1,618
Views
68
CrossRef citations to date
0
Altmetric
Research Article

ADP-lnduced Platelet Activation

, &
Pages 437-502 | Published online: 26 Sep 2008

References

  • Devary A. N., Szent-Gyorgi A. The physiological activity of adenine compounds, with special reference to their action on heart. J. Physiol. 1929; 68: 213–217
  • Su C. Purinergic neurotransmission and neuromodulation. Ann. Rev. Pharmacol. Toxicol. 1988; 23: 397–411
  • Green H., Stoner H. B. Biological Actions of Nucleotides. H. K. Lewis & Co., Ltd., London 1950
  • Burnstock G., Kennedy C. A dual function of adenosine 5′-triphosphate in the regulation of vascular tone. Excitatory cotransmitter with noradrenaline from perivascular nerves and locally realesed intravascular agents. Circ. Res. 1986; 58: 319–330
  • Olson R. A., Pearson J. D. Cardiovascular purinoreceptors. Physiol. Rev. 1990; 70: 761–849
  • Dubyak G. R. Signal transduction by P2-purinergic receptors for extracellular ATP. Am. J. Respir. Cell Mol. Biol. 1991; 4: 295–300
  • Von Kugelgen I., Strake K. Noradrenaline-ATP cotransmission in symphathetic nervous system. Trends Pharmacol. Sci. 1991; 12: 319–324
  • Bean B. P. Pharmacology and electrophysiology of ATP-activated ion channels. Trends Pharmacol. Sci. 1990; 13: 87–91
  • Burnstock G. Purinergic mechanisms. Ann. N.Y. Acad. Sci. 1990; 603: 1–17
  • El-Moatassim C., Dornand J., Mani J. C. Extracellular ATP and cell signalling. Biochim. Biophy. Acta 1992; 1134: 31–45.
  • Vassort G., Scamps F., Puceat M L, Clement O. Multiple effects of extracellular ATP in cardiac tissues. News Physiol. Sci. 1992; 7: 212–215
  • Dubyak G. R., El-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am. J. Physiol. 1993; 265: C577–C606
  • Apasov S., Koshiba M., Redgeld F., Sitrovsky M. V. Role of extracellular ATP and P1 and P2 classes of purinergic receptors in T-cell development and cytoxic T-lymphocyte effector functions. Immunol. Rev. 1995; 146: 5–19
  • Baricordi R., Ferrair D., Mechiorri L., Chiozzi P., Hanan S., Chiari E., Rubin M., Di Virgilio F. An ATP-channel is involved in mitogenic stimulation of human T-lymphocyte. Blood 1996; 86: 682–690
  • Zheng L., Zychlinski A., Liu C., Ojcius D., Young J. Extracellular ATP as a trigger for apoptosis or programmed cell death. J. Cell Biol 1991; 112: 279–285.
  • Di Virgilio F. The purinergic P2Z receptor. An intriguing role in immunity, inflamation and cell death. Immunol. Today 1995; 16: 524–528
  • Hellem A. J. The adhesiveness of human blood platelets in vitro. Scand. J. Clin. Lab. Invest. 1960; 12: 1–117
  • Olligard E. Macroscopic studies of platelet aggregation: nature of an aggregating factor in red blood cells and platelets. Thromb. Diath. Haemorrh. 1961; 6: 86–97
  • Gaarder A., Jonsen A., Laland S., Hellem A. J., Owem P. Adenosine diphosphate in red cells as a factor of human blood platelets. Nature 1961; 192: 531–532
  • Born G. V. R. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962; 194: 927–929
  • Clayton S., Cross M. J. The aggregation of platelets by catecholamine and by thrombin. J. Physiol. 1963; 169: 82P–83P
  • Clayton S., Born G. V. R., Cross M. J. Inhibition of the aggregation of blood platelets by nucleosides. Nature 1963; 200: 138–139
  • Haslam R. J. Role of adenosine diphosphate in the aggregation of human blood platelets by thrombin and fatty acids. Nature 1964; 202: 765–68
  • Haslam R. J. Mechanisms of blood platelet aggregation. Physiology of Hemostasis and Thrombosis, S. A. Johnson, W. H. Seegers. Charles C. Thomas, Springfield, IL 1967; 88–112
  • Willerson J. T., Campbell W. B., Winniford H. D., Schmitz J., Apprill P., Firth B. G., Ashton J., Smitherman T., Bush L., Buja L. M. Conversion from chronic to acute coronary artery disease: speculations regarding mechanisms. Am. J. Cardiol. 1984; 54: 1349–1354
  • Willerson J. T., Hills L. D., Winniford M., Buja L. M. Speculations regarding mechanisms responsible for acute ischemic heart disease syndromes. J. Am. Coll. Cardiol. 1986; 8: 245–250
  • Willerson J. T., Golino P., Eidt J., Campbell W. B., Buja L. M. Specific platelet mediators and unstable coronary artry lesions: Experimental evidence and potential clinical implications. Circulation 1989; 80: 198–205
  • Davis M. J., Thomas A. C. Plaque fssuring: the cause of acute myocardial infarction, sudden death, and crescendo angina. Br. Heart J. 1985; 53: 363–373
  • Fuster V., Bradmon L., Cohen M., Ambrose J. A., Bradmon J. J., Chesboro J. H. Insights into pathogenisis of acute ischemic syndromes. Circulation 1988; 77: 1213–1220
  • Davis M. J. Mechanisms of thrombosis and atherosclerosis. Haemostasis and Thrombosis: Basic Principles and Clinical Practice, R. W. Colman, J. Hirsh, V. J. Marder, E. W. Salzman. J. B. Lippincott Company, Philadelphia 1994; 1224–1237
  • Baumgartner H. R. The role of blood flow in platelet adhesion and, fibrin formation of murual thrombi. Microvasc. Res. 1973; 5: 167–179
  • Baumgartner H. R., Muggli R., Tschopp T. B., Turitto V. T. Platelet adhesion, release and aggregation in flowing blood: effect of surface properties and platelet function. Thromb. Haemost. 1976; 35: 124–138
  • Turittio V. T., Weiss H. J., Zimmerman T. S., Susman I. L. Factor VIII/von Willebrand factor in subendothelium mediates platelet adhesion. Blood 1985; 65: 823–831
  • Stel H. V., Sakariassan K. S., De Groot P. G., van Maurik J. A., Sixma J. J. von Willebrand factor in the vessal wall mediates platelet adhesion. Blood 1985; 6: 329–357
  • Kieffer N., Phillips D. R. Platelet membrane glycoproteins: functions in cellular interactions. Ann. Rev. Cell Biol. 1990; 6: 329–357
  • Nurden A. T., Nurden P. A review of the role of platelet membrane glycoproteins in the platelet vessel wall interaction. Balliere's Clinical Hematology 1993; 6: 653–690
  • Zawilska K. M., Born G. V. R., Bengent N. A. Effect of ADP-utilizing enzymes on arterial bleeding time in rats and rabbits. Br. J. Haematol. 1982; 50: 317–325
  • Schror K. The basic pharmacology of ticlopidine and clopidogrel. Platelets 1993; 4: 252–261
  • Yao S.-K., Ober J. C., McNatt J., Benedict C. R., Rosolowski M., Anderson H. V., Cui K., Maffrand J.-P., Campbell W. B., Buja L. M., Willerson J. T. ADP plays an important role in mediating platelet aggregation and cyclic flow variations in vivo in stenosed and endothelium-injured canine coronary arteries. Circulation Res. 1991; 70: 39–48
  • Panak E., Maffrand J. P., Picard-Fraire C., Valles E., Blanchard J., Rencucci R. Ticlopidine: a promise for prevention and treatment of thrombus and its complications. Haemostasis 1983; 13: 1–54., Suppl 1
  • Mc Thenault J., Ewen J., McCrew A., Bouloux C., Jacob C., Chigot C., Irvine A., Kindermans M., Maffrand J. P., Rencucci R. PCR 4099. A new antithrombotic drug, evaluation of tolerence and pharmacological activity. Thromb. Res 1986; 286, Suppl 6
  • Maffrand J. P., Bernat A., Delebassee D., Defreyn G., Cazenave J. P., Gorden J. L. ADP plays a key role in thrombogenesis in rats. Thromb. Haemost. 1988; 59: 225–230
  • Cattaneo M., Leochi A., Randi A. M. N., McGregor J. L., Mannucci P. M. Identification of new congenital defect of platelet function characterized by severe impairment of platelet responses to adenosine diphosphate. Blood 1992; 80: 2787–2796
  • Nurden P., Savi P., Heilman E., Bihour C., Herbert J-M., Maffrand J.-P., Nurden A. T. An inherited bleeding disorder linked to defective interaction between ADP and its receptor on platelets. J. Clin. Invest. 1995; 95: 1612–1622
  • George J. N., Nurden A. T., Phillips D. R. Molecular defects in inter-tactions of platelets with the vessel wall. N. Engl. J. Med. 1984; 311: 1084–1098
  • Weiss H. J. Inherited abnormalities of platelet granules and signal transduction. Hemostasis and Thrombosis: Basic Principles and Clinical Practice, R. W. Colman, J. Hirsh, V. J. Marder, E. W. Salzman. J. B. Lippincott Company, Philadelphia 1994; 1224–1237
