 248: 1088–1092
  • Anand R., Conroy W. G., Schoepfer R., Whiting P., Lindstrom J. Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. J. Biol. Chem 1991; 266: 11192–11198
  • Anderson D. J., Walter P., Blobel G. Signal recognition protein is required for the integration of acetylcholine receptor δ subunit, a transmembrane glycoprotein, into the endoplasmic reticulum membrane. J. Cell Biol 1982; 93: 501–506
  • Anderson D. J., Blobel G., Tzartos S. J., Gullick W., Lindstrom J. Transmembrane orientation of an early biosynthetic form of acetylcholine receptor δ sub-unit determined by proteolytic dissection in conjunction with monoclonal antibodies. J. Neurosci 1983; 3: 1773–1784
  • Aronheim A., Eschel Y., Mosckovitz R., Gershoni J. M. Characterization of the binding of α-bungarotoxin to bacterially expressed cholinergic binding sites. J. Biol. Chem 1988; 263: 9933–9937
  • Ashwell J. D., Schwartz R. H. T Cell recognition of antigen and the la molecule as a ternary complex. Nature (London) 1986; 320: 176–179
  • Atassi M. Z., Manshouri T., Yokoi T. Recognition of transmembrane regions of acetylcholine receptor subunit by antibodies, T cells and neurotoxins. FEBS Lett 1988; 228: 295–300
  • Baldwin T. J., Yoshihara C. M., Blackmer K., Kinter C. R., Burden S. J. Regulation of acetylcholine receptor transcript expression during development i. Xenopus laevis. J. Cell. Biol 1988; 106: 469–478
  • Ballivet M., Nef P., Couturier S., Rungger D., Bader C. R., Bertrand D., Cooper E. Electrophysiology of a chick neuronal nicotinic acetylcholine receptor expressed in Xenopus oocytes after cDNA injection. Neuro 1988; 1: 847–852
  • Barkas T., Mauron A., Roth B., Alliod C., Tzartos S. J., Ballivet M. Mapping the main immunogenic region and toxin-binding site of the nicotinic acetylcholine receptor. Scienc 1987; 235: 77–80
  • Barkas T., Gabriel J. M., Mauron A., Hughes G. J., Roth B., Alliod C., Tzartos S. J., Ballivet M. Monoclonal antibodies to the main immunogenic region of the nicotinic acetylcholine receptor bind to residues 61–76 of the α subunit. J. Biol. Chem 1988; 263: 5916–5920
  • Barnard E., Beeson D., Cockcroft V., Darlison M., Hicks A., Lai F., Moss S., Squire M. Molecular biology of nicotinic acetylcholine receptors from chicken muscle and brain. Nicotinic Acetylcholine Receptor, A. Maelicke. NATO-ASI, Springer-Verlag, Heidelberg 1986; Vol. 3: 389–415, H
  • Beeson D., Morris A., Vincent A., Newsom-Davis J. The human muscle nicotinic acetylcholine receptor α subunit exists as two isoforms: a novel exon. EMBO J 1990; 9: 2101–2106
  • Bellone M., Tang F., Milius R., Conti-Tronconi B. M. The main immunogenic region of the nicotinic acetylcholine receptor. Identification of amino acid residues interacting with different antibodies. J. Immunol 1989; 143: 3568–3579
  • Bellone M., Ostlie N., Lei S., Conti-Tronconi B. M. Experimental myasthenia gravis in congenic mice. Sequence mapping and H-2 restriction of T helper epitopes of the a subunits of Torpedo californica and murine acetylcholine receptors. Eur. J. Immunol 1991; 21: 2203–2310
  • Bellone M., Ostlie N., Karachunski P., Manfredi A. A., Conti-Tronconi B. M. Cryptic epitopes on the acetylcholine receptor are recognized by autoreactive CD4+ cells. J. Immuno 1993; 151: 1025–1030
  • Bertazzon A., Conti-Tronconi B. M., Raftery M. A. Scanning tunneling microscopy imaging of Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A 1992; 89: 9632–9636
  • Berti F., Clementi F., Conti-Tronconi B., Folco G. A cholinoreceptor antiserum: its pharmacological properties. Br. J. Pharmacol 1976; 57: 17–22
  • Bertrand D., Devillers-Thiery A., Revah F., Galzi J. L., Hussy N., Mulle C., Bertrand S., Ballivet M., Changeux J. P. Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. Proc. Natl. Acad. Sci. U.S.A 1992; 89: 1261–1265
  • Besinger U. A., Toyka K. V., Homberg M., Heininger K., Hohlfeld R., Fateh-Moghadam A. Myasthenia gravis: long-term correlation of binding and bungarotoxin blocking antibodies against acetylcholine receptors with changes in disease severity. Neurology 1983; 33: 1316
  • Bettler B., Boulter J., Hermans-Borgmeyer I., O'Shea-Greenfield A., Deneris E. S., Moll C., Borgmeyer U., Hollmann M., Heinemann S. Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuro 1990; 5: 583–595
  • Betz H. Ligand-gated ion channels in the brain: the amino acid receptor superfamily. Neuro 1990a; 5: 383–392
  • Betz H. Homology and analogy in transmembrane channel design: lesson from synaptic membrane proteins. Biochemistr 1990b; 29: 3591–3599
  • Blalock A., Harvey A. M., Ford F. R., et al. Treatment of myasthenia gravis by removal of the thymus gland. J. Am. Med. Assoc 1941; 117: 1529–1533
  • Blanchard S. G., Quast U., Reed K., Lee T., Schimerlik M. I., Vandlen R., Claudio T., Strader C. D., Moore H. P., Raftery M. A. Interaction of 125I-α-bungarotoxin with acetylcholine receptor fro. Torpedo californica. Biochemistr 1979; 18: 1875–1883
  • Blout P., Merlie J. P. Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor. Neuro 1989; 3: 349–357
  • Blout P., Smith M. M., Merlie J. P. Assembly intermediates of the mouse muscle nicotinic acetylcholine receptor in stably transfected fibroblasts. J. Cell Biol 1990; 111: 2601–2611
  • Boheim G., Hanke W., Barrantes F., Gibl J., Sakmann B., Fels B., Maelicke A. Agonist-activated ionic channels in acetylcholine receptor reconstituted into planar lipid bilayers. Proc. Natl. Acad. Sci. U.S.A 1981; 78: 3586–3590
  • Bossy B., Ballivet M., Spierer P. Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. EMBO J 1988; 7: 611–618
  • Boulter J., Luyten W., Evans K., Mason P., Ballivet M., Boldman D., Stengelin S., Martin G., Heinemann S., Patrick J. Isolation of a clone coding for the a-subunit of a mouse acetylcholine receptor. J. Neurosci 1985; 5: 2545–2552
  • Boulter J., Evans K., Goldman D., Martin G., Treco D., Heinemann S., Patrick J. Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor α-subunit. Nature (London) 1986; 319: 368–374
  • Boulter J., O'Shea-Greenfield A., Duvoisin R. M., Connolly J. G., Wada E., Jensen A., Gardner P. D., Ballivet M., Deneris E. S., McKinnon D., Heinemann S., Patrick J. α3, α5, and β4: three members of the neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. J. Biol. Chem 1990a; 265: 4472–4482
  • Boulter J., Hollmann M., O'Shea-Greenfield A., Hartley M., Deneris E., Maron C., Heinemann S. Molecular cloning and functional expression of glutamate receptor subunit genes. Scienc 1990b; 249: 1033–1037
  • Brisson A., Unwin P. N. T. Quaternary structure of the acetylcholine receptor. Nature (London) 1985; 315: 474–477
  • Brocke S., Brautbar C., Steinman T., Abramsky O., Rothbard J., Neumann D., Fuchs S., Moses E. In vivo proliferative responses and antibody titres specific to human acetylcholine receptor synthetic peptides in patients with myasthenia gravis and relation to HLA class II genes. J. Clin. Invest 1989; 82: 1894–1899
  • Bullock K., Pomerantz W. Autonomic nervous system innervation of thymic-relayed lymphoid tissue in wildtype and nude mice. J. Comp. Neurol 1984; 228: 57–68
  • Bullock K. The innervation of immune system tissues and organs. The Neuro-Immune-Endocrine Connection, C. S. Cotman, R. E. Brinton, A. Galaburda, B. McEwen, D. M. Schneider. Raven Press, New York 1987; 33–47
  • Cachelin A. B., Jaggi R. β subunits determine the time course of desensitization in rat α3 neuronal nicotinic acetylcholine receptors. Pflugers Arch 1991; 419: 579–582
  • Campbell H., Bramwell E. Myasthenia gravis. Brain 1900; 23: 277
  • Cauley K., Agranhoff B. W., Goldman D. Multiple nicotinic acetylcholine receptor genes are expressed in goldfish retina and tectum. J. Neurosci 1990; 10: 670–683
  • Cauley K., Agranoff B. W., Goldman D. Identification of a novel nicotinic acetylcholine receptor structural subunit expressed in goldfish retina. J. Cell Biol 1989; 108: 637–645
  • Cajal S. R. Histologic du Systeme Nerveux de l'Homme, Vertebres, L. Azoulay. Institute Cajal, Madrid 1911; Vol. 2, 1955. (transl)
  • Changeux J. P., Devillers-Thiery A., Camouilli P. Acetylcholine receptor: an allosteric protein. Scienc 1984; 225: 1335–1345
  • Charnet P., Labarca C., Leonard R., Vogelaar N. J., Czyzk L., Gouin A., Davidson N., Lester H. A. An open channel blocker interacts with adjacent turns of a-helices in the nicotinic acetylcholine receptor. Neuro 1990; 4: 87–95
  • Chaturvedi V., Donnelly-Roberts D. L., Lentz T. L. Substitution of Torpedo acetylcholine receptor α1-subunit residues with snake α1- and rat nerve α3-subunit residues in recombinant fusion proteins: effect on α-bungarotoxin binding. Biochemistr 1991; 31: 1370–1375
  • Chavez R. A., Hall Z. W. The transmembrane topology of the amino terminus of the α subunit of the nicotinic acetylcholine receptor. J. Biol. Chem 1991; 266: 15532–15538
  • Chavez R. A., Hall Z. W. Expression of fusion proteins of the nicotinic acetylcholine receptor from mammalian muscle identifies the membrane-spanning regions in the α and δ subunits. J. Cell Biol 1992; 116: 385–393
  • Chiappinelli V. A. Actions of snake venom toxins on neuronal nicotinic receptors and other neuronal receptors. Pharmacol. Ther 1985; 31: 1–32
  • Chini B., Clementi F., Hukovic N., Sher E. Neuronal-type α-bungarotoxin receptors and the α5-nicotinic receptor subunit gene are expressed in neuronal and nonneuronal human cell lines. Proc. Natl. Acad. Sci. U.S.A 1992; 89: 1572–1576
