766
Views
898
CrossRef citations to date
0
Altmetric
Research Article

Prediction of Protein Structural Classes

&
Pages 275-349 | Published online: 26 Sep 2008

References

  • Banner D. W., Bloomer A. C., Petsko G. A., Phillips D. C., Wilson I. A. Atomic coordinates for triose phosphate isomerase from chicken muscle. Biochem. Biophys. Res. Commun 1976; 72: 146
  • Bezdek J. C. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York 1981
  • Brady R. L., Dodson E. J., Dodson G. G., Lange G., Davis S. J., Williams A. F., Barclay A. N. Crystal structure of domains 3 and 4 of rat CD4 and their relationship to the NH2-terminal domains. 1995, in press
  • Bussian B. M., Sander C. How to determine protein secondary structure in solution by Raman spectroscopy: practical guide and test case DNase I. Biochemistry 1989; 28: 4271–4277
  • Carlacci L., Chou K. C., Maggiora G. M. A heuristic approach to predicting the tertiary structure of bovine somatotropin. Biochemistry 1991; 30: 4389–4398
  • Chothia C., Finkelstein A. V. The classification and origins of protein folding patterns. Annu. Rev. Biochem. 1990; 59: 1007–1039
  • Chou K. C. Energy-optimized structure of antifreeze protein and its binding mechanism. J. Mol. Biol. 1992; 223: 509–517
  • Chou K. C. A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins. J. Biol. Chem 1994; 268: 16938–16948
  • Chou K. C. A novel approach to predicting protein structural classes in a (20–1)-D amino acid composition space. Proteins Struct. Funct. Genet 1995a; 21: 319–344
  • Chou K. C. Does the folding type of a protein depend on its amino acid composition. FEBS Lett 1995b; 363: 127–131
  • Chou K. C., Carlacci L. Energetics approach to the folding ofαlβ barrels. Proteins Struct. Funct. Genet 1991a; 9: 280–295
  • Chou K. C., Carlacci L. Simulated annealing approach to the study ofprotein structures. Protein Eng 1991b; 4: 661–667
  • Chou K. C., Scheraga H. A. Origin of the right-handed twist of β-sheets of poly(L-Val) chains. Proc. Natl. Acad. Sci. U.S.A 1982; 79: 7047–7051
  • Chou K. C, Nemethy G., Scheraga H. A. Effect of amino acid composition on the twist and the relative stability of parallel and antiparallel β-sheets. Biochemistry 1983; 22: 6213–6221
  • Chou K. C, Némethy G., Scheraga H. A. Energy of stabilization of the right-handed βαβ crossover in proteins. J. Mol. Biol 1989; 205: 241–249
  • Chou K. C, Némethy G., Scheraga H. A. Energetics of interactions of regular structural elements in proteins. Acc. Chem. Res 1990; 23: 134–141
  • Chou K. C., Zhang C. T. A new approach to predicting protein folding types. J. Protein Chem 1993; 12: 169–178
  • Chou K. C., Zhang C. T. Predicting protein folding types by distance functions that make allowances for amino acid interaction. J. Biol, Chem 1994; 269: 22014–22020
  • Chou P. Y. Amino acid composition of four classes of proteins. Abstracts of Papers, Part I, Second Chemical Congress of the North American Continent, Las Vegas, 1980
  • Chou P. Y. Prediction of protein structural classes from amino acid composition. Prediction of Protein Structure and the Principles of Protein Conformation, G. D. Fasman. Plenum Press, New York 1989; 549–586
  • Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry 1974; 13: 222–245
  • Chou P. Y., Fasman G. D. Prediction of secondary structure of proteins from amino acid sequence. Adv. Enzymol. Relat. Subj. Biochem 1978; 47: 45–148
  • Chothia C. One thousand families for the molecular biologist. Nature 1992; 357: 543–544
  • Cid H., Bunster M., Canales M., Gazitua F. Hydrophobicity and structural classes in proteins. Proteins Eng 1992; 5: 373–375
  • Cohen F. E., Kuntz I. D. Prediction of the three-dimensional structure of human growth hormone. Proteins Struct. Funct. Genet 1987; 2: 162–166
  • Cohen B., Presnell S. R., Cohen E E. Origins of structural diversity within sequentially identical hexapeptides. Proteins Sci 1993; 2: 2134–2145
  • Dayhoff M. O., Eck R. V. Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Silver Spring, MD 1968; Vol. 3: 33
  • Deléage G., Dixon J. S. Use of class prediction to improve protein secondary structure prediction. Prediction of Protein Structure and the Principles of Protein Conformation, G. D. Fasman. Plenum Press, New York 1989; 587–597
