491
Views
100
CrossRef citations to date
0
Altmetric
Research Article

Vanadium Salts as Insulin Substitutes: Mechanisms of Action, a Scientific and Therapeutic Tool in Diabetes Mellitus Research

, &
Pages 339-359 | Published online: 26 Sep 2008

References

  • Bentley C., Kahn R. C. Insulin action and the insulin signaling network. Endocr.Rev. 1995; 16: 117–142
  • McCall A. L. Perspectives in diabetes: the impact of diabetes on the CNS. Diabetes 1992; 41: 557–570
  • Rotter J. L., Vadhemin C. M., Rimonin D. L. Genetics of diabetes. Diabetes Mellitus: Theory and Practice, H. Rifkin, D. Porte, Jr. Elsevier, New York 1990; 378–413
  • DeFronzo R. The triumvirate: β-Cell muscle, liver. A collusion responsible for NIDDM. Diabetes 1988; 37: 667–685
  • Williams G. Management of noninsulin-dependent diabetes mellitus. Lancet 1994; 343: 95–100
  • Nolan J. J., Ludvik B., Beerdsen P., Joyce M., Olefsky J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N. Engl. J. Med. 1994; 331: 1188–1193
  • Shechter Y. Perspectives in diabetes, insulin-mimetic effects of vanadate. Possible implications for future treatment of diabetes. Diabetes 1990; 39: 1–5
  • Shechter Y., Shisheva A. Vanadium salts and the future treatment of diabetes. Endeavour 1993; 17: 27–31
  • Brichard M. S., Henquin J. C. The role of vanadium in the management of diabetes. Trends Pharmacol. Sci. 1995; 16: 265–270
  • Smith M. J., Kim D., Horenstein B., Nakanishi K., Kustin K. Unraveling the chemistry of tunichrome. Acc. Chem. Res. 1991; 24: 117–124
  • Shaver A., Ng B. J., Hall D. A., Posner B. I. The chemistry of peroxo vanadium compounds relevant to insulin mimesis. Mol. Cell. Biochem. 1995; 153: 5–15
  • Macara I. G. Vanadium: an element in search of a role. Trends Biochem. Set 1980; 5: 92–94
  • Ramasarma T., Crane F. L. Does vanadium play a role in Cellular regulation. Curr. Top. Cell. Regul. 1981; 20: 247–301
  • Tolman E. L., Barris E., Burns M., Pansini A., Partridge R. Effect of vanadium on glucose metabolism. in vitro. Life Sci. 1979; 25: 1159–1164
  • Shechter Y., Karlish S. J. D. Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl(IV) ions. Nature (London) 1980; 284: 556–558
  • Dubyak G. R., Kleinzeller A. D. The insulin mimetic effects of vanadate in isolated rat adipocytes. J. Biol. Chem. 1980; 255: 5306–5312
  • Heyliger E.C., Tahiliani G. A., McNeill J. H. Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 1985; 227: 1474–1477
  • Hummel K. P., Dickie M. M., Coleman D. L. Diabetes, a new mutation in the mouse. Science 1966; 153: 1127–1128
  • Roesler W. J., Khandelwal R. L. Age related changes in hepatic glycogen metabolism in the genetically diabetic (db/db) mouse. Diabetes 1985; 34: 395–402
  • Meyerovitch I., Farfel Z., Sack J., Shechter Y. Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats. Characterization and mode of action. J. Biol. Chem. 1987; 262: 6658–6662
  • Brichard S. M., Okitolonda W., Henquin J. C. Long-term improvement of glucose homeostasis by vanadate treatment in diabetic rats. Endocrinology 1988; 123: 2048–2053
  • Gil J., Miralpeix M., Carreras J., Bartrons R. Insulin-like effects of vanadate on glucokinase activity and fructose 2,-6-bisphosphate levels in the liver of diabetic rats. J. Biol. Chem. 1988; 263: 1868–1871
  • Blondel O., Bailbe D., Portha B. In vivo insulin-resistance in streptozotocin-diabetic rats, evidence of reversal following oral vanadate treatment. Diabetologia 1989; 32: 185–190