  • Clarke J. H., Martinez-Carrion M. Labeling of functionally sensitive sulfhydryl-containing domains of acetylcholine receptor from Torpedo californica membranes. J. Biol. Chem 1986; 261: 10063–10072
  • Claudio T. Molecular genetics of acetylcholine receptor-channels. Frontiers in Molecular Biology, D. M. Glover, B. D. Hammes. IRL Press, Oxford 1989; 63–142
  • Cohen J. B., Sharp S. D., Liu W. S. Structure of the agonist-binding site of the nicotinic acetylcholine receptor: [3H]-acetylcholine mustard identifies residues in the cation-binding subsite. J. Biol. Chem 1991; 266: 23354–23364
  • Conti-Tronconi B. M., Morgutti M., Sghirlanzoni A., Clementi F. Cellular immune response against acetylcholine receptor in myasthenia gravis. I. Relevance to clinical course and pathogenesis. Neurolog 1979; 29: 496–501
  • Conti-Tronconi B. M., Tzartos S., Lindstrom J. Monoclonal antibodies as a probe of acetylcholine receptor structure. II. Binding to native receptor. Biochemistr 1981; 20: 2181–2191
  • Conti-Tronconi B. M., Raftery M. A. The nicotinic cholinergic receptor: correlation of molecular structure with functional properties. Annu. Rev. Biochem 1982; 51: 491–530
  • Conti-Tronconi B. M., Hunkapiller M. W., Lindstrom J. M., Raftery M. A. Subunit structure of the acetylcholine receptor fro. Electrophorus electricus. Proc. Natl. Acad. Sci. U.S.A 1982a; 79: 6489–6493
  • Conti-Tronconi B. M., Hunkapiller M. W., Gotti C., Raftery M. A. Mammalian muscle acetylcholine receptor: a supramolecular structure formed by four related proteins. Scienc 1982b; 218: 1227–1229
  • Conti-Tronconi B. M., Hunkapiller M. W., Lindstrom J. W., Raftery M. A. Multisubunit composition and amino-terminal sequence of piscine muscle acetylcholine receptor. J. Receptor Res 1984; 4: 801–816
  • Conti-Tronconi B. M., Dunn S. M. J., Barnard E. A., Dolly J. O., Lai F. A., Ray N., Raftery M. A. Brain and muscle nicotinic acetylcholine receptors are different but homologous proteins. Proc. Natl. Acad. Sci. U.S.A 1985; 82: 5208–5212
  • Conti-Tronconi B. M., Raftery M. A. Nicotinic acetylcholine receptor contains multiple binding sites: evidence from binding of α-dendrotoxin. Proc. Natl. Acad. Sci. U.S.A 1986; 83: 6646–6650
  • Conti-Tronconi B. M., Tzartos S., Spencer S. R., Kokla A., Tang F., Maelicke A. Identification of surface domains on the nicotinic receptor molecule by the use of toxins and antibodies. Nicotinic Acetylcholine Receptors in the Nervous System, F. Clementi, C. Gotti, E. Sher. NATO-ASI, Series H, Springer-Verlag, Berlin 1988; Vol. 25: 119–136
  • Conti-Tronconi B. M., Fels G., McLane K., Tang F., Bellone M., Kokla A., Tzartos S., Milius R., Maelicke A. Use of synthetic peptides and high affinity protein ligands for structural studies of central and peripheral nicotinic receptors. Molecular Neurobiology of Neuroreceptors and Ion Channels, A. Maelicke. NATO-ASI, Series H, Springer-Verlag, Berlin 1989; Vol. 32: 291–310
  • Conti-Tronconi B. M., Diethelm B. M., Wu X., Tang F., Bertazzon T., Maelicke A. α-Bungarotoxin and the competing antibody WF6 interact with different amino acids within the same cholinergic subsite. Biochemistr 1991; 30: 2575–2584
  • Conti-Tronconi B. M., Tang F., Diethelm B. M., Spencer S. R., Reinhardt-Maelicke S., Maelicke A. Mapping of a cholinergic binding site by means of synthetic peptides, monoclonal antibodies, and α-bungarotoxin. Biochemistr 1990a; 29: 6221–6230
  • Cooper E., Couturier S., Ballivet M. Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature (London) 1991; 350: 235–238
  • Couturier S., Erkman L., Vanera S., Rungger D., Bertrand S., Boulter J., Ballivet M., Bertrand D. Alpha 5, alpha 3, and non-alpha 3. Three clustered avian genes encoding neuronal nicotinic acetylcholine receptor-related subunits. J. Biol. Chem 1990a; 265: 17560–17567
  • Couturier S., Bertrand D., Matter J. M., Hernandez M. C., Bertrand S., Millar N., Valera S., Barkas T., Ballivet M. A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homooligomeric channel blocked by alpha-BTX. Neuro 1990b; 5: 847–856
  • Criado M., Hochschwender S., Sarin V., Fox V. L., Lindstrom J. Evidence for unpredicted transmembrane domains in acetylcholine receptor subunits. Proc. Natl. Acad. Sci. U.S.A 1985; 82: 2004–2008
  • Culver P., Fenical W., Taylor P. Lophotoxin irreversibly inactivates the nicotinic acetylcholine receptor by preferential association at one of the two primary agonist sites. J. Biol. Chem 1984; 259: 3763–3770
  • Culver P., Burch M., Potenza C., Wasserman L., Fenical W., Taylor P. Structure-activity relationships for the irreversible blockade of nicotinic receptor agonist sites by lophotoxin and congeneric diterpene lactones. Mol. Pharamcol 1985; 28: 436–444
  • Czajkowski C., Karlin A. Agonist binding site of Torpedo electric tissue nicotinic acetylcholine receptor: a negatively charged region of the δ subunit within 0.9 nm of the α subunit binding site disulfide. J. Biol. Chem 1991; 266: 22603–22612
  • Dale H. H. The action of certain esters and ethers of choline, and their relation to muscarine. J. Pharmacol. Exp. Ther 1914; 6: 147–190
  • Dale H. H. Pharmacology and nerve endings. Proc. R. Soc. Med 1935; 28: 319–332
  • Dale H. H., Feldberg W. Chemical transmission at motor nerve ending in voluntary muscle. J. Physiol. 1934; 81: 39
  • Dani J. A. Site-directed mutagenesis and single-channel currents define the ionic channel of the nicotinic acetylcholine receptor. Trends Neurosci 1989; 12: 125–128
  • Das M. K., Lindstrom J. The main immunogenic region of the nicotinic acetylcholine receptor. Interaction of monoclonal antibodies with synthetic peptides. Biochem. Biophys. Res. Commun 1989; 165: 865–871
  • Davies D. R., Sheriff S., Padlan E. A. Antibody-antigen complex. J. Biol. Chem 1988; 263: 10541–10544
  • Davis M. M., Bjorkman P. J. T cell antigen receptor genes and T cell recognition. Nature (London) 1988; 334: 395–402
  • Deneris E. S., Connolly J., Boulter J., Wada E., Wada K., Swanson L. W., Patrick J., Heinemann S. Primary structure and expression of β2: a novel subunit of neuronal nicotinic acetylcholine receptors. Neuro 1988; 1: 45–54
  • Deneris E. S., Boulter J., Swanson L. W., Patrick J., Heinemann S. β3: a new member of nicotinic acetylcholine receptor gene family is expressed in brain. J. Biol. Chem 1989; 264: 6268–6272
  • Deneris E. S., Connolly J., Rogers S. W., Duvoisin R. Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors. Trends Pharmacol. Sci 1991; 12: 34–40
  • Dennis M., Giraudat J., Kotzba-Hibert F., Goeldner M., Hirth C., Chang J. Y., Lazure C., Shretien M., Changeux J. P. Amino acids of the Torpedo marmorata acetylcholine receptor α subunit labeled by a photoaffinity ligand for the acetylcholine binding site. Biochemistr 1988; 27: 2346–2357
  • Devillers-Thiery A., Giraudat J., Bentaboulet M., Changeux J. P. Complete mRNA coding sequence of the acetycholine binding α-subunit of Torpedo marmorata acetylcholine receptor. A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. U.S.A 1983; 80: 2067–2071
  • Dice J. F. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem. Sci 1990; 15: 305–309
  • DiPaola M., Czajkowski C., Bodkin M., Karlin A. The C terminus of the Torpedo acetylcholine receptor δ subunit is extracellular. Soc. Neurosci. Abstr. 1988; 14(260.5)640
  • DiPaola M., Czajkowski C., Karlin A. The sidedness of the COOH terminus of the acetylcholine receptor delta subunit. J. Biol. Chem 1989; 264: 15457–15463
  • DiPaola M., Kao P. N., Karlin A. Mapping the α-subunit site photolabeled by the non-competitive inhibitor [3H]quinacrine azide in the active state of the nicotinic acetylcholine receptor. J. Biol. Chem 1990; 265: 11017–11029
  • Donnelly-Roberts D. L., Lentz T. L. Binding sites for α-bungarotoxin and the noncompetitive inhibitor phencyclidine on a synthetic peptide comprising residues 172–227 of the α-subunit of the nicotinic acetylcholine receptor. Biochemistr 1991; 30: 7484–7491
  • Dougherty D. A., Stauffer D. A. Acetylcholine binding by a synthetic receptor: implications for biological recognition. Scienc 1990; 250: 1558–1560
  • Drachman D. B., DeSilva S., Ramsay D., Pestronk A. Humoral pathogenesis of myasthenia gravis. Ann. N.Y. Acad. Sci 1987; 505: 90–105
  • Dunn S. M. J., Conti-Tronconi B. M., Raftery M. A. Acetylcholine receptor dimers are stabilized by extracellular disulphide bonding. Biochem. Biophys. Res. Commun 1986; 139: 830–837
  • Dunn S. M. J., Conti-Tronconi B. M., Raftery M. A. A high affinity site for acetylcholine occurs close to the α/γ subunit interface of Torpedo nicotinic acetylcholine receptor. Biochemistr 1993; 32: 8616–8621
  • Duvoisin R. M., Deneris E. S., Patrick J., Heinemann S. The functional diversity of the neuronal nicotinic acetylcholine receptors is increased by a novel subunit. Neuro 1989; 3: 487–496
  • Dwyer D. S., Bradley R. J., Oh S. J., Kearney J. F. Idiotypes in myasthenia gravis. Idiotypes in Biology and Medicine, D. S. Dwyer. Academic Press, New York 1984
  • Dwyer B. P. Topological dispositions of Lysine α380 and Lysine γ486 in the acetylcholine receptor fro. Torpedo californica. Biochemistr 1991; 30: 4105–4112
  • Egebjerg J., Bettler B., Hermans-Borgmeyer I., Heinemann S. Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not by AMPA. Nature (London) 1991; 351: 745–748
  • Engel A. G., Santa T. Histomeric analysis of the ultrastructure of the neuromuscular junction in myasthenia gravis and in the myasthenic syndrome. Ann. N.Y. Acad. Sci 1971; 183: 46–63