  • Kim B. K., Zamecenik P., Taylor G., Guo M. J., Blackburn M. Antithrombotic effect of β,β′-monochloromethylenediadenosine5′,5′-P1,P4-tetraphosphate. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 11056–11058
  • Vilen L., Jacobsson S., Kutti J. ADP-induced platelet aggregation as a function of age in healthy humans. Thromb. Hemost. 1989; 61: 490–492
  • Burnstock G. Purinergic nerves. Pharmacol. Rev. 1972; 24: 509–581
  • Kenakin T. P., Bond R. A., Bonner T. I. Definition of pharmacological Receptors. Pharmacol. Rev. 1992; 44: 351–361
  • Burnstock G. A basis for distinguishing two types of purinergic receptors. Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach, R. W. Sraub, L. Bolis. Raven Press, New York 1978; 107–118
  • Van Calker P., Muller M., Hamprecht B. Adenosine regulates via two different types of receptors; the accumulation of cyclic AMP in cultured brain cells. J. Neurosci. 1979; 23: 999–1005
  • Londos C., Cooper D. M. F., Wolff J. Subclasses of external adenosine receptors. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 2551–2554
  • Kennedy C., Burnstock G. Evidence for an inhibtory prejunctional P1-purino receptor in rat portal vein with characteristics of A2-- rather than A1-subtype. Eur. J. Pharmac. 1984; 100: 363–368
  • Linden J. Structure and function of A1 adenosine receptors. FASEB J. 1991; 5: 2668–2776
  • Barnard E. A., Burnstock G., Webb T. E. G-protein coupled receptors for ATP and other nucleotides: a new receptor family. Trends Pharmacol. Sci. 1994; 15: 67–70
  • Burnstock G., Kennedy C. Is there a basis for distinguishing purinergic receptors. Gen. Pharmac. 1985; 16: 433–440.
  • Cusack N. J., Hourani S. M. O. Subtypes of P2-Purinoreceptors: Studies using analogs of ATP. Ann. N. Y. Acad. Sci. 1990; 603: 172–181
  • Gordon J. L. Extracellular ATP: effects, sources and fate. Biochem. J. 1986; 233: 309–319
  • Fredholm B. B., Abbracchio M. P., Burnstock G., Daly J. W., Harden T. K., Jacobson K. A., Leff P., Williams M. VI. Nomenclature and classification of purinoreceptors. Pharmacol. Rev. 1994; 46: 143–156
  • Pintor J., Miras-Portugal M. T. P2 purinergic, receptors for diadenosinepolyphosphates in the nervous system. Gen. Pharmacol. 1995; 26: 229–235
  • Benham C. D., Tsien R. W. A novel receptor operates Ca2+ permeable channel activated by ATP in the smooth muscle. Nature 1987; 328: 275–278
  • Surprenant A., Buell G., North R. A. P2X receptors bring new structure to ligand-gated ion channels. Trends Neur. Sci. 1995; 18: 224–228
  • Brake A. G., Wagenbach M. J., Julius D. New structural motif for ligandgated ion channels defined by ionotropic ATP receptor. Nature 1994; 371: 519–523
  • Lambrecht G., Friebbe T., Grimm U., Windsceif U., Bungart E., Hildebrandt C., Beaumert H. G., Spatz-kümbel G., Mutschler E. PPADS, a novel functionally selective antagonist of P2 purinoreceptor mediated responses. Eur. J. Pharmacol. 1992; 217: 217–219
  • Buell G., Michel A. D., Lewis C., Collo G., Humphrey P. P. A., Surprenant A. P2X1 receptor activation in HL60 cells. Blood 1996; 87: 2659–2664
  • Valera S., Hussey N., Evans R. J., Adami N., Norte R. A., Surprenant A., Buell G. A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 1994; 371: 516–519
  • O'Connor S. E., Dainty I. A., Leff P. Further subclassification of ATP Receptors based on agonist studies. Trends Pharmacol. Sci. 1991; 12: 137–141
  • Yammada M., Hamamori Y., Akita H., Yokoyama M. P2-purinoreceptor activation stimulates phosphoinositide hydrolysis and inhibits accumulation of cAMP in cultured ventricular monocytes. Circulation Res 1992; 70: 477–85
  • Boyer J. L., Lazarowski I. R., Cheu X.-H., Harden T. K. Identification of a P2Y-purinergic receptor that inhibits adenylyl cyclase. J. Pharmacol. Exp. Ther. 1993; 267: 1140–1146
  • Bruner G., Murphy S. ATP-evoked arachidonic acid mobilization in astrocytes is via a P2Y-Purinergic receptor. J. Neurochem. 1990; 55: 1569–1575
  • Hoyl C. H., Knight G. C., Burnstock G. Suramin antagonizes responses to P2-purinoreceptor agonists and purinergic nerve stimulation in the guinea-pig urinary bladder and E. coli. Br. J. Pharmacol. 1990; 99: 617–621.
  • Ayanathan K., Webb T. E., Sandhu A. K., Athwal R. S., Barnard G. A., Kunapuli S. P. Cloning and chromosomal localization of the human P2Y1 receptor. Biochem. Biophys. Res. Commun. 1996; 218: 783–788
  • Parr C. E., Sullivan D. M., Paradiso A. M., Lazarowski G. R., Burch L. H., Olsen J. C., Erb L., Weimann G. A., Boucher R. C., Turner J. T. Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc. Natl. Acad. Sci. U.S.A. 1994; 91: 3275–3279
  • Akabar G. K. M., Dessari V. P., Sheth S., Mills D. C. B., Kunapuli S. P. Identification of two calcium signalling P2T and P2U purinergic receptors in human erythroleukemia cells. FASEB J 1995; 9: 684, (Abstract)
  • Niguyen T., Erb L., Weisman G. A., Murschese A., Heng H. H. Q., Gurrard R. C., George S. P., Turner J. T., O'Dowd B. F. Cloning and expression, and chromosomal localiztion of the human uridine receptor gene. J. Biol. Chem. 1995; 270: 30846–30848
  • Communi D., Priotton S., Parmentier M., Boeynaems J. M. Cloning and functional expression of a human uridine nucleotide receptor. J. Biol. Chem. 1995; 270: 30849–30852
  • Webb T. E., Kaplan M. H., Barnard E. A. Identification of 6H1 as a P2Y purinoreceptor: P2Y5. Biochem. Biophys. Res. Commun. 1996; 219: 105–110
  • Chang K., Hanaoka K., Kumada M., Takuwa Y. Molecular cloning and functional analysis of a novel P2 nucleotide receptor. J. Biol. Chem. 1995; 270: 26152–26158
  • Akbar G. K. M., Dasari V. R., Webb T. E., Ayanathan K. P., Pillarisetti K., Sandhu A. K., Athwal R. S., Daniel J. L., Ashby B., Barnard E. A., Kunapuli S. P. Molecular cloning of a novel P2 purinoreceptor from human erythroleukemia cells. J. Biol. Chem. 1996; 271: 18363–18367
  • Hilbert M. F., Trumpp-Kallmeyer S., Hoflock J., Bruinvels A. This is not a G-protein-coupled receptor. Trends Pharmacol. Sci. 1993; 14: 7–12
  • Cockroft S., Gomperts B. D. Activation and inhibition of calcium-dependent histamine secretion by ATP ions applied to mast cells. J. Physiol. 1979; 296: 229–243
  • Tatham P. E. E., Cusack N. J., Gomperts B. D. Chracterization of the ATP4-receptor that mediates permeabilization of rat mast cells. Eur. J. Pharmacol. 1988; 147: 13–21
  • Erb L., Lustig K. D., Sullivan D. M., Turner J. T., Weisman G. A. Functional expression and photoaffinity labeling of a cloned P2U Purinergic receptor. Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 5113–5117
  • Lustig K. D., Shian A. K., Brake A. J., Julius D. Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 5113–5117
  • Clarke L. L., Grubb B. R., Yankaskas J. R., Cotton C. U., Mekenzie A., Boucher R. C. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level decreases in cftr(-/-) mice. Proc. Natl. Acad. Sci. U.S.A. 1994; 91: 479–483
  • Bear C. E., Li C., Kartner N., Bridges R. J., Jensen J. R., Ramjeesingh M., Riorden J. R. Purification and functional reconstitution of the cystic fibrosis transmission conductance regulator. Cell 1992; 68: 809–818
  • Mason S. J., Paradiso A. M., Boucher R. C. Regulation of trans epithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium. Br. J. Pharmacol. 1991; 103: 1649–1656
  • Knowles M. R., Lane L., Clarke D. V. M., Boucher R. C. Activation of extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N. Engl. J. Med. 1991; 325: 533–538
  • Cusack N. J., Hourani S. M. O. Adenosine-5′-diphosphate antagonists and human platelets: No evidence that aggregation and inhibition of adenylate cyclase are mediated by different Receptors. Br. J. Pharmacol. 1982; 76: 221–227
  • Macfarlane D. E., Mills D. C. B. The effects of ATP on platelets: evidence against centeral role of released ADP in primary aggregation. Blood 1975; 46: 309–320
  • Rink T. J., Hallam T. J. What turns platelets on. Trends Biochem. Sci. 1984; 9: 215–219.