  • Bendayan M., Gingras D. Effect of vanadate administration on blood glucose and insulin level as well on the exocrine pancreatic function in streptozotocin-diabetic rats. Diabetologia 1989; 32: 561–567
  • Ramanadham S., Mongold J. J., Brownsey R. W., Cors G. H., McNeill J. H. Oral vanadyl sulfate in treatment of diabetes mellitus in rats. Am. J. Physiol. 1989; 257: H904–H911
  • Pederson R. A., Ramanadham S., Buchan A. M. J., McNeill J. H. Long-term effects of vanadyl treatment on streptozotocin-induced diabetes in rats. Diabetes 1989; 38: 1390–1395
  • Sekar N., Kanthasamy A., William S., Subramanian S., Govindasamy S. Insulinic actions of vanadate in diabetic rats. Pharmacol. Res. 1990; 22: 207–217
  • Venkatesan N., Avidan A., Davidson M. B. Antidiabetic action of vanadyl in rats independent of in vivo insulin-receptor kinase activity. Diabetes 1991; 40: 492–498
  • Brichard S. M., Desbuquois B., Girard J. Vanadate treatment of diabetic rats reverses the impaired expression of genes involved in hepatic glucose metabolism: effects on glycolytic and gluconeogenic enzymes, and on glucose transport GLUT2. Mol. Cell. Endocrinol. 1993; 91: 91–97
  • Maneemegalai S., Sekar N., Govindasamy S. Insulin-like effect of sodium orthovanadate on urea-cycle enzymes in streptozotocin diabetic rats. J.Clin. Biochem. Nutr. 1994; 16: 187–192
  • Becker D. J., Ongemba L. N., Henquin J. C. Comparison of the effects of various vanadium salts on glucose homeostasis in streptozotocin-diabetic rats. Eur. J. Pharmacol. 1994; 260: 169–175
  • Cam M.C., Faun J., McNeill J. H. Concentration-dependent glucose lowering effects of oral vanadyl are maintained following treatment withdrawal in streptozotocin-diabetic rats. Metabolism 1995; 44: 332–339
  • Okumura N., Shimazu T. Vanadate stimulates D-glucose transport in sar-colemmal vesicels from rat skeletal muscles. J. Biochem. 1992; 112: 107–111
  • Meyerovitch J., Shechter Y., Amir S. Vanadate stimulates in vivo glucose uptake in brain and arrests food intake and body weight gain in rats. Physiol. Behav. 1989; 45: 1113–1116
  • Cam M.C., Cros G. H., Serrano J. J., Lazaro R., McNeill J. H. In vivo antidiabetic actions of naglivan, an organic vanadyl compound in STZ-induced diabetes. Diabetes Res. Clin. Pract. 1993; 20: 111–121
  • Yuen V. G., Orvig C., McNeill J. H. Glucose-lowering effects of a new organic vanadium-complex, bis(maltolato) oxovanadium(IV). Can. J. Physiol. Pharmacol. 1992; 71: 263–269
  • Valera A., Rodriguez-Gil J. E., Bosch F. Vanadate treatment restores the expression of genes for key enzymes in the glucose and ketone bodies metabolism in the liver of diabetic rats. J. Clin. Invest. 1993; 92: 4–11
  • Rossetti L., Laughlin M. R. Correction of chronic hyperglycemia with vanadate, but not with phlorizin, normalizes in vivo glycogen repletion and in vitro glycogen synthase activity in diabetic skeletal muscle. J. Clin. Invest. 1989; 84: 892–899
  • Meyerovitch J., Becker J. M., Kahn C. R. Hepatic phosphotyrosine phosphatase activity and its alterations in diabetic rats. J. Clin. Invest. 1989; 84: 976–983
  • Begum N., Sussman K. E., Draznin B. Differential effects of diabetes on adipocyte and liver phosphotyrosine and phosphoserine phosphatase activities. Diabetes 1991; 40: 1620–1629
  • Cros H. G., Cam M. C., Serrano J. J., Ribes G., McNeill J. H. Long-term antidiabetic activity of vanadyl after treatment withdrawal: restoration of insulin secretion. Mol. Cell. Biochem. 1995; 153: 191–195