  • Engel W. K., Trotter J. L., McFarlin D. E., McIntosh C. L. Thymic epithelial cell contains acetylcholine receptor. Lance 1977; 1: 1310–1311
  • Engel A. G., Sahashi K., Fumagalli G. The immunopathology of acquired myasthenia gravis. Myasthenia gravis: pathophysiology and management, David Grob. Ann. N.Y. Acad. Sci, 1981; 377: 158–174
  • Engel A. G. Myasthenia gravis and myasthenic syndromes. Ann. Neurol. 1984; 16: 519
  • Engel A. G. The molecular biology of end plate diseases. The Vertebrate Neuromuscular Junction, M. M. Salpeter. Alan R. Liss, New York 1987; 361–424
  • Evoli A., Bartoccioni E., Barocchi A. P., Scuderi F., Tonali P. Anti-AChR-antibody negative myasthenia gravis: clinical and immunological features. Clin. Invest. Med 1989; 12: 104–109
  • Fairclough R. H., Finer-Moore J., Love R. A., Kristofferson D., Desmeules P. J., Stroud R. M. Subunit organization and structure of an acetylcholine receptor. Cold Spring Harbor Symp. Quant. Biol 1983; 48: 9–20
  • Falke J. J., Danburg A. F., Stemhag D., Zalkin N., Milligan D., Koshland D. E. Structure of a bacterial sensory receptor. A site-directed sulfhydryl study. J. Biol. Chem 1988; 263: 14850–14853
  • Fatt P., Katz B. An analysis of the end-plate potential recorded with an intra-cellular electrode. J. Physiol 1951; 115: 320–370
  • Fels G., Plumer-Wilk R., Schreiber H., Maelicke A. A monoclonal antibody interfering with binding and response of the acetylcholine receptor. J. Biol. Chem 1986; 261: 15746–15754
  • Felten D. L., Felten S. Y., Carlson S. L., Ulschowska J. A., Livnat S. Noradrenergic and peptidergic innervation of lymphoid tissue. J. Immunol. 1985; 135: 755s–756s
  • Finer-Moore J., Stroud R. Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A 1984; 81: 155–159
  • Fraenkel Y., Gershoni J. M., Navon G. Acetylcholine interactions with tryptophan-184 of the alpha-subunit of the nicotinic acetylcholine receptor revealed by transferred nuclear Overhauser effect. FEBS Lett 1991; 291: 225–228
  • Fuchs S., Barchan D., Kachalsky S., Neumann D., Aladjem M., Vogel Z., Ovadia M., Kochva E. Molecular evolution of the binding site of the acetylcholine receptor. Myasthenia gravis and related disorders, A S. Penn, D. P. Richman, R. L. Ruff, V. A. Lennon. Ann. N.Y. Acad. Sci, 1993; 681: 126–139
  • Galzi J. L., Revah F., Black D., Goeldner M., Hirth C., Changeux J. P. Identification of a novel amino acid α-tyrosine 93 within the cholinergic ligandsbinding sites of the acetylcholine receptor by photoaffinity labeling. Additional evidence for a three-loop model of the cholinergic ligands-binding sites. J. Biol. Chem 1990; 265: 10430–10437
  • Galzi J. L., Revah F., Bessis A., Changeux J. P. Functional architecture of the nicotinic acetylcholine receptor: from electric organ to brain. Annu. Rev. Pharmacol 1991; 31: 37–72
  • Gammon G., Sercarz E. E. How some T-cells escape tolerance induction. Nature (London) 1989; 342: 183–185
  • Gammon G., Sercarz E. E. Does the presence of self-reactive T cells indicate the breakdown of tolerance. Clin. Immunol. Immunopathol 1990; 56: 287–297
  • Gershoni J. M., Hawrot E., Lentz T. L. Binding of α-bungarotoxin to isolated α subunit of the acetylcholine receptor of Torpedo californica: quantitative analysis with protein blots. Proc. Natl. Acad. Sci. U.S.A 1983; 80: 4973–4977
  • Geuder K. I., Marx A., Witzemann V., Schalke B., Toka K. V., Kirchner T., Müller-Hermelink H. K. Pathogenetic significance of fetal-type acetylcholine receptors on thymic myoid cells in myasthenia gravis. Dev. Immunol 1992; 2: 69–75
  • Ghosh P., Stroud R. M. Ion channels formed by a highly charged peptide. Biochemistr 1991; 30: 3551–3557
  • Gilman A. G. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem 1987; 56: 615–649
  • Giraudat J., Dennis M., Heidmann T., Chang J. Y., Changeux J. P. Structure of the high affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the δ subunit is labelled by [3H]chlorpromazine. Proc. Natl. Acad. Sci. U.S.A 1986; 83: 2719–2723
  • Giraudat J., Dennis M., Heidmann T., Haumont P. Y., Lederer F., Changeux J. P. Structure of the high affinity site for noncompetitive blockers of the acetylcholine receptor: [3H]chlorpromazine labels homologous residues in the β and δ chains. Biochemistr 1987; 26: 2410–2418
  • Giraudat J., Galzi J. L., Revah F., Changeux J. P., Haumont P. V., Lederer F. The noncompetitive blocker [3H]chlorpromazine labels segment M2 but not segment M1 of the nicotinic acetylcholine receptor α-subunit. FEBS Lett 1989; 253: 190–198
  • Goldman D., Simmons D., Swanson L. W., Patrick J., Heinemann S. Mapping of brain areas expressing RNA homologous to two different acetylcholine receptor α-subunit cDNAs. Proc. Natl. Acad. Sci. U.S.A 1986; 86: 4076–4080
  • Goldman D., Deneris E., Luyten W., Kochlar A., Patrick J., Heinemann S. Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cel 1987; 48: 965–973
  • Goldman D., Tanai K. Coordinate regulation of RNAs encoding two isoforms of rat muscle nicotinic acetylcholine receptor β-subunit. Nucleic Acids Res 1989; 25: 3049–3056
  • Gotti C., Mazzola G., Longhi R., Fornasari D., Clementi F. The binding site for α-bungarotoxin resides in the sequence 188–201 of the α-subunit of acetylcholine receptor: structure, conformation and binding characteristics of peptide [Lys] 188–201. Neurosci. Lew 1987; 82: 113–119
  • Gotti C., Frigerio F., Bolognesi R., Longhi R., Racchetti G., Clementi F. Nicotinic acetylcholine receptor: a structural model for alpha-subunit peptide 188–201, the putative binding site for cholinergic agents. FEBS Lett 1988; 228: 118–122
  • Granato D. A., Fulpius B. W., Moody J. F. Experimental myasthenia in Balb/c mice immunized with rat acetylcholine receptor from rat denervated muscle. Proc. Natl. Acad. Sci. U.S.A 1986; 73: 2872–2875
  • Grant G. A., Frazier M. W., Chiappinelli V. A. Amino acid sequences of k-flavotoxin: establishment of a new family of snake venom neurotoxins. Biochemistr 1988; 27: 3794–3798
  • Gray W. R., Olivera B. M., Cruz L. J. Peptide toxins from venomous conus snails. Annu. Rev. Biochem 1988; 57: 665–700
  • Griesman G. E., McCormick D. J., De Aizpurua H. J., Lennon V. A. α-Bungarotoxin binds to human acetylcholine receptor α-subunit peptide 185–199 in solution and solid phase but not to peptides 125–147 and 389–409. J. Neurochem 1990; 54: 1541–1547
  • Myasthenia gravis, D. Grob. Ann. N.Y. Acad. Sci. 1987; 274
  • Gross A., Ballivet M., Rungger D., Bertrand D. Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes: role of the α subunit in agonist sensitivity and desensitization. Pflugers Arch 1991; 419: 545–551
  • Gu Y., Hall Z. W. Immunological evidence for a change in subunits of the acetylcholine receptor in developing and denervated rat muscle. Neuro 1988; 1: 117–125
  • Gu Y., Forsayeth J. R., Verrall S., Yu X. M., Hall Z. W. Assembly of the mammalian muscle acetylcholine receptor in transfected COS cells. J. Cell Biol 1991; 114: 799–807
  • Gullick W. J., Lindstrom J. M. Mapping the binding of monoclonal antibodies to the acetylcholine receptor fro. Torpedo californica. Biochemistr 1983; 22: 3312–3320
  • Gundelfinger E. D. How complex is the nicotinic receptor system of insects. Trends Neurosci 1992; 15: 206–211
  • Guy R. A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculation. Biophys. J 1983; 45: 249–261
  • Haggerty J. G., Froehner S. C. Restoration of the 125I-α-bungarotoxin binding activity to the α subunit of Torpedo acetylcholine receptor isolated by gel electrophoresis in sodium dodecyl sulfate. J. Biol. Chem 1981; 256: 8294–8297
  • Hall Z. W., Gorin P. D., Silberstein L., Bennet C. A postnatal change in the immunological properties of the acetylcholine receptor at the rat muscle endplate. J. Neurosci 1985; 5: 730–734
  • Harcourt G. C., Sommer N., Rothbard J., Wilcox H. N. A., Newson-Davis J. A juxta-membrane epitope on the human acetylcholine receptor recognized by T cells in myasthenia gravis. J. Clin. Invest 1988; 82: 1295–1300
  • Hartman D. S., Claudio T. Coexpression of two distinct muscle acetylcholine receptor α subunits during development. Nature (London) 1990; 343: 372–373
  • Herb A., Burnashev N., Werner P., Sakmann B., Wisden W., Seeburg P. H. The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuro 1992b; 8: 775–785
  • Herb A., Wisden W., Luddens H., Puia G., Vicini S., Seeburg P. H. The third γ subunit of the α-aminobutyric acid type A receptor family. Proc. Natl. Acad. Sci. U.S.A 1992a; 89: 1433–1437
  • Hermsen B., Heiermann R., Maelicke A. Cloning and expression of ganglionic nAChR genes fro. Locusta migratoria. Biol. Chem. Hoppe-Seyle 1991; 372: 891–899
  • Hodgking A. L., Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 1952; 117: 500–544
  • Hodgking A. L., Katz B. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (London) 1949; 108: 37–77
  • Hohlfeld R., Toyka K. V., Heininger K., Grosse-Wilde H., Kalies I. Autoimmune human T-lymphocytes specific for acetylcholine receptor. Nature (London) 1984; 310: 244–246
  • Hohlfeld R., Conti-Tronconi B. M., Kalies I., Bertrams J., Toyka K. V. Genetic restriction of autoreactive acetylcholine receptor-specific T lymphocytes in myasthenia gravis. J. Immunol 1985; 135: 2393–2399
  • Hohlfeld R., Kalies I., Kohleisen B., Heininger K., Conti-Tronconi B. M., Toyka K. V. Myasthenia gravis: stimulation of antireceptor autoantibodies by autoreactive T-cell lines. Neurolog 1986; 36: 618–621