  • Hallam T. J., Rink T. J. Response to adenosine diphosphate in human blood platelets loaded with the flourescent calcium indicator Quin-2. J. Physiol. 1985; 368: 131–146
  • Sage S. O., Reast R., Rink T. J. ADP evokes biphasic Ca2+ influx in Fura-2 loaded human platelets. Evidence for Ca2+ entry regulated by the intracellular store. Biochem. J. 1990; 265: 675–680
  • Sage S. O., Rink T. Kinetic differences between thrombin- and ADP-induced calcium influx and release from internal stores in fura-2 loaded human platelets. Biochem. Biophys, Res. Commun. 1986; 136: 1124–1129
  • Mahaut-Smith M. P., Sage S. O., Rink T. J. Rapid ADP-evoked currents in human platelets recorded with nystatin permeabilized patch technique. J. Biol. Chem. 1990; 267: 3060–3065
  • Macfarlane D. E., Mills D. C. B. Inhibition by ADP of prostaglandin-induced accumulation of cyclic AMP in human platelets. J. Cyclic Nucleotide Res. 1981; 7: 1–11
  • Cusack N. J., Hourani S. M. O. Competitive inhibition by adenosine 5′-triphosphate of the actions of human platelets by 2-chloroadenosine 5′-diphosphate, 2-azidoadenosine 5′-diphosphate and 2-methylthioadenosine 5′-diphosphate. Br. J. Pharmacol. 1982; 11: 329–333
  • Macfarlane D. E., Srivastva P. C., Mills D. C. B. 2-methylthioadenosine [β-32P]diphosphate: an agonist and radioligand for the receptor that inhibits the accumulation of cyclic AMP in platelets. J. Clin. Invest. 1983; 71: 420–428
  • Fugman D. A., Write D. P., Jones L. A. C., Aronow B. J., Liberman M. A. In vitro establishment and characterization of a human megakaryoblastic cell line. Blood 1990; 75: 1252–1261
  • Kalambakas S. A., Robertson F. M., O'Connell S. M., Sinha S., Vishnupad K., Karp G. I. Adenosine diphosphate stimulation of cultured hematopoietic cell lines. Blood 1993; 81: 2652–2657
  • Shi X.-P., Yin K.-C., Gardell S. J. Human erythroleukemic (HEL) cells express a platelet P2T-like ADP receptor. Thromb. Res. 1995; 77: 235–247
  • Murgo A. J., Contrera J. G., Sistare F. D. Evidence for seperate calciumsignalling P2T and P2U purinoreceptors in human megakaryoblasic Dami Cells. Blood 1994; 83: 1258–1267
  • Floddgard H., Klenow H. Abundent amount of diadenosine diadenosine 5′,5′-P1,P4-tetraphosphate are present and releasable but metabollically inactive in human platelets. Biochem. J. 1982; 208: 737–742
  • Luthje J., Ogilvie A. The presence of diadenosine 5′,5-P1,P3-triphos-phate (Ap3A) in human platelets. Biochem. Biophys. Res. Commun. 1983; 115: 253–260
  • Rodriguez Del Castillo A., Torres M., Dellicido E. G., Miras-Portugal M. T. Subcellular distribution studies of diadenosine polyphophates- Ap4A and Ap5A-in bovine adrenal medulla: presence in chrimaffin granules. J. Neurochem. 1988; 51: 1696–1703
  • Luthje J., Barringer K., Ogilvie A. Effects of diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) on platelet aggregation in unfractionated human blood. Blut 1985; 51: 405–413
  • Harrison M. J., Brossmer R., Goody R. S. Inhibition of platelet aggregation and platelet release reaction by α,ω-diadenosine polyphosphates. FEBS Lett. 1975; 54: 57–60
  • Mayo K. H., Mvele O. M., Pun R. N. Proton magnetic resonance spectroscopic analysis of diadenosine 5,5′-polyphosphates. FEBS Lett. 1990; 265: 97–100
  • Castro E., Torres M., Miras-Portugal M. T., Gonzalez M. P. Effect of diadenosine polyphosphates on catecholamine secretion from isolated chromaffin cells. Br. J. Phatrmacol. 1990; 100: 360–364
  • Jefferson J. R., Harmon J. T., Jamieson G. A. Identification of high affinity (Kd 0.35 μmol/L) and low affinity (Kd 7.9 μmol/L) platelet binding sites for ADP and competition by ADP analogs. Blood 1988; 71: 100–116
  • Puri R. N., Kumar A., Chen H., Colman R. F., Colman R. W. Inhibition of ADP-induced platelet responses by covalent modification of aggregin, a putative ADP-receptor, by 8-(4-bromo-2,3-dioxobutylthio)-ADP. J. Biol. Chem. 1995; 270: 24482–24488
  • Gough G., Maguire M. H., Penglis F. Analogs of adenosine 5′-diphosphate: new platelet aggregators. Influence of purine ring and phosphate chain substituents on aggregatory of adenosine 5′-diphosphate. Mol. Pharmacol. 1972; 8: 170–177
  • Puri R. N., Colman R. F., Colman R. W. Platelet activation by 2-(4-bromo-2,3-dioxobutylthio)adenosine 5′-diphosphate is mediated by its binding to a putative ADP-receptor, aggregin. Eur. J. Biochem. 1996; 236: 862–870
  • Colman R. W., Figures W. R., Scearce M. L., Strimpler A. M., Zhou F., Rao K. Inhibition of collagen induced platelet activation by 5′-fluorosulfonylbenzoyladenosine. Evidence for an ADP requirement and synergistic influence of prostaglandin endoperoxides. Blood 1986; 68: 565–570
  • Pierce P. H., Wright J. M., Egan G., Scrutton M. C. Interaction of human platelets with 2,3-dialdehyde and 2,3-dialcohol derivatives of adenosine diphos-phate and adenosine triphosphate. Eur. J. Biochem. 1978; 88: 543–554
  • Puri R. N., Colman R. W. Structural features in the ribose moiety of ADP necessary for interaction with aggregin, an ADP-receptor, during ADP-induced platelet responses: investigations using apolyclonal antibody. FASEB J 1997; 9: 329, (Abstract)
  • Cusack N. J., Hourani S. M. O. Partial agonist behaviour of adenosine-5′-O-(2-thiodiphosphate). Br. J. Pharmacol. 1981; 73: 405–408
  • Cusack N. J., Hourani S. M. O. Effects of Rp and Sp diastereoisomers of adenosine-5′-O-(1-thiodiphosphate) on human platelets. Br. J. Pharmacol. 1981; 73: 409–412
  • Cusack N. J., Petty C. J. Effects of isopolar isosteric phosphonate analogues of adenosine 5′-diphosphate (ADP) on human platelets. Adenosine and Adenosine Nucleotides: Physiology and Pharmacology, D. M. Paton. Taylor and Francis, London 1988; 287
  • Hourani S. M. O., Welford L. A., Cusack N. J. 2-MeS-AMP-PCP and human platelets: implications for the role of adenylate cyclase in ADP-induced aggregation. Br. J. Pharmacol. 1986; 87: 84P
  • Cusack N. J., Hourani S. M. O. Specific and non-compatative inhibition by 2-alkylthio analogues of adenosine 5′-monophosphate and adenosine 5′-triphosphate of human platelet aggregation by adenosine 5′-diphosphate. Br. J. Pharmacol. 1982; 75: 397–400
  • Cusak N. J., Hickmann M. E., Bom G. V. R. Effect of d- and l-enantiomers of adenine, AMP and ADP and their 2-chloro and 2-azido analogues on human platelets. Proc. R. Soc. London Ser B 1979; 206: 139–144
  • Burnstock G., Cusack N. J., Hills J. M., Mackenzie A. I., Meghiji P. Studies on the stereoselectivity of P2-purinoreceptor. Br. J. Pharmacol. 1983; 79: 907–913
  • Cusack N. J., Born G. V. R. Effects of photolysable 2-azido analogues of AMP and ADP on human platelets. Proc. R. Soc. London SerB 1977; 197: 515–520