  • Al-Bayati M. A., Giri S. N., Raabe O. G., Rosenblatt L. S., Shifrine M. Time- and dose-response study of the effects of vanadate on rats: morphological and biochemical changes in organs. J. Environ. Pathol. Toxicol. Oncol. 1989; 9: 435–455
  • Sekar N., Govindasamy S. Effects of vanadate on plasma lipoprotein profiles in experimental diabetic rats. Biochem. Int. 1991; 23: 935–940
  • Sekar N., William S., Balasubramaniyam N., Kamarajan P., Govindasamy S. Optimization of sodium orthovanadate to treat streptozotocin-induced diabetic rats. J. Biosci. 1990; 15: 67–75
  • Brichard S. M., Ongemba L. N., Girard J., Henquin J. C. Tissue-specific correction of lipogenic enzyme gene expression in diabetic rats given vanadate. Diabetologia 1994; 37: 1065–1072
  • Pugazhenthi S., Khandelwal R. L., Angel J. F. Insulin-like effect of vanadate on malic enzyme and glucoses-phosphate dehydrogenase activities in streptozotocin-induced diabetic rat liver. Biochim. Biophys. Acta 1991; 1083: 310–312
  • Brichard S. M., Pottier A. M., Henquin J. C. Long-term improvement of glucose homeostasis by vanadate in obese hyperinsulinemic fa/fa rats. Endocrinology 1989; 125: 2728–2732
  • Brichard S. M., Bailey C. J., Henquin J. C. Marked improvement of glucose homeostasis in diabetic ob/ob mice given oral vanadate. Diabetes 1990; 39: 1326–1332
  • Meyerovitch J., Rothenberg P., Shechter Y., Bonner-Weir S., Kahn C. R. Vanadate normalizes hyperglycemia in two mouse models of non-insulin-dependent diabetes mellitus. J. Clin. Invest. 1991; 87: 1286–1294
  • Pugazhenthi S., Angel J. F., Khandelwal R. L. Long-term effects of vanadate on glycogen metabolizing and lipogenic enzymes of liver in genetically diabetic (db/db) mice. Metabolism 1991; 40: 941–946
  • Brichard S. M., Ongemba L. N., Henquin J. C. Oral vanadate decreases muscle insulin resistance in obese fa/fa rats. Diabetologia 1992; 35: 522–527
  • Jacobs S., Cuatrecasas P. Insulin-receptor structure and function. Endocrinol. Rev. 1981; 2: 251–263
  • Brunetti A., Goldfine I. D. Insulin-receptor gene expression and insulin resistance. J. Endocrinol. Invest. 1995; 18: 398–405
  • Brichard S. M., Assimacopoulos-Jeannet F., Jeanrenaud B. Vanadate treatment markedly increases glucose utilization in muscle of insulin resistant fa/ fa rats without modifying glucose-transporter expression. Endocrinology 1992; 131: 311–317
  • Pugazhenthi S., Tanha F., Dahl B., Khandelwal R. L. Decrease in protein tyrosine phosphatase activities in vana-date-treated obese Zucker (fa/fa) rat liver. Mol. Cell. Biochem. 1995; 153: 125–129
  • Pugazhenthi S., Hussain A., Yu B., Brownsey W. R., Angel J. F., Khandelwal R. L. Vanadate induces normolipidemia and a reduction in the levels of hepatic lipogenic enzymes in obese Zucker rats. Mol Cell. Biochem. 1995; 153: 211–215
  • King M. J., Pugazhenthi S., Khandelwal R. L., Sharma R. K. Membrane associated N -myristoyltransferase activity is reduced in obese (fa/fa) Zucker rat liver. Biochem. Biophys. Res. Commun. 1993; 196: 665–670
  • Khandelwal R. L., Pugazhenthi S. In vivo effects of vandate on hepatic glycogen metabolizing and lipogenic enzymes in insulin-dependent and insulin-resistant diabetic animals. Mol. Cell. Biochem. 1995; 153: 87–94
  • Ferber S., Meyerovitch J., Kriauciunas K. M., Kahn C. R. Vanadate normalizes hyperglycemia and phosphoenolpyruvate carboxykinase mRNA levels in ob/ob mice. Metabolism 1994; 43: 1346–1354