  • Hohlfeld R., Toyka K. V., Tzartos S. J., Carson W., Conti-Tronconi B. M. Human T helper lymphocytes in myasthenia gravis recognize the nicotinic receptor a subunit. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 5379–5382
  • Hollmann M., O'Shea-Greenfield A., Rogers S. W., Heinemann S. Cloning by functional expression of a member of the glutamate receptor family. Nature (London) 1989; 342: 643–648
  • Hoppe H. H. Ein Beitrag zur Kennstnis der Bulbarparalyse. Berl. Klin. Wochenschr 1892; 29: 332–336
  • Horton R. M., Manfredi A. A., Conti-Tronconi B. M. The 'embryonic' gamma subunit of the nicotinic acetylcholine receptor is expressed in adult extraocular muscle. Neurolog 1993; 43: 983–986
  • Hucho F. The nicotinic acetylcholine receptor and its ion channel. Eur. J. Biochem 1986; 158: 211–226
  • Hucho F., Oberthür W., Lottspeich F. The ion channel of the nicotinic acetylcholine receptor is formed by homologous helices M II of the receptor subunits. FEBS Lett 1986; 205: 137–142
  • Huganir R. L., Racker E. Properties of proteoliposomes reconstituted with acetylcholine receptors fro. Torpedo californica. J. Biol. Chem 1982; 257: 9372–9378
  • Hulme E. C., Birdsall N. J. M., Buckley N. J. Muscarinic acetylcholine receptor subtypes. Annu. Rev. Pharmacol. Toxicol 1990; 30: 633–673
  • Imoto K., Methfessel C., Sakmann B., Mishina M., Moti Y., Konno T., Fukuda K., Kurasaki M., Bujo H., Fujita Y., Numa S. Location of a δ-subunit region determining ion transport through the acetylcholine receptor channel. Nature (London) 1986; 324: 670–674
  • Imoto K., Busch C., Sakmann B., Mishina M., Konno T., Nakai J., Bujo H., Mori Y., Fukada K., Numa S. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature (London) 1988; 335: 645–648
  • Imoto K. J., Konno T., Nakai J., Wang F., Misha M., Numa S. A ring of uncharged polar amino acids as a component of channel constriction in the nicotinic acetylcholine receptor. FEBS Lett 1991; 289: 193–200
  • Iwasaki Y., Kinoshita M., Ikeda K., Takamiya K., Shiojima T. Cognitive dysfunction in myasthenia gravis. Int. J. Neurosci 1990; 54: 29–33
  • Jakes K. S., Abrams C. K., Finkelstein A., Slatin S. L. Alteration of the pH-dependent ion sensitivity of the colcin E1 channel by site-directed mutagenesis. J. Biol. Chem. 1990; 265: 6984
  • Kahinski H. J., Maas E., Spiegel P., Ruff R. L. Why are eye muscles frequently involved in myasthenia gravis. Neurolog 1990; 40: 1663–1669
  • Kaminski H. J., Fenstermaker R., Ruff R. L. Adult extraocular and intercostal muscle express the γ subunit of fetal AChR. Biophysics 1991; 59: 444a, (Abstr.)
  • Kao I., Drachman D. B. Thymus muscle cells bear acetycholine receptors: possible relation to myasthenia gravis. Scienc 1977; 195: 74–75
  • Kao P. N., Dwork A. J., Kaldany R. R. J., Silver M. L., Wideman J., Stein S., Karlin A. Identification of the half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J. Biol. Chem 1984; 259: 11662–11665
  • Kao P. N., Karlin A. Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J. Biol. Chem 1986; 261: 8085–8088
  • Karlin A., Kao P. N., Dipaola M. Molecular pharmacology of the nicotinic acetylcholine receptor. Trends Pharmacol. Sci 1986; 7: 304–308
  • Katz B., Miledi R. Further observations on acetylcholine noise. Nature (London) 1971; 232: 124–126
  • Kawanami S., Conti-Tronconi B. M., Racs J., Raftery M. A. Isolation and characterization of nicotinic acetylcholine receptor-like protein from fetal calf thymus. J. Neurol. Sci 1988; 87: 195–209
  • Keinanen K., Wisden W., Sommer B., Werner P., Herb A., Verdoorn T. A., Sakmann B., Seeburg P. H. A family of AMPA-selective glutamate receptors. Scienc 1990; 249: 556–560
  • Kellaris K. V., Ware D. K., Smith S., Kyte J. Assessment of the number of free cysteines and isolation and identification of cystine-containing peptides from acetylcholine receptor. Biochemistr 1989; 28: 3469–3482
  • Killen J. A., Hochschwender S. M., Lindstrom J. M. The main immunogenic region of acetylcholine receptors does not provoke the formation of antibodies of a predominant idiotope. J. Neuroimmunol 1985; 9: 229–233
  • Kipling R. The Jungle Book. Harper and Brothers, New York 1895
  • Kirchner T., Tzartos S., Hoppe F., Schalke B., Wekerle H., Muller-Hermelink H. K. Pathogenesis of myasthenia gravis: acetylcholine receptor-related antigenic determinant in tumor-free thymuses and thymic epithelial tumors. Am. J. Pathol 1988; 130: 268–280
  • Kistler J., Stroud R. M., Klymkowsky M. W., Lalancette R. A., Fairclough R. H. Structure and function of an acetylcholine receptor. Biophys. J 1982; 37: 371–383
  • Konno T., Busch C., Von Kitzing E., Imoto K., Wang F., Nakai J., Mishina M., Numa S., Sakmann B. Rings of anionic amino acids as structural determinants of ion selectivity in the acetylcholine receptor channel. Proc. R. Soc. London Ser. 1991; 244: 69–79
  • Kordossi A. A., Tzartos S. J. Conformation of cytoplasmic segments of acetylcholine receptor α- and β-subunits probed by monoclonal antibodies: sensitivity of the antibody competition approach. EMBO J 1987; 6: 1605–1610
  • Kubo T., Noda M., Takai T., Tanabe T., Kayano T., Shimizu S., Tanaka K., Takahashi H., Hirose T., Inayama S., Kikuno R., Miyata T., Numa S. Primary structure of the δ-subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. Eur. J. Biochem 1985; 149: 5–13
  • Kurosaki T., Fukuda K., Konno T., Mori Y., Tanaka K. L., Misha M., Numa S. Functional properties of nicotinic acetylcholine receptor subunits expressed in various combinations. FEBS Lett 1987; 14: 253–258
  • Land B. R., Saltpeter E. E., Saltpeter M. M. Kinetic parameters for acetylcholine interaction in intact neuromuscular junction. Proc. Natl. Acad. Sci. U.S.A 1981; 78: 7200–7204
  • Langley J. N. On nerve endings and on special excitable substances in cells. Proc. R. Soc. London Ser. B 1906; 78: 170–194
  • LaRochelle W. J., Wray B. E., Sealock R., Froehner S. C. Immunochemical demonstration that amino acids 360–377 of the acetylcholine receptor gamma-subunit are cytoplasmic. J. Cell Biol 1985; 100: 684–691
  • Lehmann P. V., Forsthuber T., Miller A., Sercarz E. E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature (London) 1992; 358: 155–157
  • Lei S. J., Raftery M. A., Conti-Tronconi B. M. Monoclonal antibodies against synthetic sequences of the nicotinic receptor cross-react fully with the native receptor, and reveal the transmembrane disposition of their epitopes. Biochemistr 1993; 32: 91–100
  • Lennon V. A., Lambert E. H. Myasthenia gravis induced by monoclonal antibodies to acetylcholine receptors. Nature (London) 1980; 285: 238–340
  • Lennon V. A., Griesman G. E. Evidence against acetylcholine receptor having a main immunogenic region as a target for autoantibodies in myasthenia gravis. Neurolog 1989; 39: 1069–1076
  • Lentz T. L., Wilson P. T. Neurotoxin-binding site on the acetylcholine receptor. Int. Rev. Neurobiol 1988; 29: 117–160
  • Leonard R. J., Labarca C. G., Charnet P., Davidson N., Lester H. A. Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor. Scienc 1988; 242: 1578–1581
  • Levinson A. I., Zweiman B., Lisak R. P. Immunopathogenesis and treatment of myasthenia gravis. J. Clin. Immunol 1987; 7: 187–197
  • Lindstrom J., Engel M. A., Seybold M., Lennon V. A., Lambert E. H. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine receptor antibodies. J. Exp. Med 1976; 144: 739–742
  • Lindstrom J., Merlie J., Yogeeswaran G. Biochemical properties of acetylcholine receptor subunits fro. Torpedo californica. Biochemistr 1979; 18: 4465–70
  • Lindstrorm J., Criado M., Hochschwener S., Fox J. L., Sarin V. Immunochemical tests of acetycholine receptor subunit models. Nature (London) 1984; 311: 573–575
  • Lindstrom J., Schoepfer R., Whiting P. Molecular studies on the neuronal nicotinic acetylcholine receptor family. Mol. Neurobiol 1987; 1: 281–337
  • Lindstrom J., Shelton D., Fujii Y. Myasthenia gravis. Adv. Immunol 1988; 42: 233–284
  • Listerud M., Brussaard A. B., Devay P., Colman D. R., Role L. W. Functional contribution of neuronal AChR subunits revealed by antisense oligonucleotides. Scienc 1991; 254: 1518–1521
  • Loewi D. Über humorale übertragharkeit der herznarvenwirknug. Pflügers Arch. Ges. Physiol 1921; 189: 239–242
  • Loring R. H., Chiappinelli V. A., Zigmond R. E., Cohen J. B. Characterization of a snake venom neurotoxin which blocks nicotinic transmission in the avian ciliary ganglion. Neuroscienc 1984; 11: 989–999
  • Lu C. Z., Link H., Mo X. A., et al. Anti-presynaptic membrane receptor antibodies in myasthenia gravis. J. Neurol. Sci 1991; 102: 39–45
  • Luetje C. W., Wada K., Rogers S., Abramson S. N., Tsuji K., Heinemann S., Patrick J. Neurotoxins distinguish between different neuronal nicotinic acetylcholine receptors. J. Neurochem 1990a; 55: 632–640
  • Luetje C. W., Patrick J., Seguela P. Nicotine receptors in the mammalian brain. FASEB J 1990b; 4: 2753–2760
  • Luetje C. W., Patrick J. Both alpha and beta subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. J. Neurosci 1991; 11: 837–845
  • Luetje C. W., Piattoni M., Patrick J. Mapping of ligand binding sites of neuronal nicotinic acetylcholine receptors using chimeric alpha subunits. Mol. Pharmacol 1992; 44: 657–666
  • Maelicke M. A. Structure and function of the nicotinic acetylcholine receptor. Handbook of Experimental Pharmacology: The Cholinergic Synapse, V. P. Whittaker. Springer- Verlag, Berlin 1988; Vol. 86: 267–300
  • Maelicke M. A., Plumer-Wilk R., Fels G., Spencer S. R., Engelhard M., Veltel D., Conti-Tronconi B. M. Epitope mapping employing antibodies raised against short synthetic peptides: a study of the nicotinic acetylcholine receptor. Biochemistr 1989; 29: 1396–1405