  • Deléage G., Roux B. An algorithm for protein secondary structure prediction based on class prediction. Protein Eng 1987; 1: 289–294
  • Dubchak I., Holbrook S. R., Kim S-H. Predicting protein secondary structure content: A tandem neural network approach. Proteins Struct. Funct. Genet 1993; 16: 79–91
  • Efron B. The Jackknife, the Bootstrap and Other Resampling Plans. Society for Industrial and Applied Mathematics, Philadelphia 1990, chap. 5
  • Eisenhaber F., Persson B., Argos P. Protein structure prediction: recognition of primary, secondary, and tertiary structural features from amino acid sequence. Crit. Rev. Biochem. Mol. Biol 1995; 30: 1–94
  • Fasman G. D. development of the prediction of protein structure. Prediction of Protein Structure and the Principles of Protein Conformation, G. D. Fasman. Plenum Press, New York 1989; 317–358
  • Farber G. K., Petsko G. A. The evolution of α/β barrel enzymes. TIBS 1990; 15: 228–234
  • Fetrow J. S., Bryant S. H. New programs for protein tertiary structure prediction. Bio/Technology 1993; 11: 479–484
  • Finkelstein A. V., Ptitsyn O. B. Why do globular proteins fit the limited set of folding patterns. Prog. Biophys. Mol. Biol 1987; 50: 171–190
  • Finzel B. C., Weber P. C., Hardman K. D., Salemme F. R. Structure of femcy-tochrome ζ from rhodospirillum Molischianum at 1.67 å resolution. J. Mol. Biol 1985; 186: 627–643
  • Gamier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol 1978; 120: 97–120
  • Gilson M. K., Honig B. Energetics of charge-charge interactions in proteins. Proteins Struct. Funct. and Genet 1988; 3: 32–52
  • Gower J. C. Measures of similarity, dissimilarity, and distance. Encyclopedia of Statistical Sciences, S. Kotz, N. L. Johnson. John Wiley and Sons, New York 1985; Vol. 5: 397–405
  • Henikoff S., Henikoff J. G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. U.S.A 1992; 89: 10915–10919
  • Henikoff S., Henikoff J. G. Protein family classification based on searching a database of blocks. Genomics 1994; 19: 97–107
  • Hobohm U., Sander C. Enlarged representative set of protein structures. Protein Sci 1994; 3: 522–524
  • Honzatko R. B., Crawford J. L., Monaco H. L., Ladner J. E., Edwards B. F.P., Evans D. R., Warren S. G., Wiley D. C., Ladner R. C., Lopscomb W. N. Crystal and molecular structures of native and ctP-ligand aspartate carbamoyltransferase from es-cherichia coli. J. Mol. Biol 1982; 160: 219–263
  • Jones D. T., Taylor W. R., Thornton J. M. A new approach to protein fold recognition. Nature 1992; 358: 86–89
  • Johnson W. C., Jr. Protein secondary structure and circular dichroism: a practical guide. Proteins Struct. Funct. Genet 1990; 7: 205–214
  • Jones D. T., Taylor W. R., Thornton J. M. A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 1994; 33: 3038–3049
  • Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holms K. C. Atomic structure of the actin:DNase I complex. Nature 1990; 347: 374
  • Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22: 2577–2637
  • Karplus M., Shakhnovich E. Theoretical studies of thermodynamics and dynamics. Protein Folding, T. E. Creighton. Freeman, New York 1992; 127–195
  • Kawai H., Kikuchi T., Okamoto Y. A prediction of tertiary structures of peptide by the Monte Carlo simulated annealing method. Protein Eng 1989; 3: 85–94
  • Kikuchi T. Discrimination of folding types of globular proteins based on average distance maps constructed from their sequences. J. Protein Chem 1993; 12: 515–523
  • Klein P. Prediction of protein structural class by discriminant analysis. Biochim. Biophys. Acta 1986; 874: 205–215
  • Klein P., Delisi C. Prediction of protein structural class from amino acid sequence. Biopolymers 1986; 25: 1569–1672
  • Kneller D. G., Cohen F. E., Langridge R. Improvements in protein secondary structure prediction by enhanced neural networks. J. Mol. Biol 1990; 214: 171–182
  • Kolinski A., Skolnick J. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins Struct. Funct. Genect 1994; 18: 338–352
  • Kuwajima K, Semisotnov G. V., Finkelstein A. V., Sugai S., Ptitsyn O. B. Secondary structure of globular proteins at the early and the final stages in protein folding. FEBS Lett 1993; 334: 265–268, (Published erratum appears in FEBS Lett., 1993, 336, 190.)