  • Cristalli G., Mills D. C. B. Identification of a receptor for ADP on blood platelets by photoaffinity labeling. Biochem. J. 1993; 291: 875–881
  • Jefferson J. R., Hunt J. B., Jamieson G. A. Facile synthesis of 2-[(3-aminopropyl)thio]adenosine 5′-diphosphate: a key intermediate for the synthesis of molecular probes of adenosine 5′-diphosphate function. J. Med. Chem. 1987; 30: 2013–2016
  • Puri R. N., Colman R. W. Modulation of platelet responses by 2-(3-bromo-2-oxopropylthio)adenosine 5′-diphosphate involves its binding to as well as covalent modification of an ADP-receptor, aggregin. Arch. Biochem. Biophys. 1997; 343: 140–145
  • Cusack N. J., Born G. V. R. Inhibition of adenosine deaminase and of platelet aggregation by 2-azidoadenosine, a photolysable analogue of adenosine. Proc. R. Soc. London Ser. B 1976; 197: 307–311
  • Macfarlane D. E., Mills D. C. B., Srivastva P. C. Binding of 2-azidoadenosine[β-32P]diphosphate to the receptor on intact human blood platelets which inhibits adenylate cyclase. Biochemistry 1982; 21: 544–549
  • Bennett J. E., Colman R. F., Colman R. W. Identification of adenine nucleotide proteins in human platelet membranes by affinity labeling by 5-p′-fluorosulfo-nylbenzoyladenosine. J. Biol. Chem. 1978; 253: 7346–7354
  • Colman R. F. Site specific modification of enzyme sites. Enzymes. Academic Press, New York 1990; 19: 283–321
  • Agarwal A. K., Tandon N. N., Greco N. J., Jamieson G. A. Evaluation of the binding to fixed platelets of agonists and antagonists of ADP-induced platelet aggregation. Thromb. Haemost. 1989; 62: 1103–1106
  • Greco N. J., Yamamoto N., Jackson B. W., Tandon N. N., Moos M., Jr, Jamieson G. A. Identification of a nucleotide-binding site on glycoprotein IIb. J. Biol. Chem. 1991; 266: 13627–13636
  • Powling M. J., Hardisty R. M. Glycoprotein IIb-IIIa complex and Ca2+ influx into stimulated platelets. Blood 1985; 66: 731–734
  • Greco N. J., Tandon N. N., Jackson B. W., Jamieson G. A. Low structural specificity for nucleoside triphosphates as antagonists of ADP-induced platelet activation. J. Biol. Chem. 1992; 267: 2966–2970
  • Mayinger P., Gawaz M. Photoaffinity labeling of integrin αIIbβ3 (glycoprotein IIb-IIIa) on intact platelets with 8-azido-[γ-32P]ATP. Biochim. Biophys. Acta 1992; 1137: 77–81.
  • Guthrow C. E., Allen J. E., Rasmussen H. Phosphorylation of an endogenous membrane associated cyclic adenosine 3′,5′-diphosphate dependent protein kinase in human erythrocyte ghosts. J. Biol. Chem. 1972; 247: 8145–8153
  • Antonoff R. S., Ferguson J. J., Jr. Photoaffinity labeling with cyclic nucleotides. J. Biol. Chem. 1974; 249: 3319–3321
  • Obrig T. G., Antonoff R. S., Kirwin K. S., Ferguson J. J., Jr. The binding of adenosine-3′,5′-monophosphate by messenger ribonucleotide-like particles. Biochem. Biophys. Res. Commun. 1975; 66: 437–443
  • Schimmel P. R., Budzik G. P. Photo-cross-linking of protein-nucleic acid complexes. Methods Enzymol. 1977; 46: 168–180
  • Photochemistry and Photobiology of Nucleotides, S. Y. Wang. Gordon & Beach, New York 1974
  • Oswald R., Changeux J.-P. Ultraviolet light-induced labeling by non-competitive blockers of acetylcholine receptor from torpedo marmorata. Proc. Natl. Acad. Sci U.S.A. 1991; 78: 3925–3929
  • Van Prooijen H. C., Van Marwizk-Kooy M., Van Weelden H., Aarts-Riemens M. I., Borghuis L., Akkerman J. W. N. Evidence of a new UVB source for irradiation of platelet concentrates. Br. J. Haemotol. 1990; 75: 573–577
  • Van Marwizk-Kooy, Van Prooijen H. C., Van Asbeck B. S., Borghuis L., Akkerman J. W. N. Irradation of platelets with UV-B light exposes fibrinogen binding sites by an intracellualr mechanism. Br. J. Haematol. 1990; 75: 573–577
  • Van Marwizk-Kooy M., Akkerman J. W.N., Van Asbeck B. S., Borghuis L., Van Prooijen H. C. UVB radiation exposes fibrinogen binding sites on platelets by activating protein kinase C via reactive oxygen species. Br. J. Haematol. 1990; 83: 253–258
  • Grijzenhout M. A., Aarts-Riemens M. I., Akkerman J. W. N., Nienwenhuis H. K., Van Weelden H., Van Prooijen H. C. Ultraviolet-B irradiation of platelets induces a dose-dependent increase in the expression of platelet activation markers with storage. Br. J. Haematol. 1993; 83: 627–632
  • Schieven G. L., Kirihara J. M., Gilliland L. K., Uckum F. M., Ledbetter J. A. Ultraviolet radiation rapidly induces tyrosine phosphorylation and calcium signalling in lymphocytes. Mol. Biol. Cell 1993; 4: 523–530
  • Devary Y., Gottlieb R. A., Smeal T., Karin M. The ultraviolet response is triggered by activation of src tyrosine kinases. Cell 1992; 71: 1081–1091
  • Kyriakis J. M., Banerjee P., Nikolakaki E., Dai T., Rubie E. A., Ahmad M. F., Avruch J., Woodgett J. R. The stress activated protein kinase subfamily of c-Jun kinases. Nature 1994; 369: 156–160
  • Pombo C. M., Boventre J. V., Avruch J., Woodgett J. R., Kyriakis J. M., Force T. The stress activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. J. Biol. Chem. 1994; 269: 26546–26551
  • Herrlich P. The mammalian genetic stress response. Adv. Enzyme Regul. 1984; 25: 485–504
  • Roni Z. A., Lambert E., Weinstein J. B. Inducible cellular responses to ultraviolet light irradiation and other mediators of DNA damage in mammalian cells. Cell Biol. Toxicol. 1990; 6: 105–126
  • Colman R. F. Protein Structure and Function: A Practical Approach, T. A. Creighton. IRL Press, New York 1989; 77–99
  • Figures W. R., Niewiarowski S., Morinelli T. A., Colman R. F., Colman R. W. Affinity labeling of human platelet membrane protein with 5′-p-fluorosulfonylbenzoyladenosine. J. Biol. Chem. 1981; 256: 7789–7795
  • Figures W. R., Scearce M. L., DeFeo P., Stewart G., Zhou F., Chen J., Daniel J. L., Colman R. F., Colman R. W. Direct evidence for the interaction of the nucleotide affinity analog 5′-p-fluorosulfonylbenzoyladenosine with a platelet ADP receptor. Blood 1987; 70: 796–803
  • Colman R. W. Aggregin: a platelet ADP-receptor that mediates aggregation. FASEB J. 1990; 3: 1425–1435
  • Colman R. W. Platelet ADP Receptors stimulating shape change and inhibiting adenylate cyclase. News Physiol. Sci. 1992; 7: 274–278
  • Mills D. C. B., Figures W. R., Scearce M. L., Stewart G. J., Colman R. F., Colman R. W. Two mechanisms for inhibition of ADP-induced platelet shape change by 5′-p-fluorosulfonylbenzoyladenosine and covalent modification at an ADP binding site distinct from that inhibits adenylate cyclase. J. Biol. Chem. 1985; 260: 8078–8083
  • Rao A. K., Kowalska M. A. ADP-induced platelet shape change and mobilization of cytoplasmic ionized calcium are mediated by distinct binding sites on platelets: 5′-p-fluorosulfonylbenzoyladenosine is a weak platelet agonist. Blood 1987; 70: 751–756