  • McNeill J. H., Yuen V. G., Dai S., Orvig C. Increased potency of vanadium using organic ligands. Mol. Cell. Biochem. 1995; 153: 175–180
  • Yuen V. G., Orvig C, Thompson K. H., McNeill J. H. Improvement in cardiac dysfunction in streptozotocin-induced diabetic rat following chronic oral administration of bis(maltolato)oxo-vanadium(IV). Can. J. Phys. Pharmacol. 1993; 71: 270–276
  • Sakurai H., Fujii K., Watanabe H., Tamura H. Orally active and long-term acting insulin-mimetic vanadyl complex: bis(picolinato)oxovanadium(IV). Biochem. Biophys. Res. Commun. 1995; 214: 1095–1101
  • Yale J-F., Lachance D., Bevan A. P., Vigeant C, Shaver A., Posner B. I. Hypoglycemic effects of peroxovanadium compounds in Sprague-Dawley and diabetic BB rats. Diabetes 1995; 44: 1274–1279
  • Shisheva A., Ikonomov O., Shechter Y. The protein tyrosine phosphatase inhibitor, pervanadate, is a powerful an-tidiabetic agent in streptozotocin-treated diabetic rats. Endocrinology 1994; 134: 507–510
  • Simons T. J. B. Vanadate — a new tool for biologists. Nature 1979; 281: 337–388, (London)
  • Crans D.C., Tahir M. M., Keramidas A. D. Vanadium chemistry and biochemistry of relevance for use of vanadium compounds as antidiabetic agents. Mol. Cell. Biochem. 1995; 153: 17–24
  • Shechter Y., Ron A. Effect of depletion of phosphate and bicarbonate ions on insulin action in rat adiopcytes. J. Biol. Chem. 1986; 261: 14945–14950
  • Degani H., Gochin M., Karlish S. J. D., Shechter Y. Electron paramagnetic studies and insulin-like effects of vanadate in rat adipocytes. Biochemistry 1981; 20: 5795–5799
  • Bruck R., Prigozin H., Krepel Z., Rotenberg P., Shechter Y., Bar-Meir S. Vanadate inhibits glucose output from isolated perfused rat liver. Hepatology 1991; 14: 540–544
  • Miralpeix M., Decaux F. R., Kahn A., Bartrons R. Vanadate induction of L-type pyruvate kinase mRNA in adult rat hepatocytes in primary culture. Diabetes 1991; 40: 462–464
  • Bosch F., Hatzoglou M., Park A. E., Hanson R. W. Vanadate inhibits expression of the gene for phosphoenol-pyruvate carboxykinase in rat hepatoma Cells. J. Biol. Chem. 1990; 265: 13677–13682
  • Singh J., Nordlie R. C., Jorgenson A. R. Vanadate: a potent inhibitor of multifunctional glucose-6-phosphatase. Biochim. Biophys. Acta 1981; 678: 477–482
  • Clark A. S., Fagan J. M., Mitch W. E. Selectivity of the insulin-like actions of vanadate on glucose and protein metabolism in skeletal muscle. Biochem. J. 1985; 232: 273–276
  • D'Onofrio F., Le M. Q., Chiasson J. L., Srivastava A. K. Vanadate dependent activation of mitogen-activated protein (MAP) kinase in Chinese hamster ovary Cells overexpressing a wild type human insulin receptor (CHO-HIRc). Pharmacologist 1993; 35: 109
  • D'Onofrio F., Le M. Q., Chiassion J. L., Srivastava A. K. Activation of mitogen-activated protein (MAP) kinases by vanadate is independent of insulin receptor autophosphorylation. FEBS Lett. 1994; 340: 269–275
  • Sturgill T. W., Ray L. B., Erikson E., Mailer J. L. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal S6 kinase II. Nature (London) 1988; 334: 715–718
  • Banerjee P., Ahmad M. F., Grove J. R., Kozlosky C, Price D. J., Avruch J. Molecular structure of a major insu-lin/mitogen-activated 70 kDa S6 protein kinase. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 8550–8554
  • Pandey S. K., Chiasson J. L., Srivastava A. K. Vanadium salts stimulate mitogen-activated protein (MAP) kinases and ribosomal S6 kinases. Mol. Cell. Biochem. 1995; 153: 69–78