  • Levitt M. Protein folding by restrained energy minimization and molecular dynamics. J. Mol. Biol 1983; 170: 723–764
  • Levitt M., Chothia C. Structural patterns in globular proteins. Nature 1976; 261: 552–557
  • Lim V. I. Structural principles of globular protein secondary structure. J. Mol. Biol 1974; 88: 857–872
  • Loll P J., Lattman E. E. The crystal structure of the ternary complex of staphy-lococcal nuclease. Proteins Struct. Funct. Genet. 1989; 5: 183–201
  • Mao B., Chou K. C., Zhang C. T. Protein folding classes: a geometric interpretation of the amino acid composition of globular proteins. Protein Eng 1994; 7: 319–330
  • Mackay D. H.J., Cross A. J., Hagler A. T. The role of energy minimization in simulation strategies of biomolecular systems. Prediction of Protein Structure and the Principles of Protein Conformation, G. D. Fasman. Plenum Press, New York 1989; 317–358
  • Mahalanobis P. C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 1936; 2: 49–55
  • Mardia K. V., Kent J. T., Bibby J. M. Multivariate Analysis. Academic Press, London, 322–381
  • McCammon J. A., Wong C. F., Lybrand T. P. Protein stability and function. Prediction of Protein Structure and the Principles of Protein Conformation, G. D. Fasman. Plenum Press, New York 1989; 149–159
  • McDonald I. K., Thornton J. M. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol 1994; 238: 777–793
  • Metfessel B. A., Saurugger P. N., Connelly D. P., Rich S. T. Cross-validation of protein structural class prediction using statistical clustering and neural networks. Protein Sci 1993; 2: 1171–1182
  • Mitchell J. B., Nandi C. L., McDonald I. K., Thomton J. M., Price S. L. Amino/aromatic interactions in proteins: is the evidence stacked against hydrogen bonding. J. Mol. Biol 1994; 239: 315–331
  • Miyazawa S., Jernigan R. I. A new substitution matrix for protein sequence searches based on contact frequencies in protein structures. Protein Eng 1993; 6: 267–278
  • Muggleton S., King R. D., Stemberg M. J.E. Protein secondary structure prediction using logic-based machine learning. Protein Eng 1992; 5: 647–657, (Comgenda: Protein Eng., (1993), 6, 549.)