  • Morinelli T. A., Niewiarowski S., Kornecki E., Figures W. R., Wachtfogel Y., Colman R. W. Platelet aggregation and exposure of fibrinogen receptors by prostaglandin endoperoxide analogs. Blood 1983; 61: 41–49
  • Figures W. F., Scearce M. L., Wachtfogel Y., Chen J., Colman R. F., Colman R. W. Platelet ADP receptor and α2-adrenoreceptor interaction: evidence of ADP-requirement for epinepherine-induced platelet activation and an influence of epinepherine on ADP-binding. J. Biol. Chem. 1986; 261: 5981–5986
  • Puri R. N., Zhou F., Bradford H., Hu C.-J., Colman R. F., Colman R. W. Thrombin-induced platelet aggregation involves an indirect cleavage of aggregin by calpain. Arch. Biochem. Biophys. 1989; 271: 346–358
  • Puri R. N., Zhou F., Colman R. F., Colman R. W. Plasmin-induced platelet aggregation is accompanied by cleavage of aggregin and indirectly mediated by calpain. Am. J. Physiol. 1990; 259: C862–C868
  • Patthy L., Smith E. L. Identification of functional arginine residues in ribonuclease A and lysozyme. J. Biol. Chem. 1975; 250: 565–569
  • De Camp D. L., Lim S., Colman R. F. Reaction of pyruvate kinase with the new nucleotide affinity label 8-(4-bromo-2,3-dioxobutylthio)adenosine 5′-diphosphate and 5′-triphosphate. J. Biol. Chem. 1988; 27: 7651–7658
  • Ozturk D. H., Safer D., Colman R. F. Affinity labeling of bovine liver glutamate dehydrogenase with 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5′-diphosphate and 5′-triphosphate. Biochemistry 1990; 29: 7112–7118
  • Puri R. N., Colman R. W. Inhibition of ADP-induced platelet shape change and aggregation by o-phthalaldehyde: evidence of covalent modification of cysteine and lysine residues. Arch. Biochem. Biophys. 1991; 286: 419–427
  • Huang Y.-C., Colman R. F. Aspartyl peptide labeled by 2-(4-bromo-2,3-dioxobutylthio)adenosine 5′-diphosphate in the allosteric ADP site of pig heart NAD+-dependent isocitrate dehydrogenase. J. Biol. Chem. 1989; 264: 12208–122214
  • Huang Y.-C., Colman R. F. Affinity labeleing of the allosteric ADP activation site of NAD-dependent isocitrate dehydrogenase by 6-(4-bromo-2,3-dioxobutylthio)adenosine 5′-diphosphate. J. Biol. Chem. 1984; 259: 12481–124888
  • Bhatnagar D., Roskoski R., Jr, Rosendahl M. S., Leonard N. Adenosine cyclic 3′,5′-diphosphate dependent protein kinase: a new fluorescence displacement technique for characterizing the nucleotide binding site on the catalytic subunit. Biochemistry, 22: 6310–6317.
  • Colman R. W., Figures W. R., Wu Q. X., Chung X. Y., Morenelli T. A., Tuszynski G. P., Colman R. F., Niewiarowski S. Distinction between glycoprotein Ufa and a 100 kDa protein (aggregin) mediating ADP-induced platelet activation. Arch. Biochem. Biophys. 1988; 262: 298–306
  • Zablocki J. A., Katzenellenbogen J. A., Carlson K. E., Norman M. J., Katzenellenbogen B. S. Estrogenic affinity labels: synthesis, irreversible receptor binding, and bioactivity of aziridine-substituted hexestrols derivatives. J. Med. Chem. 1987; 10: 829–838
  • Wrzeszczynski K. O., Colman R. F. Activation of bovine liver glutamate dehydrogenase by covalent reaction of adenosine 5′-O-[S-(4-bromo-2,3-dioxobutyl)thiophosphate] with arginine-459 in an ADP-regulatory site. Biochemistry 1994; 33: 11544–11553
  • Bacon C. R., Bender R. A., Colman R. F. The reaction of 4-iodoactami-dosalicylic acid with TPN-dependent isocitrate dehydrogenase from pig heart. J. Biol. Chem. 1981; 236: 6593–6599
  • Puri R. N., Bhatnagar D., Roskoski R., Jr. Adenosine cyclic 3′,5′-monophosphate dependent protein kinase: fluorescent affinity labeling of the catalytic subunit from bovine skeltal muscle with o-phthalaldehyde. Biochemistry 1985; 24: 6499–6508
  • Puri R. N., Bhatnagar D., Glass D. B., Roskoski R., Jr. Inactivation of guanosine cyclic 3′,5′-monophosphate dependent protein kinase from bovine lung by o-phthalaldehyde. Biochemistry 1985; 24: 6508–6514
  • Mac Intyre D. E., Grainge C. A., Drummond A. H., Gordon J. L. Effect of thiol reagents on platelet transport processes and responses to stimuli. Biochem. Pharmacol. 1977; 26: 319–323
  • Sato T., Hashizumi T., Fuji T. N-ethylmaleimde inhibits Ca2+ influx induced by collagen or arachidonate in rabbit platelets. Biochim. Biophys. Acta 1987; 928: 266–271
  • Subarao K., Kakkar V. V., Ganguli P. Binding of pyridoxal phosphate to human platelets: its effect on platelet function. Thromb. Res. 1978; 13: 1017–1029
  • Ghosh P. B., Whitehouse M. W. 7-chloro-4-nitro-benzo-2-oxa-1,3-diazole: a new fluorogenic reagent for amino acids and other amines. Biochem. J. 1968; 108: 155–156
  • Hartle F. T., Roskoski R., Jr. Adenosine cyclic 3′,5′-monophosphate protein kinase from bivine brain: Inactivation of the catalytic subunit and holoenzyme by 7-chloro-4-nitro-2,1,3-benzoxadiazole. Biochemistry 1982; 21: 5175–5183.
  • Marquardt D., Center M. S. Involvement of vascular adenosine triphosphate activity in multidrug resistance in HL-60 cells. J. Natl. Cancer Inst. 1991; 83: 1098–1102
  • Puri R. N., Colman R. W. Inhibition of ADP-induced platelet activation by 7-chloro-4-nitro-benz-2-oxa-1,3-diazole by covalent modification of aggregin, a putative ADP-receptor. J. Cell. Biochem. 1996; 61: 97–108
  • Puri R. N., Colman R. W. A novel method for chemical modification of functional groups other than a carboxyl group in proteins by N-ethyl-5-phenylisooxazolium-3′-suIfonate (Woodward′s Reagent-K): inhibition of ADP-induced platelet responses involves covalent modification of aggregin, an ADP receptor. Anal. Biochem. 1996; 240: 251–260
  • Lewis R. N., George R., McElhaney R. N. Structure-function investigation of the membranes (Na+-Mg2+)-ATPase from Acholeplasma laidlawii B: studies of reactive amino acid residues using group specific reagents. Arch. Biochem. Biophys. 1986; 247: 201–210
  • Jennings M. L., Anderson M. P. Chemical modification and labeling of glutamate residues at the stilbenedisulfonate site of human red blood cell band 3 protein. J. Biol. Chem. 1987; 262: 11435–11445
  • Johnson A. R., Dekker E. E. Woodward′s Reagent K inactivation of Escerichia coli l-thronine dehydrogenase: Increases absorbance at 340–350 nm is due the modification of cysteine and histidine residues, not aspartate or glutamate carboxyl groups. Protein Science 1996; 5: 382–390
  • Anestario M., Jr, Harrison M. L., Gaehlen R. L. Immunochemical detection of adenine nucleotide binding proteins to 5′-p-fluorosulfonylbenzoyladenosine. Anal. Biochem. 1990; 190: 60–65
  • Puri R. N., Colman R. W. Immunoaffinity method to identify aggregin, an ADP receptor in human blood platelets. Arch. Biochem. Biophys 1997; 347: 263–270.