  • Welsh G. I., Foulstone E. J., Young S. W., Tavare J. M., Proud C. G. Wortmannin inhibits the effect of insulin and serum on the activities of glycogen synthase kinases and mitogen-activated protein kinase. Biochem. J. 1994; 303: 15–20
  • Fantus I. G., Kadota S., Deragon G., Foster B., Posner B. I. Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin-receptor tyrosine kinase. Biochemistry 1989; 28: 8864–8871
  • Shisheva A., Shechter Y. Mechanism of pervanadate stimulation and potentiation of insulin-activated glucose transport in rat adipocytes: dissociation from vanadate effect. Endocrinology 1993; 133: 1562–1568
  • Czech M. P., Lawrence J. C. J., Lynn W. S. Evidence for the involvement of sulfyhydral oxidation in the regulation of fat Cell hexose transport by insulin. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 4173–4177
  • May J. M., De Haen C. The insulin-like effect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes. J. Biol. Chem. 1979; 254: 9017–9021
  • Lawrence J.C, Jr, Lamer J. Activation of glycogen synthase in rat adipocytes by insulin and glucose involves increased glucose transport and phos-phorylation. J. Biol. Chem. 1978; 253: 2104–2113
  • Little S. A., De Haen C. Effects of hydrogen peroxide on basal and hormone-stimulated lipolysis in perfused rat fat Cells in relation to the mechanism of action of insulin. J. Biol. Chem. 1980; 255: 10888–10895
  • Heffetz D., Zick Y. H2O2 potentiates phosphorylation of novel putative substrates for the insulin-receptor kinase in intact Fao Cells. J. Biol. Chem. 1989; 264: 10126–10132
  • Kadota S., Fantus I. G., Deragon G., Guyda H. J., Hersh B., Posner B. I. Peroxide(s) of vanadium, a novel and potent insulin-mimetic agent which activates the insulin-receptor kinase. Biochem. Biophys. Res. Commun. 1987; 147: 259–266
  • Posner B. I., Faure R., Burgess J. W., Bevan A. P., Lachance D., Zhang-Sun G., Fantus I. G., Ng J. B., Hall D. A., Lum B. S., Shaver A. Peroxo-vanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J. Biol. Chem. 1994; 269: 4596–4604
  • Yu Z. W., Posner B. I., Smith U., Eriksson J. W. Effects of peroxovanadate and vanadate on insulin binding, degradation and sensitivity in rat adipocytes. Biochim. Biophys. Acta 1996; 1310: 103–109
  • Li J., Elberg G., Gefel D., Shechter Y. Permolybdate and pertungstate — potent stimulators of insulin effects in rat adipocytes, mechanism of action. Biochemistry 1995; 34: 6216–6225
  • Swamp G., Cohen S., Garbers D. L. Inhibition of membrane phospho-tyrosyl protein phosphatase activity by vanadate. Biochem, Biophys. Res. Commun. 1982; 107: 1104–1109
  • Shisheva A., Shechter Y. Quer-cetin selectively inhibits insulin receptor function in vitro and the bioresponses of insulin and insulinomimetic agents in rat adipocytes. Biochemistry 1992; 31: 8059–8063
  • Mooney R. A., Bordwell K. L., Luhowskyj S., Casnellie J. E. The insulin-like effects of vanadate on lipolysis in rat adipocytes is not accompanied by an insulin-like effect on tyrosine phosphorylation. Endocrinology 1989; 124: 422–429
  • Green A. The insulin-like effect of sodium vanadate on adipocyte glucose transport is mediated at a post-insulin-receptor level. Biochem. J. 1986; 238: 663–669
  • Shisheva A., Shechter Y. A cytosolic protein tyrosine kinase in rat adiopcytes. FEBS Lett. 1992; 300: 93–96
  • Shisheva A., Shechter Y. Role of cytosolic tyrosine kinase in mediating insulin-like actions of vanadate in rat adipocytes. J. Biol. Chem. 1993; 268: 6463–6469