  • Muskal S. M., Kim S. H. Predicting protein secondary structure content: A tandem neural network approach. J. Mol. Biol 1992; 225: 713–727
  • Nakashima H., Nishikawa K., Ooi T. The folding type of a protein is relevant to the amino acid composition. J. Biochem 1986; 99: 152–162
  • Nishkawa K., Ooi T. Correlation of the amino acid composition of a protein to its structural and biological characters. J. Biochem 1982; 91: 1821–1824
  • Nishkawa K., Kubota Y., Ooi T. Classification of proteins into groups based on amino acid composition and other characters. I Angular distribution. J. Biochem. 1983a; 94: 981–995
  • Nishkawa K., Kubota Y., Ooi T. Classification of proteins into groups based on amino acid composition and other characters, II. Grouping into four types. J. Biochem 1983b; 94: 997–1007
  • Orengo C. A., Jones D. T., Thomton J. M. Protein superfamilies and domain superfolds. Nature 1994; 372: 631–634
  • Perczel A., Hol Msi M., Tusnidy G., Fasman G. D. Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins. Protein Eng 1991; 4: 669–679
  • Pillai K. C.S. Mahalanobis D2. Encyclopedia of Statistical Sciences, S. Kotz, N. L. Johnson. John Wiley and Sons, New York 1985; Vol. 5: 176–181, This reference also presents a brief biography of Mahalanobis who was a man of great originality and who made considerable contributions to statistics
  • Ptitsyn O. B., Finkelstein A. V. Mechanism of protein folding. Int. J. Quantum Chem 1979; 16: 407–418
  • Ptitsyn O. B., Finkelstein A. V. Similarities of protein topologies: evolutionary divergence, functional convergence or principles of folding. Q. Rev. Biophys 1980; 13: 339–386
  • Ptitsyn O. B., Finkelstein A. V. Prediction of protein secondary structure based on physical theory. Histones. Protein Eng 1989; 2: 44347
  • Ptitsyn O. B., Rashin A. A. A model of myoglobin self-organization. Biophys. Chem 1975; 3: 1–20
  • Ptitsyn O. B., Finkelstein A. V., Murzin A. G. Structural model for interactions. FEBS Lett 1985; 186: 143–148
  • Rao S. S. Optimization, Theory and Applications, 2nd ed. Wiley Eastern Limited, New Delhi 1984, chap. 6
  • Richardson J. S. β-sheets topology and the relatedness of proteins. Nature 1977; 268: 495–500
  • Richardson J. S. The anatomy and taxonomy of protein structure. Adv. Protein Chem 1981; 34: 167–339
  • Richardson J. S., Richardson D. C. Principles and patterns of protein conformation. Prediction of Protein Structure and the Principles of Protein Conformation, G. D. Fasman. Plenum Press, New York 1989; 1–98
  • Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Protein Struct. Funct. Genet 1994; 19: 55–72
  • Sreerama N., Woody R. W. Protein secondary structure from circular dichro-ism spectroscopy. J. Mol. Biol 1994; 242: 497–507
  • Sondek J., Shortle D. Accomodation of single amino acid insertions by the native state of staphyloccocal nuclease. Proteins Struct. Funct. Genect 1990; 7: 299–305
  • Rogers N. K. The role of electrostatic interactions in the structure of globular proteins. Prediction of Protein Structure and the Principles of Protein Conformation, G. D. Fasman. Plenum Press, New York 1989; 359–389
  • Scheraga H. A. Calculations of conformations of polypeptides. Adv. Phys. Org. Chem 1968; 6: 103–184
  • Scheraga H. A. Conformational analysis of polypeptides and proteins for the study of protein folding, molecular recognition, and molecular design. J. Prof. Chem 1987; 6: 61–80
  • Vieth M., Kolinski A, Brooks C. L., Skolnick J. Prediction of the folding pathways and structure of the GCN4 leucine zipper. J. Mol. Biol 1994; 237: 361–367
  • Weiner P. K., Kollman P. A. AMBER: Assisted model building with energy refinement. a general program for modeling molecules and their interactions. J. Comp. Chem 1981; 2: 287–303
  • Wilson S. R., Cui W. Applications of simulated annealing to peptides. Biopoly-mers 1990; 29: 225–235
  • Wodak S J., Rooman M J. Generating and testing protein folds. Cum Opin. Struct. Biol 1993; 3: 247–259
  • Wylie C. R., Bard L. C. Advanced Engineering Mathematics, 5th ed. McGraw-Hill, New York 1982; 769
  • Zhang C. T., Chou K. C. An optimization approach to predicting protein structural class from amino acid composition. Protein Sci 1992a; 1: 401–408
  • Zhang C. T., Chou K. C. Monte Carlo simulation studies on the prediction of protein folding types from amino acid composition. Biuphys. J. 1992b; 63: 1523–1529
  • Zhang C. T., Chou K. C., Maggiora G. M. Predicting protein structural classes from amino acid composition: application of fuzzy clustering. Protein Engineering 1995, in press
  • Zhang C. T., Chou K. C. An analysis of predicting protein folding types by seed-propagated sampling and jackknife test. J. Protein Chem. 1995, in press
  • Zhou G. F., Xu X., Zhang C. T. A weighting method for predicting protein strctural class from amino acid composition. Eul. J. Biochem. 1992; 210: 747–749

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.