  • Adler J. R., Handin R. I. Solubilization and characterization of a platelet membrane ADP-binding protein. J. Biol. Chem. 1979; 254: 1866–1872
  • Nachman R. L., Ferris B. Binding of adenosine diphosphate by isolated membranes from human platelets. J. Biol. Chem. 1974; 249: 704–710
  • Gachet C., Cattaneo M., Ohlman P., Hechler B., Lecchi A., Chevalier J., Cassel D., Mannuchi P. M., Cazenave J.-P. Purinoreceptors on blood platelets: further pharmacological and clinical evidence to suggest the presence of two ADP receptors. Br. J. Haematol. 1995; 91: 434–444
  • Savi B., Laplace M. CI., Maffrand J. P., Herbert J. M. Binding of [3H]-2-methylthio-ADP to rat platelets-effect of clopidogrel and ticlopidine. J. Pharm. Exp. Therp. 1994; 269: 772–777
  • Savi P., Laplace M. CI., Herbert J. M. Evidence for the existance of two different ADP-binding sites on rat platelets. Thromb. Res. 1994; 76: 157–169
  • Mills D. C. B., Puri R. N., Hu C.-J., Minniti C., Grana G., Freedman M. D., Colman R. F., Coalman R. W. Clopidogrel inhibits binding of ADP analogues to the receptor mediating platelet adenylate cyclase. Arterio. Thromb. 1992; 12: 431–436
  • Soslau G., Parker J. Modulation of platelet function by extracellular adenosine triphosphate. Blood 1989; 74: 984–993
  • Soslau G., Brosky I., Parker J. Occupancy of P2 purinoreceptors with unique properties modulates the function of human platelets. Biochim. Biophys. Acta 1993; 1177: 199–207.
  • White J. G., Rao G. H. R., Gerrad J. M. Effects of ionophore A23187 on blood platelets. Am. J. Pathol. 1974; 77: 135–149
  • Berridge M. J., Irvine R. F. Inositol phosphates in cell signalling. Nature 1989; 341: 197–205
  • Fisher G. J., Bakshian S., Baldssare J. J. Activation of human platelets with ADP causes a rapid rise in cytosolic free calcium without hydrolysis of phos-phatidyl-4,5-bisphosphate. Biochem. Biophys. Res. Commun. 1985; 129: 958–964
  • Sweatt J. D., Blair I. A., Cragoe E. J., Limbird L. E. Inhibition of Na+/H+ exchange block epinephrine- and ADP-induced stimulation of human phospholipase C by blockade of arachidonic acid release at a prior step. J. Biol. Chem. 1986; 261: 8660–8666
  • Vickers J. D., Kinlough-Rathbone R. L., Mustard J. F. The decrease in phosphatidyl-4,5-bisphosphate in ADP-stimulated washed rabbit platelets is not primarily due to phospholipase C activation. Biochem. J. 1986; 237: 327–332
  • Llyod J. V., Nishizawa E. E., Joist J. H., Mustard J. F. Effect of ADP-induced aggregation on 32PO4 incorporation into phophatidic acid and phosphoinositides of rabbit platelets. Br. J. Haematol. 1973; 24: 589–604
  • Vickers J. D., Kinlough-Rathbone R. L., Mustard J. F. Change in phosphatidyl-4,5-bisphosphate 10 seconds after stimulation of washed platelets with ADP. Blood 1982; 60: 1247–1250
  • Feliste R., Simon M. F., Chap H., Douste-Blazy L., Defreyn G., Maffrand J. P. Effect of PCR 4099 on ADP-induced calcium movements and phosphatidic acid in rat platelets. Biochem. Pharmacol. 1988; 37: 2559–2564
  • Daniel J. L., Dangelmeyer C. A., Selak M., Smith J. B. ADP stimulates IP3 formation in human platelets. FEBS Lett. 1986; 206: 299–303
  • Vickers J. D., Kinlough-Rathbone R. L., Packham M. A., Mustard J. F. Inositol phospholipid metabolism in human blood platelets stimulated by ADP. Eur. J. Biochem. 1990; 193: 521–528
  • Gear A. R. L., Raha S. Calcium signalling and phosphoinosidite metabolism in platelets: subsecond events revealed by quenched flow techniques. Mechanisms of Platelet Activation and Control, K. S. Authi. Plenum Press, New York 1993; 57–67
  • Jones G. D., Gear A. R. L. Subsecond calcium dynamics in ADP- and thrombin-stimulated platelets: a continuous-flow approach using Indo-1. Blood 1988; 71: 1539–1543
  • Kroll M. K., Heliums J. D., McIntyre L. V., Schafer A. I., Moake J. L. Platelets and shear stress. Blood 1996; 88: 1625–1541
  • Eudo M. Calcium release from sarcoplasmic reticulum. Physiol. Rev. 1977; 57: 71–108
  • Galione A., Lee H. C., Busa W. B. Ca2+-induced Ca2+ release from sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 1991; 253: 1143–1146
  • Galione A. Ca2+-induced Ca2+ release and its modulation by cyclic ADP-ribose. Trends Pharmacol. Sci. 1992; 13: 304–306
  • Berridge M. J. Cytoplasmic calcium oscillations. A two pool model. Cell Calcium 1991; 12: 63–72
  • Tsenoda Y., Matsuno K., Tashiso Y. Spatial distribution and temporal change of cytoplasmic calcium in human platelets. Biochem. Biophys. Res. Commun. 1988; 156: 1152–1159
  • Heemskerk J. W. M., Hoyland J., Mason W. T., Sage S. O. Spiking in cytosolic calcium concentrations in single fibrinogen bound Fura 2 loaded platelet. Biochem. J. 1992; 283: 379–383
  • Authi K. S. Ca2+ homeostasis and intracellular pools in human platelets. Mechanisms of Platelet Activation and Control, K. S. Authi. Plenum Press, New York 1993; 83–104
  • Murphy C. T., Elmore M., Kellie S., Westwick J. The relationship between cytosolic Ca2+sn-1,2-diacylglycerol and inositol-1,4,5-triphosphate in platelet-activating factor stimulated rabbit platelets. Biochem. J. 1991; 278: 255–261
  • Putney J. W., Jr. A model for receptor regulated calcium entry. Cell Calcium 1986; 7: 1–12
  • Putney J. W., Jr. Capacitative calcium entry revisited. Cell Calcium 1990; 11: 611–624
  • Authi K. S., Bokkala S., Patel Y., Kakkar V. V., Munkonge F. M. Ca2+ release from platelet intracellular stores by thapisgargin and 2,5-di-(t-butyl) 1,4-benzhydroquinone. Relationship to Ca2+ pools and relavence in platelet activation. Biochem. J. 1993; 294: 119–226
  • Alonso M. T., Alvarez J., Montero M., Sanchez A., Garcia-Sancho J. Agonist-induced Ca2+ influx into human platelets is secondary to emptying the intracellular Ca2+ stores. Biochem. J. 1990; 280: 783–789
  • Alvarez J., Montero M., Garcia Sancho J. Cytochrome P-450 may link intracellular Ca2+ stores with plasma membrane Ca2+ influx. Biochem. J. 1992; 274: 193–197
  • Sargent P., Clarkson W. D., Sage S. O., Heemskerk J. W. M. Calcium influx evoked by Ca2+ store depletion in human platelets is more susceptible to cytochrome P-450 inhibitors than receptor regulated Ca2+ entry. Cell Calcium 1992; 13: 553–564
  • Kuno M., Gardner P. Ion channels activated by inositol-1,4,5-triphosphate in plasma membrane of human T-lymphocytes. Nature 1989; 326: 301–304
  • Irvine R. F. “Quantal” calcium release and the control of Ca2+ entry by inositol phosphates—a possible mechanism. FEBS Lett. 1990; 263: 5–9
  • Rengaswamy A., Feinberg H. Inositol-1,4,5-triphosphate induced Ca2+ release from platelet plasma membrane vesicles. Biochem. Biophys. Res. Commun. 1988; 150: 1021–1026
  • Klan A. A., Steiner J. P., Snyder S. H. Plasma membrane inositol-1,4,5-triphosphate receptor of lymphocytes; Selective enrichment of sialic acid and unique binding specificity. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 2849–2853
  • Fujimoto T., Nakada S., Miyawake A., Mikoshiba K., Ogawa K. Localization of inositol-1,4,5-triphosphate receptor-like protein plasmalemmal caveolae. J. Cell Biol. 1992; 119: 1507–1513
  • Sage S. O., Merrit J. E., Hallam T. J., Rink T. J. Receptor mediated Ca2+ entry in Fura-2 loaded human platelets stimulated with ADP and thrombin. Duel wavelength studies with Mn2+. Biochem. J. 1989; 258: 923–926
  • Mahaut-Smith M. P., Sage S. O., Rink T. J. Receptor activated single channels in intact human platelets. J. Biol. Chem. 1990; 265: 10479–10483
  • Suldan Z., Brass L. F. Role of glycoprotein IIb.IIIa complex in plasma membrane Ca2+ transport: a comparison of results obtained with platelets and human erythroleukemia cells. Blood 1991; 78: 2887–2893
  • Yamaguchi A., Yamamoto N., Kitagawa H., Tanoue K., Yamazaki H. Ca2+ influx mediated through the GPIIb/IIIa complex during platelet activation. FEBS Lett. 1987; 225: 228–232
  • Fujimoto T., Fujimura K., Kuramoto A. Electrophysiological evidence that glycoprotein IIb-IIIa complex is involved in calcium channel activation on human platlete plasma membrane. J. Biol. Chem. 1991; 266: 16370–16375
  • Home W. C., Simons E. R. Effects of amiloride on the response of human platelets to bovine a-thrombin. Thromb. Res. 1978; 13: 599–603