  • Magni F., Bruschi F., Kasti M. The afferent innervation of the thymus gland in the rat. Brain Res 1987; 424: 379–385
  • Manfredi A. A., Bellone M., Protti M. P., Conti-Tronconi B. M. Molecular mimicry among human autoantigens. Immunol. Toda 1991; 12: 46–47
  • Manfredi A. A., Protti M. P., Wu X. D., Howard J. F., Jr., Conti-Tronconi B. M. CD4+ T epitope repertoire on the human acetylcholine receptor α subunit in severe myasthenia gravis. A study with synthetic peptides. Neurolog 1992; 42: 1092–1100
  • Manfredi A. A., Protti M. P., Dalton M. W., Howard J. F., Jr, Conti-Tronconi B. M. T helper cell recognition of muscle acetylcholine receptor in myasthenia gravis. Epitopes on the γ and δ subunits. J. Clin. Invest 1993; 92: 1055–1067
  • Manfredi A. A., Yuen M. H., Moiola L., Protti M. P., Conti-Tronconi B. M. Human acetylcholine receptor presentation in myasthenia gravis: DR restriction of autoimmune T epitopes and binding of synthetic receptor sequences to DR molecules. J. Immunol, in press
  • Marshall J., Buckingham S. D., Shingai R., Lunt G. G., Goosey M. W., Darlison M. G., Sattelle D. B., Barnard E. A. Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor. EMBO J 1990; 9: 4391–4398
  • Martin R., Jaraquemada D., Flerlage M., Richard J., Whittaker J., Long E. O., McFarline D. E., McFarland H. F. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J. Immunol 1990; 145: 540–548
  • McCormick D. J., Atassi M. Z. Localization and synthesis of the acetylcholine-binding site in the α-chain of the Torpedo californica acetylcholine receptor. Biochem. J 1984; 224: 995–1000
  • McCrea P. D., Popot J. L., Engelman D. M. Transmembrane topography of the nicotinic acetylcholine receptor δ subunit. EMBO J 1987; 6: 3619–3626
  • McLane K. E., Tang F., Conti-Tronconi B. M. Localization of sequence segments forming a kappa-bungarotoxin-binding site on the alpha3 neuronal nicotinic receptor. J. Biol. Chem 1990a; 265: 1537–1544
  • McLane K. E., Wu X., Conti-Tronconi B. M. Identification of a brain acetylcholine receptor alpha subunit able to bind alpha-bungarotoxin. J. Biol. Chem 1990b; 265: 9816–9824
  • McLane K. E., Wu X., Diethelm B. M., Conti-Tronconi B. M. Structural determinants of α-bungarotoxin binding to the sequence segment 181–200 of the muscle nicotinic acetylcholine receptor α subunit: effects of cysteine/cystine modification and species-specific amino acid substitutions. Biochemistr 1991a; 30: 4925–4934
  • McLane K. E., Wu X., Conti-Tronconi B. M. Amino acid residues forming the interface of a neuronal nicotinic acetylcholine receptor with k-bungarotoxin: a study using single residue substituted peptide analogs. Biochem. Biophys. Res. Commun 1991b; 176: 11–18
  • McLane K. E., Schoepfer R., Wu X., Lindstrom J. M., Conti-Tronconi B. M. Identification of sequence segments forming the α-bungarotoxin binding sites on two nicotinic acetylcholine receptor α subunits from the avian brain. J. Biol. Chem 1991c; 266: 15230–15239
  • McLane K. E., Wu X., Conti-Tronconi B. M. Structural determinants within residues 180–199 of the rodent α5 nicotinic acetylcholine receptor subunit involved in α-bungarotoxin binding. Biochemistr 1991d; 30: 10730–10738
  • McLane K. E., Weaver W., Lei S., Chiappinelli V. A., Conti-Tronconi B. M. Homologous -neurotoxin exhibit residue-specific interaction α3-subunit of the nicotinic acetylcholine receptor: a comparison of the structural requirements for -bungarotoxin and -flavitoxin binding. Biochemistr 1993; 32: 6988–6994
  • Melms A., Schalke B. C. G., Kirchner T., Muller-Hermelink H. K., Albert E., Wekerle H. Thymus in myasthenia gravis. Isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients. J. Clin. Invest 1988; 81: 902–908
  • Melms A., Chrestel S., Schalke B. C. G., Wekerle H., Mauron A., Ballivet M., Barkas T. Autoimmune T lymphocytes in myasthenia gravis: determination of target epitopes using T lines and recombinant products of the mouse nicotinic acetylcholine receptor gene. J. Clin. Invest 1989; 83: 785–790
  • Michalek M. T., Banacerraf B., Rock K. L. Two genetically identical antigen-presenting cell clones display heterogeneity in antigen processing. Proc. Natl. Acad. Sci. U.S.A 1989; 86: 3316–3320
  • Middleton R. E., Cohen J. B. Mapping the acetylcholine binding site of the nicotinic acetylcholine receptor: [3H]nicotine as an agonist photoaffinity label. Biochemistr 1991; 30: 6987–6997
  • Mihovilovic M., Richman D. P. Monoclonal antibodies as probes of the alpha-bungarotoxin and cholinergic binding regions of the acetylcholine receptor. J. Biol. Chem 1987; 262: 4978–4986
  • Mihovilovic M., Hulette C., Mittelstaedt J., Austin C., Roses A. D. Nicotinic resonance acetylcholine receptor α-3 subunit transcription in normal and myasthenic thymus. Ann. N.Y. Acad. Sci 1993; 681: 83–96
  • Miller R. G., Milner-Brown H. S., Dau P. C. Antibody-negative acquired myasthenia gravis: successful therapy with plasma exchange. Muscle Nerv 1981; 4: 255–263
  • Miller R. J. Genetic manipulation of ion channels: a new approach to structure and mechanisms. Neuro 1989; 2: 1195–1205
  • Mishina M., Kurosaki T., Tobimatsu T., Morimoto Y., Noda M., Yamamoto T., Terao M., Lindstrom J., Takahashi T., Kuno M., Numa S. Expression of functional acetylcholine receptor from cloned cDNAs. Nature (London) 1984; 307: 604–608
  • Mishina M., Tobimatsu T., Imoto K., Tanaka K., Fujita Y., Fukuda K., Kurasaki M., Takahashi H., Morimoto Y., Hirose T., Inayama S., Takahash T., Kuno M., Numa S. Location of functional regions of acetylcholine receptor alpha-subunit by site-directed mutagenesis. Nature (London) 1985; 313: 364–369
  • Mishina M., Toshiyuki T., Imoto K., Noda M., Takahashi T., Numa S., Methfessel C., Sakmann B. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature (London) 1986; 321: 406–411
  • Mitra A. K., McCarthy M. P., Stroud R. M. Three dimensional structure of the nicotinic acetylcholine receptor and location of the major associated 43-kD cytoskeletal protein, determined at 22 Å by low dose electron microscopy and X-ray diffraction to 12.5 Å. J. Cell Biol 1989; 109: 755–774
  • Moiola L., Karachunski P., Protti M. P., Howard J. F., Jr, Conti-Tronconi B. M. Epitopes on the β subunit of human muscle acetylcholine receptor recognized by CD4+ cells of myasthenia gravis patients and healthy subject. J. Clin. Invest 1994, in press
  • Moiola L., Protti M. P., McCormick D., Howard J. F., Jr., Conti-Tronconi B. M. Myasthenia gravis: residues on the α and γ subunits of muscle acetylcholine receptor involved in formation of immunodominant CD4+ epitopes. J. Immunol 1994, in press
  • Moore H. P. H., Raftery M. A. Ligand induced interconversion of affinity states in membrane-bound acetylcholine receptor from Torpedo californica. Effects of sulfhydryl and disulfide reagents. Biochemistr 1979; 10: 1862–1867
  • Moore H. P. H., Raftery M. A. Direct spectroscopic studies of cation transport by Torpedo acetylcholine receptor on a time scale of physiological relevance. Proc. Natl. Acad. Sci. U.S.A 1980; 77: 459–4513
  • Moore C. R., Yates J. R., III, Griffin P. R., Shabanowitz J., Martino P. A., Hunt D. A., Cafiso D. S. Proteolytic fragments of the nicotinic acetylcholine receptor identified by mass spectrometry: implications for receptor topography. Biochemistr 1989; 28: 9184–9191
  • Morgutti M., Conti-Tronconi B. M., Sghirlanzoni A., Clementi F. Cellular immune response to acetylcholine receptor in myasthenia gravis. II. Thymectomy and corticosteroids. Neurolog 1979; 29: 734–738
  • Mosckovitz R., Gershoni J. M. Three possible disulfides in the acetylcholine receptor alpha-subunit. J. Biol. Chem 1988; 263: 1017–1022
  • Mossman T. Myasthenia gravis without acetylcholine receptor antibody: a distinct disease entity. Lancet 1986; 1: 116
  • Mulac-Jericevic B., Atassi M. Z. Segment a (182–190) of the Torpedo californica acetylcholine receptor contains a second toxin binding region and binds anti-receptor antibodies. FEBS Lett 1986; 199: 68–74
  • Mulac-Jericevic B., Atassi M. Z. Profile of the alpha-bungarotoxin-binding regions on the extracellular part of the alpha-chain of Torpedo californica acetylcholine receptor. Biochem. J 1987; 248: 847–852
  • Müller-Hermelink H. K., Marx A., Geuder K., Kirchner T. H. The pathological basis of thymoma-associated myasthenia gravis. Ann. N.Y. Acad. Sci 1993; 681: 56–65
  • Myers R. A., Zafaralla G. C., Gray W. R., Abbott J., Cruz L. J., Olivera B. M. α-Conotoxins, small peptide probes of nicotinic acetylcholine receptors. Biochemistr 1991; 30: 9370–9377
  • Mygland A., Tysnes O. B., Aarli J. A., Flood P. R., Gilhus N. E. Myasthenia gravis patients with a thymoma have antibodies against a high molecular weight protein in sarcoplasmic reticulum. J. Neuroimmunol 1992; 37: 1–7
  • Nagappan R., Kletchko S. Myasthenia gravis presenting as a respiratory failure. N.Z. Med. J 1992; 105: 152–161
  • Nakanishi N., Schneider N. A., Axel R. A. Family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuro 1990; 5: 569–581
  • Nef P., Oneyser C., Barkas T., Ballivet M. Acetylcholine receptor related genes expressed in the nervous system. Nicotinic Acetylcholine Receptor, A. Maelicke. NATO-ASI, Series H, Springer Verlag, Heidelberg 1986; Vol. 3: 389–415
  • Nef P., Oneyser C., Alliod C., Couturier S., Ballivet M. Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO J 1988; 7: 595–601