  • Strout H. V., Vicario P. P., Saperstein R., Slater E. E. The insulin-mimetic effect of vanadate is not correlated with insulin receptor tyrosine kinase activity, nor phosphorylation in mouse diaphragm. in vivo. Endocrinology 1989; 124: 1918–1924
  • Venkatesan N., Davidson M. B. Differential regulation of glucose transport and glucose transporter [GLUT-1] gene expression by vanadate, phorbol ester and okadaic acid in L6 skeletal muscle Cell s. Biochem. Mol. Biol. Int. 1995; 37: 773–783
  • Shisheva A., Shechter Y. Effect of okadaic acid in rat adipocytes. Differential stimulation of glucose and lipid metabolism and induction of refractoriness to insulin and vanadate. Endocrinology 1991; 129: 2279–2288
  • Elberg G., Li J., Shechter Y. Vanadium activates or inhibits receptor and non-receptor protein tyrosine kinases in Cell-free experiments, depending on its oxidation state. J. Biol. Chem. 1994; 269: 9521–9527
  • Shechter Y., Li J., Meyerovitch J., Gefel D., Bruck R., Elberg G., Miller D. S., Shisheva A. Insulin-like actions of vanadate are mediated in an insulin-receptor-independent manner via non-receptor protein tyrosine kinases and protein phosphotyrosine phosphatases. Mol. Cell. Biochem. 1995; 153: 39–47
  • Liochev S., Fridovich I. The oxidation of NADH by tetravalent vanadium. Arch. Biochem. Biophys. 1987; 255: 274–278
  • Trudel S., Downey G. P., Grinstein S., Paquet M. R. Activation of permeabilized HL60 Cells by vanadate. Evidence for divergent signaling pathways. Biochem. J. 1990; 269: 127–131
  • Grinstein S., Furuya W., Lu D. J., Mills B. G. Vanadate stimulates oxygen consumption and tyrosine phosphorylation in electropermeabilized human neutrophils. J. Biol. Chem. 1990; 265: 318–327
  • Matsubara T., Marcu S. M., Misra P. H., Dhalla N. S. Protective effect of vanadate on oxyradical-induced changes in isolated perfused heart. Mol. Cell. Biochem. 1995; 153: 79–85
  • Sekar N., Kanthasamy A., William S., Balasubramaniyan N., Govindasamy S. Antioxidant effects of vanadate on experimental diabetic rats. Acta Diabetol. Lat. 1990; 27: 285–293
  • Younes M., Strubelt O. Vanadate-induced toxicity towards isolated perfused rat livers: the role of lipid peroxi-dation. Toxicology 1991; 66: 63–74
  • Donaldson J., LeBella F. Prooxidant properties of vanadate in vitro on catecholamines and on lipid peroxidation by mouse and rat tissues. J. Toxicol. Environ. Health 1983; 12: 119–126
  • Younes M., Kayser E., Strubelt O. Effect of antioxidants on vanadate induced toxicity toward isolated perfused rat livers. Toxicology 1991; 70: 141–149
  • Djordjevic C., Wampler G. L. Antitumor activity and toxicity of peroxo-heteroligand vanadate (V) in relation to biochemistry of vanadium. J. Inorg. Biochem. 1985; 25: 51–55
  • Thompson H. J., Chasteen N. D., Meeker L. D. Dietary vanadyl (IV) sulphate inhibits chemically induced mammary carcinogenesis. Carcinogenesis 1984; 5: 849–851
  • Rijksen G., Voller M. C, Van Zoelen E. J. Orthovanadate both mimics and antagonizes the transforming growth factor beta action on normal rat kidney Cells. J. Cell. Physiol. 1993; 514: 393–401
  • Cruz F. T., Morgan A., Min W. In vitro and in vivo antineoplastic effects of orthovanadate. Mol. Cell. Biochem. 1995; 153: 161–166
  • Bishayee A., Chatterjee M. Inhibition of altered liver Cell foci and persistent nodule growth by vanadium during diethylnitrosamine induced hepatocarcinogenesis in rats. Anticancer Res. 1995; 15: 455–461