  • Connolly T. M., Limbird L. E. Removal of extra platelet Na+ eliminates indomethacin-sensitive secretion from human platelets stimulated by epinephrine, ADP, and thrombion. Proc. Natl. Acad. Sci. U.S.A. 1988; 80: 5320–5324
  • Sweatt J. D., Johnson S. L., Cragoe J. E., Limbird L. E. Inhibitors of Na+/ H+ exchange block stimulus provoked arachidonic acid release in human platelets. J. Biol. Chem. 1985; 260: 12910–12919
  • Siffert W., Gengenbach S., Sheid P. Inhibition of platelet aggregation by amiloride. Thromb. Res. 1986; 44: 235–240
  • Zavoico G. B., Cragoe E. J., Feinstein M. B. Regulation of intracellular pH in human platelets. J. Biol. Chem. 1986; 261: 13160–13167
  • Siffert W., Akkerman J. W. N. Na+/H+ exchange as a modulator of platelet activation. Trends Biochem. Sci. 1988; 13: 148–151
  • Feinberg H., Sandier W. C., Scorer M., Le Breton G. C., Grossman B., Born G. V. R. Movement of sodium into human platelets induced by ADP. Biochim. Biophys. Acta 1977; 470: 317–324
  • Sweatt J. D., Connolly T. M., Cragoe E. J., Limbird L. E. Evidence that Na+/ H+ exchange regulates receptor-mediated phospholipase A2 activation in human platelets. J. Biol. Chem. 1986; 261: 8667–8673
  • Apitz-Castro R. J., Mas M. A., Cruz M. R., Jain M. K. Isolation of homogeneous phospholipase A2 from human platelets. Biochem. Biophys. Res. Commun. 1979; 91: 63–71
  • Jain M. K., Apitz-Castro R. Lag phase during the action of phospholipase A2 on phosphatidylcholine modified by alkanols. J. Biol. Chem. 1978; 253: 7005–7010
  • Siffert W., Siffert G., Scheid P., Akkerman J. W. N. Na+/H+ exchange modulates Ca2+ mobilization in human platelets stimulated by ADP and the thromboxane mimetic U46619. J. Biol. Chem. 1990; 264: 719–725
  • Sage S. O., Rink T. J., Mahout-Smith M. Resting and ADP-evoked changes in cytosolic free sodium concentration in human platelets loaded with indicator SBFI. J. Physoiol. 1991; 44: 559–573
  • De Cristofaro R., Landolfi R., De Candia E., Castagnola M., Di Cera E., Wyman J. Allosteric equilibria in the binding of fibrinogen to platelets. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 8473–8476
  • De Cera E., Gill S. J., Wyman J. Canonical formulation of linkage thermodynamics. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 5077–5081
  • De Cristofaro R., Landolfi R., De Cera E., Di Candia E., Castagnola M., De Candia E., Bizzi B. Inhibition of fibrinogen binding to human platelets by blockage of Na+/H+ exchange. Biochem. Biophys. Res. Commun. 1989; 161: 1282–1232
  • Ross R. The pathogenesis of atherosclerosis-An update. N. Engl. J. Med. 1986; 314: 488–500
  • Border W. A., Russiatiti L. R. Transforming growth factor-β in diseases. The dark side of tissue repair. J. Clin. Invest. 1992; 90: 1–7
  • Amento E. P., Ehsami N., Palmer H., Libby P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler. Thromb. 1991; 11: 1223–1230
  • Schwartz L., Bourassa M. G., Lesperance I., Aldridge H. E., Kazim F., Savatore E. A., Henderson M., Bonem E., Kabid P. R. Aspirin and dipyridamole in prevention of restonosis after percutaneous transluminal angioplasty. N. Engl. J. Med. 1988; 318: 1714–1719
  • Thornton M. A., Gruentzig A. R., Hollman J., King S. B., III, Douglas J. S. Coumadin and aspirin in prevention of recurrence after transluminal coronary angioplasty. 1984. Circulation 1984; 69: 721–727
  • Brockman M. J., Eiroa A. M., Marcus A. J. Inhibition of human platelet reactivity by endothelium-derived relaxing factor from human umbilical vein endothe-lial cells in suspension. Blockade of aggregation and secretion by aspirin-insensitive mechanism. Blood 1991; 78: 1033–1040
  • Marcus A. J., Safier L. B., Hajjar K. A., Ullman H. L., Islam N., Brookman M. J., Eiroa A. M. Inhibition of platelet activation by aspirin-insensitive endothelial cell ADPase: thromboregulation of endothelial cells. J. Clin. Invest. 1991; 88: 1690–1696.
  • Rao A. K. Congenital disorders of platelet function. Hematol. Oncol. Clin. North Am. 1990; 4: 65–86
  • Weiss H. J. Inherited abnormalities of platelet granules and signal transduction. Hemostasis and Thrombosis: Basic Principles and Clinical Practice, R. W. Colman, J. Hirsh, V. J. Marder, E. W. Saltzman. Lippincott, Philadelphia, PA 1994; 673–684
  • Rinder C. S., Student L. A., Bonan J. L., Rinder H. M., Smith B. R. Aspirin does not inhibit adenosine diphosphate-induced platelet α-granule release. Blood 1993; 82: 505–512
  • Dillingham E. O., Lasslo A., Cater-Burks G., Bond S. E., Gollamundi R. Relationship between chemical structure and inhibition of ADP-stimulated human thrombocyte release of serotonin and platelet factor-4. Biochim. Biophys. Acta 1989; 990: 128–132
  • Bell R. L., Kennerly D. A., Stanford N., Majerus P. W. Diglyceride lipase: a pathway for arachidonate release from human platelets. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 3228–3241
  • Billah M. M., Lapetina E. G., Cutarocasas P. Phospholipase A2 activity specific for phosphatidic acid. A possible mechanism for the production of arachidonic acid in platelets. J. Biol Chem. 1981; 256: 831–837
  • Packham M. A., Livine A.-A., Ruben D. H., Rand M. L. Activation of phospholipase C has little involvement in ADP-induced primary aggregation of human platelets: effects of diacylglycerols, diacylglycerol kinase inhibitor R59022, staurosporine and okodaic acid. Biochem. J. 1993; 290: 849–856
  • Pulcinelli F. M., Ashby B., Gazzauiiga P. P., Daniel J. L. Protein kinase C activation is not a key step in ADP-mediated exposure of fibrinogen receptors on human platelets. FEBS Lett. 1995; 364: 87–90
  • Friesen L. L., Gerrard J. M. The effects of 1-oleoyl-2-acetylglycerol on platelet phosphorylation and platelet ultra-structure. Am. J. Pathol. 1985; 121: 79–87
  • Gerrard J. M., Israelis S. J., Friesen L. L. Protein phosphorylation and platelet secretion. Nouv. Fr. Haematol. 1983; 27: 267–273
  • Kaibuchi K., Takai Y., Sawamura M., Hosijima M., Fujikara T., Nishizuka Y. Synergistic functions of protein phosphorylation and calcium mobilization in platelets. J. Biol. Chem. 1983; 258: 6701–6704
  • Takai Y., Kishimoto A., Kikkawa U., Nishizuka Y. Unsaturated diacylglycerol as a possible messenger for the calcium-activated, phospholipid dependent protein kinase system. Biochem. Biophys. Res. Commun. 1979; 91: 1218–1224
  • Kishimoto A., Takai Y., Mori T., Kikkawa U., Nishizuka Y. Activation of calcium and phospholipid dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J. Biol. Chem. 1980; 255: 2273–2276
  • Gerrard J. M., Beattie L. L., Park J., Israels S. J., McNicol A., Lint D., Cragoe E. J., Jr. A role of protein kinase C in membrane fusion necessary for platelet granule secretion. Blood 1989; 74: 2405–2413
  • Gilman A. G. G-proteins: transducers of receptor generated signals. Ann. Rev. Biochem. 1987; 56: 615–649
  • Raymond J. R. Multiple mechanisms of receptor-G protein signalling specificity. Am. J. Physiol. 1995; 38: F141–F158
  • Brass L. F., Hoxie J. A., Manning D. R. Signalling through G proteins and G protein-coupled receptors during platelet activation. Thromb. Haemost. 1993; 70: 217–223
  • Gachet C., Cazenave J.-P., Ohlman P., Gerhard H., Wieland T., Jacob K. H. ADP-receptor-induced activation of guanine-nucleotide-binding proteins in human platelet membranes. Eur. J. Biochem. 1992; 207: 259–263
  • Laugwitz K.-L., Spicher K., Scultz G., Offermanns S. Identification of receptor-activated G-proteins: selective immunoprecipitation of photolabeled G-protein α-subunit. Methods Enzymol. 1994; 237: 283–294
  • Ohlman P., Laugwitz K.-L., Nurnberg B., Spicher K., Scultz G., Cazenave J.-P., Gachet C. The human platelet ADP-receptor activates Gi2 proteins. Biochem. J. 1995; 312: 775–779
  • Gachet C., Cazenave J.-P., Ohlmann P., Bouloux C., Defrreyn G., Driot F., Maffrand J.-P. The thienopyridine ticlopidine selectively prevents the inhibitory effects of ADP but not of adrenaline on cAMP levels raised by stimulation of the adenylyl cyclase of human platelets by PGE. Biochem. Pharmacol. 1990; 40: 2683–2687.