  • Neher E. Ion channels for communication between and within cells. Neuro 1992; 8: 605–612
  • Nelson S., Conti-Tronconi B. M. Adult thymus expresses an embryonic nicotinic acetylcholine receptor-like protein. J. Neuroimmunol 1990; 29: 81–92
  • Neumann D., Gershoni J. M., Fridkin M., Fuchs S. Antibodies to synthetic peptides as probes for the binding site on the alpha subunit of the acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A 1985; 82: 3490–3493
  • Neumann D., Barchan D., Safran A., Gershoni J. M., Fuchs S. Mapping of the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A 1986a; 83: 3008–3011
  • Neumann D., Barchan D., Fridkin M., Fuchs S. Analysis of ligand binding to the synthetic dodecapeptide 185–196 of the acetylcholine receptor alpha subunit. Proc. Natl. Acad. Sci. U.S.A 1986b; 83: 9250–9253
  • Neumann D., Barchan D., Horowitz M., Kochva E., Fuchs S. Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the alpha subunit. Proc. Natl. Acad. Sci. U.S.A 1989; 86: 7255–7259
  • Nicholas J. A., Levely M. E., Mitchell M. A., Smith C. W. A 16-amino acid peptide of respiratory syncytial virus 1A protein contains two overlapping T cell-stimulating sites distinguishable by class II MHC restriction elements. J. Immunol 1989; 143: 2790–2796
  • Noda M., Takahashi H., Tanabe T., Toyosato M., Furutani Y., Hirose T., Asai M., Inayama S., Miyata T., Numa S. Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature (London) 1982; 299: 793–797
  • Noda M., Takahashi H., Tanabe T., Toyoto M., Kikyotani S., Hirose T., Asai M., Takasha H., Inayama S., Miyata T., Numa S. Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha-subunit precursor of muscle acetylcholine receptor. Nature (London) 1983a; 301: 251–255
  • Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Furutani Y., Hirose T., Takashima H., Inayama S., Miyata T., Numa S. Primary structures of beta- and delta-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature (London) 1983b; 302: 528–532
  • Noda M., Furutani Y., Takahashi H., Toyosato M., Tanabe T., Shimizu S., Kikyotani S., Kayano T., Kirose T., Inayama S., Numa S. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature (London) 1983c; 302: 818–823
  • O'Sullivan P. J., Sidney E., Appella L., Uacker L., Phillips S. M., Colon C., Miles R. W., Chestnut, Sette A. Characterization of the specificity of peptide binding to four DR haplotypes. J. Immunol 1990; 145: 1799–1808
  • O'Sullivan D., Arrhenius T., Sidney M. F., et al. On the interaction of promiscuous antigenic peptides with different DR alleles. Identification of common structural motifs. J. Immunol 1991; 147: 2663–2669
  • Oberthür W., Hucho F. Photoaffinity labelling of functional states of the nicotinic acetylcholine receptor. J. Protein Chem 1988; 7: 141–150
  • Oblas B., Singer R. H., Boyd N. D. Location of a polypeptide sequence within the α-subunit of the acetylcholine receptor containing the cholinergic binding site. Mol. Pharmacol 1986; 29: 649–656
  • Ochoa E. L. M., Chattopadhyay A., McNamee M. G. Desensitization of the acetylcholine receptor: molecular mechanisms and effect of modulators. Cell. Mol. Neurobiol 1989; 9: 141–178
  • Oda K., Korenaga S., Ito Y. Myasthenia gravis: passive transfer to mice of antibodies to human and mouse acetylcholine receptor. Neurolog 1981; 31: 282–287
  • Oda K. Differences in acetylcholine receptor-antibody interactions between extraocular and extremity muscle fibers. Myasthenia gravis and related disorders. Ann. N.Y. Acad. Sci 1993; 681: 238–255
  • Oh S. J., Kuruoglu R. Chronic limb-girdle myasthenia gravis. Neurolog 1992; 42: 1153–1156
  • Ohana B., Gershoni J. M. Comparison of the toxin binding sites of the nicotinic acetylcholine receptor from Drosophila to human. Biochemistr 1990; 29: 6409–6415
  • Ohana B., Fraenkel Y., Navon G., Gershoni J. M. Molecular dissection of cholinergic binding sites: how do snakes escape the effects of their own toxins. Biochem. Biophys. Res. Commun 1991; 179: 648–654
  • Oiki S., Danho W., Madison V., Montal M. M2 δ, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor. Proc. Natl. Acad. Sci. U.S.A 1988; 85: 8703–8707
  • Oldstone M. B. A. Molecular mimicry and autoimmune disease. Cel 1987; 50: 819–820
  • Olivera B. M., Rivier J., Clark C., Ramilo C. A., Corpuz G. P., Abogadie F. C., Mena E. E., Woodward S. R., Hillyard D. R., Cruz L. J. Diversity of Conus neuropeptides. Scienc 1990; 249: 257–263
  • Oshima M., Ashizawa T., Pollack M. S., Atassi M. Z. Autoimmune T cell recognition of human acetylcholine receptor: the sites of T cell recognition in myasthenia gravis on the extracellular part of the α subunit. Eur. J. Immunol 1990; 20: 2563–2569
  • Osserman K. E., Genkins G. Studies in myasthenia gravis: review of a twenty-year experience in over 1200 patients. Mt. Sinai J. Med 1971; 38: 497–537
  • Oswald R. E., Changeux J. P. Crosslinking of α-bungarotoxin to the acetylcholine receptor from Torpedo marmorata by ultraviolet light irradiation. FEBS Lett 1982; 139: 225–229
  • Ovadia M., Kochva E. Neutralization of Viperidae and Elapidae snake venoms by sera of different animals. Toxico 1977; 15: 541–548
  • Pakula A. A., Simon M. I. Determination of transmembrane protein structure by disulfide cross-linking: the Escherichia coli Tar receptor. Proc. Natl. Acad. Sci. U.S.A 1992; 89: 4144–4148
  • Panina-Bordignon P., Tan A., Termijtelen A., Demotz S., Corradin G., Lanzavecchia A. Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur. J. Immunol 1989; 19: 2237–2242
  • Papadouli I., Potamianos S., Hadjidakis I., Bairaktari K., Tsikaris K., Sakarellos C., Cung M. T., Marraud M., Tzartos S. J. Antigenic role of a single residue within the main immunogenic region of the nicotinic acetylcholine receptor. Biochem. J 1990; 269: 239–245
  • Papke R. L., Boulter J., Patrick J., Heinemann S. Single channel currents of rat neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Neuro 1989; 3: 589–596
  • Papke R. L., Heinemann S. F. The role of the β4 subunit in determining the kinetic properties of neuronal nicotinic α3 receptors. J. Physiol 1991; 440: 95–112
  • Patrick J., Lindstrom J. Autoimmune response to acetylcholine receptor. Scienc 1973; 180: 571–573
  • Pedersen S. E., Dreyer E. B., Cohen J. B. Location of ligand-binding sites on the nicotinic acetylcholine receptor α-subunit. J. Biol. Chem 1986; 261: 13735–13742
  • Pedersen S. E., Cohen J. B. δ-Tubocurarine binding sites are located at α-γ and α-δ subunit interfaces of the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A 1990; 87: 2785–2789
  • Penn A. S., Richman D. P., Ruff R. L., Lennon V. Myasthenia gravis and related disorders. Ann. NY. Acad. Sci. 1993; 681
  • Pette M., Fujita K., Kitze B., Whitaker J. N., Albert E., Kappos L., Wekerle H. Myelin basic protein-specific T lymphocytes from MS patients and healthy individuals. Neurolog 1990; 40: 1770–1776
  • Poulter L., Earnest J. P., Stroud R. M., Burlingame A. L. Structure, oligosaccharide structures, and posttranslationally modified sites of the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A 1989; 86: 6645–6649
  • Pradier L., Yee A. S., McNamee M. G. Use of chemical modification and site-directed mutagenesis to probe the functional role of thiol groups on the gamma subunit of Torpedo californica acetylcholine receptor. Biochemistr 1989; 28: 6562–6571
  • Protti M. P., Manfredi A. A., Straub C., Howard J. F., Jr., Conti-Tronconi B. M. CD4+ T cell response is the human acetylcholine receptor α subunit in myasthenia gravis. A study with synthetic peptides. J. Immunol 1990; 144: 1276–1281
  • Protti M. P., Manfredi A. A., Straub C., Wu X. D., Howard J. F., Jr., Conti-Tronconi B. M. Use of synthetic peptides to establish anti-human acetylcholine receptor CD4+ cell lines from myasthenia gravis patients. J. Immunol. 1990a; 144: 1711
  • Protti M. P., Manfredi A. A., Straub C., Howard J. F., Jr., Conti-Tronconi B. M. Immunodominant regions for T helper sensitization on the human nicotinic receptor α subunit in myasthenia gravis. Proc. Natl. Acad. Sci. U.S.A 1990b; 87: 7792–7796
  • Protti M. P., Manfredi A. A., Wu X. D., Moiola L., Howard J. F., Jr., Conti-Tronconi B. M. Myasthenia gravis: T epitopes of the δ subunit of human muscle acetylcholine receptor. J. Immunol 1991; 146: 2253–2261
  • Protti M. P., Manfredi A. A., Howard J. F., Jr., Conti-Tronconi B. M. T cells in myasthenia gravis specific for embryonic acetylcholine receptor. Neurolog 1991b; 41: 1809–1814
  • Protti M. P., Manfredi A. A., Wu X. D., Moiola L., Dalton M. W. M., Howard J. F., Jr., Conti-Tronconi B. M. Myasthenia gravis. CD4+ T epitopes on the embryonic γ subunit of human muscle acetylcholine receptor. J. Clin. Invest 1992; 90: 1558–1567
  • Protti M. P., Manfredi A. A., Horton R. M., Bellone M., Conti-Tronconi B. M. Myasthenia gravis: recognition of a human autoantigen at the molecular level. Immunol. Toda 1993; 14: 363–368
  • Radding W., Corfield P. W. R., Levinson L. S., Hashim G. A., Low B. W. α-Toxin binding to acetylcholine receptor α1 79–191 peptides: intrinsic fluorescence studies. FEBS Lett 1988; 231: 212–216
  • Raftery M. A., Hunkapiller M. W., Strader C. D., Hood L. E. Acetylcholine receptor: complex of homologous subunits. Scienc 1980; 208: 1454–1457
  • Ralston S., Sarin V., Thanh H. L., Rivier J., Fox L., Lindstrom J. Synthetic peptides used to locate the alpha-bungarotoxin binding site and immunogenic regions on alpha subunits of the nicotinic acetylcholine receptor. Biochemistr 1987; 26: 3261–3266