  • Bishayee A., Chatterjee M. Inhibitory effect of vanadium on rat liver carcinogenesis initiated with diethylnitrosamine and promoted by phenobar-bital. Br. J. Cancer 1995; 71: 1214–1220
  • Klarlund J. K. Transformation of Cells by an inhibitor of phosphatases acting on phosphotyrosine in proteins. Cell 1985; 41: 707–717
  • Marchisio P. C, D'Urso N., Comoglio P. M., Giancotti F. G., Tarone G. Vanadate-treated baby hamster kidney fibroblasts show cytoskeleton and adhesion patterns similar to their Rous Sarcoma virus-transformed counterparts. J. Cell Biochem. 1988; 37: 151–159
  • Feldman R. A., Lowy D. R., Vass W. C. Selective potentiation of c-fps/ fes transforming activity by a phosphatase inhibitor. Oncogene Res. 1990; 5: 187–197
  • Kingsnorth A. N., LaMuraglia G. M., Ross J. S., Malt R. A. Vana-date supplements and 1,2-dimethylhydra-zine-induced colon cancer in mice: increased thymidine incorporation without enhanced carcinogenesis. Br. J. Cancer 1987; 53: 683–686
  • Goldfine A. B., Simonson D. C., Folli F., Patti M-E., Kahn C. R. Metabolic effects of sodium metavanadate in humans with insulin-dependent and non-insulin-dependent diabetes mellitus in vivo and in vitro studies. J. Clin. Endocrinol. Metab. 1995; 80: 3311–3320
  • Cohen N., Halberstam M., Shlimovich P., Chang C. J., Shamoon H., Rossetti L. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J. Clin. Invest. 1995; 95: 2501–2509
  • Halberstam M., Coehn N., Shlimovich P., Rossetti L., Shamoon H. Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese non-diabetic subjects. Diabetes 1996; 45: 659–666
  • Roschin A. V., Ordzhonikide E. K., Shalganova I. V. Vanadium: toxic-ity, metabolism, carrier state. J. Hyg. Epidemol. Microbiol. Immunol. 1980; 24: 377–383
  • Kawai T., Seiji K., Watanable T., Nakatsuka H., Keda M. Urinary vanadium as a biological indication of exposure to vanadium. Int. Arch. Occup. Environ. Health 1989; 61: 283–287
  • Nechay B. R. Mechanisms of action of vanadium. Annu. Rev. Pharmacol. Toxicol. 1984; 24: 501–524
  • Jandhyala B. S., Horn G. J. Physiological and pharmacological properties of vanadium. Life Sci. 1983; 33: 1325–1340
  • Domingo J. L., Llobet J. M., Tomas J. M., Corbella J. Short-term toxicity studies of vanadium in rats. J. Appl. Toxicol. 1985; 5: 418–421
  • Llobet J. M., Domingo J. L. Acute toxicity of vanadium compounds in rats and mice. Toxicol. Lett. 1984; 23: 227–231
  • Paternain J. L., Domingo J. L., Llobet J. M., Corbella J. Embryotoxic and teratogenic effects of sodium metavanadate administered to rats during orga-nogenesis. Rev. Esp. Fisiol. 1987; 43: 223–228
  • Shanchez D. J., Ortega A., Domingo J. L., Corbella J. Developmental toxicity evaluation of sodium ortho-vanadate in the mouse. Biol. Trace Elem. Res. 1991; 30: 219–229
  • Paternain J. L., Domingo J. L., Gomez M., Ortega A., Corbella J. Developmental toxicity of vanadium in mice after oral administration. J. Appl. Toxicol. 1990; 10: 181–186
  • Domingo J. L., Gomez M., Llobet J. M., Corbella J., Keen C. L. Oral vanadium administration to streptozotocin-diabetic rats has marked negative side effects that are independent of the form of vanadium used. Toxicology 1991; 66: 279–287
  • Li J., Elberg G., Shechter Y. Phenylarsine oxide and vanadate: apparent paradox of inhibition of protein phosphotyrosine phosphatases in rat adipocytes. Biochim. Biophys. Acta 1996; 1312: 223–230

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.