  • Clapham D. E., Neer E. J. New roles for G-protein βy-dimers in transmembrane signalling. Nature 1993; 365: 403–406
  • Léon C., Vial C., Cazenave J.-P., Gachet C. Cloning and sequencing of a human cDNA encoding endothelial P2Y1 purinoreceptor. Gene 1996; 171: 295–297
  • Léon C., Hechler B., Vial C., Leray C., Cazenave J.-P., Gachet C. The P2Y, receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett. 1997; 403: 26–30
  • Mills D. C. B. ADP Receptors on platelets. Thromb. Haemost. 1996; 76: 835–56
  • Janssens R., Communi D., Pirotton S., Samson M., Parmentier M., Boeynames J.-M. Cloning and tissue distribution of the human P2Y1 receptor. Biochem. Biophys. Res. Commun. 1996; 221: 588–591
  • Schacter J. B., Li Q., Boyer J. L., Nicholas R. A., Harden T. K. Second messenger cascade specificity and pharmacologiacl selectivity of the human P2Y1-purinoreceptor. Br. J. Pharmacol. 1996; 118: 167–173
  • Defreyn G., Bemat A., Delebasse D., Maffrand J.-P. Pharmacology of toiclopidine: a review. Semin. Thromb. Hemost. 1989; 15: 159–166
  • Saltiel E., Ward A. Ticlopidine: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficay in platelet-dependent disease states. Drugs 1987; 34: 22–262
  • McTavish D., Faulds D., Gao K. L. Ticlopidine. An updated review of its pharmacology and therapeutic use in platelet-dependent disorders. Drugs 1990; 40: 238–259
  • Bruno J. J. The mechanism of action of ticlopidine. Thromb. Res. 1983; 59–67, Suppl IV
  • Maffrand J.-P., Defreyn G., Bernat A., Delebasee D., Tissmier. Reviewed pharmacology of ticlopidine. Angiolgie 1988; 7: 6–13
  • Herbert J. M., Frechel D., Vallee E., Kiefer G., Gouy D., Berger Y., Defreyn G., Maffrand J.-P. Clopidogrel, a novel antiplatelet and antithrombotic agent. Cardiovasc. Drug Rev. 1993; 11: 180–198
  • Savi P., Combalbert J., Gaich C., Rouchon M.-C., Maffrand J.-P., Berger Y. The antiaggregating activity of clopidogrel is due to a metabolic activation by the hepatic cytochrome P450–1A. Thromb. Haemost. 1994; 72: 313–317
  • Cattaneo M., Lombardi R., Bettega D., Leechi A., Mannuchi M. Shearinduced platelet aggregation is potentiated by desmopressin and inhibited by ticlopidine. Arterioscl. Thromb. 1993; 13: 393–397
  • Herbert J.-M., Bernat A., Maffrand J.-P. Aprotonin reduces clopidogrelinduced prolongation bleeding time in rats. Throm. Res. 1993; 71: 433–441
  • Nagakawa Y., Akedo Y., Orimo H., Yano H. Effect of combination of antiplatelet agents in man. Combination of aspirin, trapidil, ticlopidine and dipyridamole. Thromb. Res. 1990; 60: 469–475
  • Savi P., Bemat A., Dumas A., Ait-Chek L., Herbert J.-M. Effects of aspirin and clopidogrel on platelet dependent tissue factor expression in endothelial cells. Thromb. Res. 1994; 73: 117–124
  • Steiger H., Hess H., Mietaschek A., Trampish H.-J., Ingrish H. Einfluss von ticlopidine auf die periphere obliterierendie Arteriopathie. Dtsch. Med. Wschr. 1984; 109: 1240–1249
  • Levy R. I., Brensike J. F., Epstein S. E., Kelsey S. F., Passamanti E. R., Richardsson J. M., Loh I. K., Stone N. J., Aldrich R. F., Battaglini J. W., Moriarty D. J., Fisher M. L., Friedman L., Friedwald W., Detere K. M. The influence of changes in lipid values induced by cholestyramine and diet on progression of coronary artery disease—Results of NHIBI Type JJ coronary intervention study. Circulation 1984; 69: 325–337
  • Berglund U., Wallentin L. Influence on lipoprotein metabolism of platelet inhibitory drug ticlopidine. Atherosclerosis 1986; 59: 241–246
  • Humphries R. G., Tomlinson W., Clegg J. A., Ingall A. H., Kindon N. D., Leff P. Pharmacological profile of the novel P2T-purinoreceptor antagonist, FPL 67085 in vitro and in anesthesized rats in vivo. Br. J. Pharmacol. 1995; 115: 1110–1116
  • Humphries R. G., Robertson M. J., Leff P. A novel series of P2T purinoreceptor antagonists: definition of the role of ADP in arterial thrombosis. Trends Pharmacol. Sci. 1995; 16: 179–181
  • Humphries R. G., Tomlinson W., Ingall A. H., Cage P. A., Leff P. FPL 66096: a novel, highly potent and selective antagonist at human P2T purinoreceptor. Br. J. Pharmacol. 1994; 113: 1057–63
  • Chao F., Zamecnick P. C. Inhibition of platelet aggregation by Ap4A Hoppe Seyler′s Z. Physiol. Chem. 1984; 365: 610–611
  • Louie S., Kim B. K., Zamecnik P. C. Diadenosine 5′,5′-P1,P4-tetraphosphate, a potential antithrombotic agent. Thromb. Res. 1988; 49: 557–566.
  • Proctor R. A., Denlinger L. C., Leventhal P. S., Daugherty S. K., Van De Loo J.-W., Tanke T., Firestein G. S., Bertics P. J. Protection of mice from endotoxic death by 2-methylthio-ATP. Proc. Natl. Acad. Sci. U.S.A. 1994; 91: 6017–6020
  • Seiss W. Molecular mechanisms of platelet activation. Physiol. Rev. 1989; 69: 58–178
  • Gachet C., Cazenave J.-P. ADP-induced blood platelet activation: a review. Nouv. Rev. Franc. Hematol. 1991; 33: 347–358
  • Hourani S. M. O., Hall D. A. Receptors for ADP on human blood platelets. Trends Pharmacol. Sci. 1994; 15: 103–108
  • Mac Kenzie A. B., Mahaut-Smith M. P., Sage S. O. Activation of receptor-operated cation channel via P2X1 not P2T purinoreceptors in human platelets. J. Biol. Chem. 1996; 271: 2879–2881
  • McFarlane D. E. Platelet responses and metabolism, H. Holmsen. CRC Press, Boca Raton, FL 1987; 19–36

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.