  • Ratnam M., Lindstrom J. Structural features of the nicotinic acetylcholine receptor revealed by antibodies to synthetic peptides. Biochem. Biophys. Res. Commun 1984; 12: 1225–1233
  • Ratnam M., Manohar Le Nguyen D., Rivier J., Sargent P. B., Lindstrom J. Transmembrane topography of nicotinic acetylcholine receptor: immunochemical tests contradict theoretical predictions based on hydrophobicity profiles. Biochemistr 1986a; 25: 2633–2643
  • Ratnam N., Sargent P. B., Sarin V., Fox J. L., Nguyen D. L., Rivier J., Criado M., Lindstrom J. M. Location of antigenic determinants on primary sequences of subunit of nicotinic acetylcholine receptors by peptide mapping. Biochemistr 1986b; 25: 2621–2632
  • Ravdin P. M., Berg D. K. Inhibition of neuronal acetylcholine sensitivity by alpha-toxins from Bungarus multicinctus venom. Proc. Natl. Acad. Sci. U.S.A 1979; 76: 2072–2076
  • Revah F., Galzi J. L., Giraudat J., Hauman P. Y., Lederer F., Changeux J. P. The noncompetitive blocker [3H]chlorpromazine labels three amino acids of the acetylcholine receptor γ subunit: implications for the α-helical organization of regions of MII and for the structure of the ion channel. Proc. Natl. Acad. Sci. U.S.A 1990; 87: 4675–4679
  • Revah F., Bertrand D., Galzi J. L., Devillers-Thiery A., Mulle C., Hussy N., Bertrand S., Ballivet M., Changeux J. P. Mutations in the channel domain after desensitization of a neuronal nicotinic receptor. Nature (London) 1991; 353: 846–849
  • Richman D. P., Gomez M. C., Berman P. W., Burres S. A., Fitch F. W., Arnason B. G. W. Monoclonal anti-acetylcholine receptor antibodies can cause experimental myasthenia. Nature (London) 1980; 286: 738–739
  • Roses A. D., Olanow C. W., McAdams M. W., Lane R. J. M. No direct correlation between serum antiacetylcholine receptor antibody levels and clinical state of individual patients with myasthenia gravis. Neurolog 1981; 31: 220–224
  • Roth B., Schwendimann B., Hughes C. J., Tzartos S. J., Barkas T. A modified nicotinic acetylcholine receptor lacking the ion channel amphipathic helices. FEBS Lett 1987; 221: 172–178
  • Roszman T. L., Brooks W. H. Neural modulation of immune function. J. Neuroimmunol 1985; 10: 59–72
  • Saedi M. S., Anand R., Conroy W. G., Lindstrom J. M. Determination of amino acids critical to the main immunogenic region of intact acetylcholine receptors by in vitro mutagenesis. FEBS Lett 1990; 267: 55–59
  • Sahash K., Engel A. G., Lamberg E. H., Howard F. N., Jr. Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor endplate in myasthenia gravis. Neuropathol. Exp. Neurol 1980; 39: 160–166
  • Sakai K., Sinha A. A., Mitchell D. J., Zamvill S. S., Rothbard J. B., McDevitt H. O., Steinman L. Involvement of distinct murine T cell receptors in the autoimmune encephalitogenic response to nested epitopes of myelin basic protein. Proc. Natl. Acad. Sci. U.S.A 1988; 85: 8608–8612
  • Sakimura K., Bujo H., Kushiya E., Araki K., Yamazaki M., Megureo H., Warashina A., Numa S., Mishina M. Functional expression from cloned cDNAs of glutamate receptor species responsive to kainate and quisqualate. FEBS Lett 1990; 272: 73–80
  • Sakimura K., Morita T., Kishiya E., Mishina M. Primary structure and expression of the γ2 subunit of the glutamate receptor channel selective for kainate. Neuro 1992; 8: 267–274
  • Single-Channel Recording, B. Sakmann, E. Neher. Plenum Press, New York 1983
  • Sakmann B. Elementary steps in synaptic transmission revealed by currents through single ion channels. Neuro 1992; 8: 613–629
  • Sawruk E., Udri C., Betz H., Schmitt B. SBD, a novel structural subunit of the Drosophila nicotinic acetylcholine receptor, shares its genomic localization with two alpha-subunits. FEBS Lett 1990a; 273: 177–181
  • Sawruk E., Scloss P., Betz H., Schmidt B. Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated alpha-subunit. EMBO J 1990b; 9: 2671–2677
  • Schleup M., Willcox N., Vincent A., Dhoot G. K., Newson-Davis J. Acetylcholine receptors in human thymic myoid cells in situ: an immunological study. Ann. Neurol 1987; 22: 212–222
  • Schlob P., Hermans-Borgmeyer I., Betz H., Gundelfinger E. D. Neuronal acetylcholine receptors in Drosophila: the ARD proton is a component of a high-affinity alpha-bungarotoxin binding complex. EMBO J 1988; 7: 2889–2894
  • Schoenbeck S., Padberg F., Hohlfeld R., Wekerle H. Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis. J. Clin. Invest 1992; 90: 245–250
  • Schoepfer R., Conroy W. G., Whiting P., Gore M., Lindstrom J. Brain alpha-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily. Neuro 1990; 4: 35–48
  • Schoepfer R., Whiting P., Esch F., Blacher R., Shimasaki S., Lindstrom J. cDNA clones coding for the structural subunit of a chick brain nicotinic acetylcholine receptor. Neuro 1988; 1: 241–248
  • Schoepfer R., Luther M., Lindstrom J. The human medulloblastoma cell line TE671 expresses a muscle-like acetylcholine receptor: cloning of the α subunit cDNA. FEBS Lett 1988; 226: 235–240
  • Schönbeck S., Chrestel S., Hohlfeld R. Myasthenia gravis: prototype of the antireceptor autoimmune diseases. Intl. Rev. Neurobiol 1990; 32: 175–200
  • Schuetze S. M. Embryonic and adult acetylcholine receptor: molecular basis of development changes in ion channel properties. Trends Newosci 1986; 9: 386–388
  • Schumacher J., Roth J. Thymektomic bei einem Fall von Morbus Basedowi mit Myasthenia. Mitt Grenzgeb. Med. Clin 1913; 25: 745–749
  • Schumacher M., Camp S., Maulet Y., Newton M., Macphee-Quigley K., Taylor S. S., Friedman T., Taylor P. Primary structure of Torpedo acetylcholinesterase deduced from its cDNA sequence. Nature (London) 1986; 319: 407–409
  • Simpson J. A. Myasthenia gravis, a new hypothesis. Scott. Med. J. 1960; 5: 419
  • Sine S. M., Claudio T. γ and δ-subunits regulate the affinity and the cooperativity of ligand binding to the acetylcholine receptor. J. Biol. Chem 1991; 266: 19369–19377
  • Smart L., Meyers H. W., Hilginfeld R., Saenger W., Maelicke A. A structural model for the ligand-binding sites at the nicotinic acetylcholine receptor. FEBS Lett 1984; 178: 64–68
  • Smith M. A., Stilberg J., Lindstrom J. M., Berg D. K. Characterization of a component in chick ciliary ganglia that crossreacts with monoclonal antibodies to muscle and electric organ acetylcholine receptor. J. Neurosci 1985; 5: 2726–2731
  • Sommer B., Burnashev N., Verdoorn T. A., Keinanen K., Sakmann B., Seeburg P. H. A glutamate receptor channel with high affinity for domoate and kainate. EMBO J. 1992, in press
  • Sommer N., Harcourt G. C., Willcox N., Beeson D., Newsom-Davis J. Acetylcholine receptor-reactive T lymphocytes from healthy subjects and myasthenia gravis patients. Neurolog 1991; 41: 1270–1275
  • Stader C. B. D., Revel J. P., Raftery M. A. Demonstration of the transmembrane nature of the acetylcholine receptor by labeling with anti-receptor antibodies. J. Cell Biol 1979; 83: 499–510
  • Stroud R. M., McCarthy M. P., Shuster M. Nicotinic acetylcholine receptor superfamily of ligand-gated ion channels. Biochemistr 1990; 29: 11009–11023
  • Sumikawa K., Miledi R. Change in desensitization of cat muscle acetylcholine receptor caused by coexpression of Torpedo acetylcholine receptor sub-units in Xenopus oocytes. Proc. Natl. Acad. Sci. U.S.A 1989; 86: 367–371
  • Sumikawa K., Gehle V. M. Assembly of mutant subunits of the nicotinic acetylcholine receptor lacking the conserved disulfide loop structure. J. Biol. Chem 1992; 267: 6286–6290
  • Sun J. B., Harcourt G., Wang Z. Y., et al. T cell responses to human recombinant acetylcholine receptor α subunit in myasthenia gravis and controls. Eur. J. Immunol 1992; 22: 1553–1559
  • Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Scienc 1991; 253: 872–879
  • Takai T., Noda M., Furutani Y., Takahashi H., Notake M., Shimizu S., Kayano T., Tanabe T., Tanaka K., Hirose T., Inayama S., Numa S. Primary structure of γ-subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. Eur. J. Biochem 1984; 143: 109–115
  • Takai T., Noda M., Mishina M., Shimizu S., Furutani Y., Kayano T., Ikeda T., Kubo T., Takahashi H., Takahashi T., Kuno M., Numa S. Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle. Nature (London) 1985; 315: 761–764
  • Tanabe T., Noda M., Furutani Y., Takai T., Takahashi H., Tanaka K., Hirose T., Inayama S., Numa S. Primary structure of β subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. Eur. J. Biochem 1984; 144: 11–17
  • Tine S. J., Raftery M. A. Use of a cholinergic photoaffinity reagent to delineate multi-subunit involvement in binding sites of low and high affinity on Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A 1993; 90: 7308–7311
  • Todd A. P., Cong J., Levinthal F., Levinthal C., Hubbell W. Site-directed mutagenesis of colicin E1 provides specific attachment sites for spin labels whose spectra are sensitive to local conformation. Protein 1989; 6: 294–305
  • Tomaselli G. F., McLaughlin J. T., Jurman M. E., Hawrot E., Yellen G. Mutations affecting agonist sensitivity of the nicotinic acetylcholine receptor. Biophys. J 1991; 60: 721–724
  • Tomaselli G. F., McLaughlin J. T., Jurman M. E., Hawrot E., Yellen G. Mutations affecting agonist sensitivity of the nicotinic acetylcholine receptor. Biophys. J 1991; 60: 721–724
  • Toyka K. V., Drachman D. B., Pestronk A., Kao I. Myasmenia gravis: passive transfer from man to mouse. Scienc 1975; 190: 397–400
  • Trautman A. Curare can open and block ionic channels associated with cholinergic receptors. Nature (London) 1982; 298: 272–275
  • Tzartos S. J., Lindstrom J. Monoclonal antibodies used to probe acetylcholine receptor structure: localization of the main immunogenic region and detection of similarities between subunits. Proc. Natl. Acad. Sci. U.S.A 1980; 77: 755–759
  • Tzartos S. J., Rand D. E., Einarson B. E., Lindstrom J. M. Mapping of surface structures of Electrophorus acetylcholine receptor using monoclonal antibodies. J. Biol. Chem 1981; 256: 8635–8645
  • Tzartos S. J., Seybold M., Lindstrom J. Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc. Natl. Acad. Sci. U.S.A 1982; 79: 188–191
  • Tzartos S. J., Changeux J. P. High affinity binding of alpha-bungarotoxin to the purified alpha-subunit and to its 27000-dalton proteolytic peptide from Torpedo marmorata acetylcholine receptor. Requirement for the sodium dodecyl. EMBO J 1983; 2: 381–387
  • Tzartos S. J., Langeberg L., Hochsehwender S., Lindstrom J. M. Demonstration of a main immunogenic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor. FEBS Lett 1983a; 158: 116–118
  • Tzartos S. J., Sophianos D., Efthimiadis A. Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis. An Fab monoclonal antibody protects against antigenic modulation by human sera. J. Immunol 1985; 134: 2343–2349
  • Tzartos S. J., Starzinski-Powitz A. Decrease in acetylcholine receptor content of human myotube cultures mediated by monoclonal antibodies to α, β and γ subunits. FEBS Lett 1986; 196: 91–95
  • Tzartos S., Hochsehwender S., Vasquez P., Lindstrom J. Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J. Neuroimmunol 1987; 15: 185–190
  • Tzartos S., Kokla A., Walgrave S., Conti-Tronconi B. M. The main immunogenic region of human muscle acetylcholine receptor is localized within residues 67–76 of the α subunit. Proc. Natl. Acad. Sci. U.S.A 1988; 85: 2899–2903
  • Tzartos S. J., Remoundos M. S. Fine localization of the major α-bungarotoxin binding site to residues α189–195 of the Torpedo acetylcholine receptor: residues 189, 190, and 195 are indispensable for binding. J. Biol. Chem 1990; 265: 21462–21467
  • Tzartos S. J., Loutrari H. V., Tang F., Kokla A., Walgrave S. L., Milius R. P., Conti-Tronconi B. M. Main immunogenic region of Torpedo electroplax and human muscle acetylcholine receptor: localization and microheterogeneity revealed by the use of synthetic peptides. J. Neurochem 1990a; 54: 51–61
  • Ueno S., Wada K., Takahashi M., Tarui S. Acetylcholine receptor in rabbit thymus: antigenic similarity between acetylcholine receptors of muscle and thymus. Clin. Exp. Immunol 1980; 42: 463–469
  • Unwin N., Toyosha C., Kubalek E. Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes. J. Cell. Biol 1988; 107: 1123–1138
  • Unwin P. N. T., Ennis P. D. Two configurations of a channel forming membrane protein. Nature (London) 1984; 307: 609–613
  • Van De Velde R. L., Friedman N. B. The thymic “Myodzellen” and myasthenia gravis. JAM 1966; 198: 287–288
  • Van Der Geld H. W. R., Strauss A. J. L. Myasthenia gravis: immunological relationship between striated muscle and thymus. Lance 1966; i: 57–60
  • Vincent A., Whiting P. J., Schleup M., et al. Antibody heterogeneity and specificity in myasthenia gravis. Ann. N.Y. Acad. Sci 1987; 505: 106–120
  • Wada K., Ballivet M., Boulter J., Connolly J., Wada E., Deneris E. S., Swanson L. W., Heinemann S., Patrick J. Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Scienc 1988; 240: 330–334
  • Wada E., Wada K., Boulter J., Deneris E., Heinemann S., Patrick J., Swanson L. W. Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J. Comp. Neurol 1989; 284: 314–35
  • Wahlsten J. L., Lindstrom J. M., Ostlie N., Wu X. D., Conti-Tronconi B. M. Myasthenia gravis: effect of antibody binding of conservative substitutions of amino acid residues forming the main immunogenic region of the nicotinic acetylcholine receptor. J. Recept. Res 1993; 13: 863–879
  • Wahlsten J. L., Lindstrom J. M., Conti-Tronconi B. M. Amino acid residues within the sequence region α55–74 of Torpedo nicotinic acetylcholine receptor interacting with antibodies to the main immunogenic region and with snake α-neurotoxins. J. Recept. Res 1993; 13: 989–1008
  • Waldor M. K., Sriram S., McDevitt H. O., Steinman L. In vivo therapy with monoclonal anti-I-A antibody suppresses immune responses to acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A 1983; 80: 2713–2717
  • Walker J. W., Lukas R. J., McNamee M. G. Effects of thio-group modifications on the ion permeability control and ligand binding properties of Torpedo californica acetylcholine receptor. Biochemistr 1981; 20: 2191–2199
  • Walker M. Treatment of myasthenia gravis with physostigmine. Lancet 1934; 1: 1200
  • Walters D., Maelicke A. Organization of ligand binding sites at the acetylcholine receptor: a study with monoclonal antibodies. Biochemistr 1983; 22: 1811–1819
  • Weigart G. The thymus in myasthenia gravis. Neurol. Zentrabl. 1901; 20: 597
  • Weinberg C. B., Hall Z. W. Antibody from patients with myasthenia gravis recognizes determinants unique to extrajunctional acetylcholine receptors. Proc. Natl. Acad. Sci. U.S.A 1979; 76: 504–508
  • Werner P., Voigt M., Keinanen K., Wisden W., Seeburg P. H. Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature (London) 1991; 351: 742–744
  • Wheatley L. M., Urso D., Zheng Y., Loh E., Levinson A. I. Molecular analysis of intrathymic nicotinic acetylcholine receptor. Ann. N.Y. Acad. Sci 1993; 681: 74–82
  • Whiting P. J., Lindstrom J. M. Purification and characterization of a nicotinic acetylcholine receptor from chick brain. Biochemistr 1986; 25: 2082–2093
  • Whiting P. J., Lindstrom J. M. Purification and characterization of a nicotinic acetylcholine receptor from rat brain. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 595–599
  • Whiting P., Lu R., Morley B. J., Lindstrom J. M. Structurally different neuronal nicotinic acetylcholine receptor subtypes purified and characterized using monoclonal antibodies. J. Neurosci 1987; 7: 4005–4016
  • Whiting P. J., Lindstrom J. M. Characterization of bovine and human neuronal nicotinic acetylcholine receptors using monoclonal antibodies. J. Neurosci 1988; 8: 3395–3404
  • Whiting P., Schoepfer R., Lindstrom J., Priestley T. Structural and pharmacological characterization of the major brain nicotinic acetylcholine receptor subtype stably expressed in mouse fibroblasts. Mol. Pharmacol 1991; 40: 463–472
  • Willcox N., Baggi F., Batocchi A. P., Beeson D., Hartcourt G., Hawke S., Jacobson L., Matsuo H., Moody A. M., Nagvekar N., Nicolle M., Og B., Pantic N., Newsom-Davis J., Vincent A. Approaches for studying the pathogenic T cells in autoimmune patients. Ann. N.Y. Acad. Sci 1993; 681: 219–237
  • Williams J. M., Felten D. L. Sympathetic innervation of murine thymus and spleen: a comparative histofluorescence study. Anat. Rec 1981; 199: 513–539
  • Willis T. De anima brutorum as quoted in Living with Myasthenia Gravis, J. W. Kempton. Charles C Thomas, Springfield, IL 1672; 5
  • Wilson P. T., Gershoni J. M., Hawrot E., Lentz T. L. Binding of alpha-bungarotoxin to proteolytic fragments of the alpha subunit of Torpedo acetylcholine receptor analyzed by protein transfer on positively charged membrane filters. Proc. Natl. Acad. Sci. U.S.A 1984; 81: 2553–2557
  • Wilson P. T., Lentz T. L., Hawrot E. Determination of the primary amino acid sequence specifying the alpha-bungarotoxin binding site on the alpha sub-unit of the acetylcholine receptor fro. Torpedo californica. Proc. Natl. Acad. Sci. U.S.A 1985; 82: 8790–8794
  • Wilson P. T., Lentz T. L. Binding of alpha-bungarotoxin to synthetic peptides corresponding to residues 173–204 of the alpha subunit of Torpedo calf and human acetylcholine receptor and restoration of high-affinity binding by sodium dodecyl sulfate. Biochemistr 1988; 27: 6667–6674
  • Wilson P. T., Hawrot E., Lentz T. L. Distribution of alpha-bungarotoxin binding sites over residues 173–204 of the alpha subunit of the acetylcholine receptor. Mol. Pharmacol 1988; 34: 643–651
  • Witzemann V., Raftery M. A. Selective photoaffinity labeling of acetylcholine receptor using a cholinergic analogue. Biochemistr 1977; 16: 5862–5868
  • Witzemann V., Raftery M. A. Affinity directed crosslinking of acetylcholine receptor in postsynaptic membranes. Biochem. Biophys. Res. Commun 1979; 85: 623–628
  • Witzemann V., Muchmore D., Raftery M. A. Affinity directed crosslinking of membrane-bound acetylcholine receptor polypeptides with photolabile 1972.-bungarotoxin derivatives. Biochemistr 1979; 18: 5511–5520
  • Wu W., Moore H. P., Raftery M. A. Quantitation of cation transport by reconstituted membrane vesicles containing purified acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A 1981; 78: 775–780
  • Yee A. S., Corley D. E., McNamee M. G. Thiol-group modification of Torpedo californica acetylcholine receptor: subunit localization and effects on function. Biochemistr 1986; 25: 2110–2119
  • Young E. F., Ralston E., Blake J., Ramachandran J., Hall Z. H., Stroud R. M. Topological mapping of acetylcholine receptor: evidence for a model with five transmembrane segments and a cytoplasmic COOH-terminal peptide. Proc. Natl. Acad. Sci. U.S.A 1985; 82: 626–630
  • Zhang Y., Schleup M., Frutiger S., Hughes G. J., Jaenner M., Steek A., Barkas T. Immunological heterogeneity of autoreactive T lymphocytes against the nicotinic acetylcholine receptor in myasthenic patients. Eur. J. Immunol 1990; 20: 2577–2583

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.