43
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Autoimmune Lymphoproliferative Syndrome Type III: An Indefinite Disorder

, &
Pages 55-65 | Published online: 01 Jul 2009

References

  • Fisher G., Rosenberg F., Straus S., Dale J., Middleton L., Lin A., Strober W., Lenardo M., Puck J. Dominant interfering fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 1995; 81: 935–946
  • Rieux-Laucat F., Deist F. L., Hivroz C., Roberts I., Debatin K. M., Fisher A., Villartay J. -P. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 1995; 268: 1347–1349
  • Drappa J., Vaishnaw A. K., Sullivan K. E., Chu J. -L., Elkon K. B. Fas gene mutation in the Canale-Smith syndrome, an inherited lymphoproliferative Disorder associated with autoimmunity. New England Journal of Medicine 1996; 335: 1643–1649
  • Bettinardi A., Brugnoni D., Quiros-Roldan E., Malagoli A., Grutta S. L., Correra A., Notarangelo L. D. Missense mutations in the Fas gene resulting in autoimmune lymphoproliferative syndrome: a molecular and immunological analysis. Blood 1997; 89: 902–909
  • Pensati L., Costanzo A., Ianni A., Accapezzato D., Iorio R., Natoli G., Nisini R., Almerighi C., Balsano C., Vajro P., Vegnente A., Levrero M. Fas/Apol mutations and autoimmune lymphoproliferative syndrome in a patient with type 2 autoimmune hepatitis. Gastroenterology 1997; 113: 1384–1389
  • Sneller M. C., Wang J., Dale J. K., Strober W., Middelton L. A., Choi Y., Flaisher T. A., Lim M. S., Jaffe E. S., Lenardo J. J., Straus S. E. Clinical, immunologic and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood 1997; 89: 1341–1348
  • Kasahara Y., Wada T., Niida Y., Yachie A., Seki H., Ishida Y., Sakai T., Koizumi F., Koizumi S., Miyawaki T., Taniguchi N. Novel Fas (CD95/APO-1) mutations in infants with a lymphoproliferative disorder. International Immunology 1998; 10: 195–202
  • Infante A. J., Britton H. A., DeNapoli T., Middelton L. A., Lenardo M. J., Jackson C. E., Wang J., Fleisher T., Straus S. E., Puck J. M. The clinical spectrum in a large kindred with autoimmune lymphoproliferative syndrome caused by a Fas mutation that impairs apoptosis. 1998 1998; 133: 629–633
  • Canale V. C., Smith C. H. Chronic lymphadenopathy simulating malignant lymphoma. Journal of Pediatrics 1967; 70: 891–899
  • Sneller M. C., Straus S. E., Jaffe E. S., Jaffe J. S., Fleisher T. A., Stetler-Stevenson M., Strober W. A novel lymphoproliferative/autoimmune syndrome resembling murine Ipr/gld disease. Journal of Clinical. Investigation 1992; 90: 334–341
  • Watanabe-Fukunaga R., Brannan C., Copeland N., Jenkins N., Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992; 356: 314–317
  • Takahashi T., Tanaka M., Brannan C., Jenkins N., Copeland N., Suda T., Nagata S. Generalized lymphoproliferative disease in mice caused by a point mutation in the Fas ligand. Cell 1994; 76: 969–976
  • van der Werff ten Bosch J., Demanet C., Balduck N., Bakkus M., De Raeve H., Desprechins B., Otten J., Thielemans K. The use of the anti malaria drug Fansidar (pyrimethamine and sulfadoxine) in the treatment of a patient with autoimmune lymphoproliferative syndrome and Fas deficiency. British Journal of Haematology 1998; 102: 578–581
  • Sleight B., Prasad V., DeLaat C., Steele P., Ballard E., Arceci R., Sidman C. Correction of autoimmune lymphoproliferative syndrome by bone marrow transplantation. Bone Marrow transplantation 1998; 22: 375–380
  • Vaishnaw A. K., Orlinck J. R., Chu J. -L., Krammer P. H., Chao M. V., Elkon K. B. The molecular basis for apoptotic defects in patients with CD95 (Fas/Apo-1) mutations. Journal of Clinical Investigation 1999; 103: 355–363
  • Jackson C. E., Fischer R. E., Hsu A. P., Anderson S. M., Choi Y., Wang J., Dale J. K., Fleisher T. A., Middelton L. A., Sneller M. C., Lenardo M. J., Straus S. E., Puck J. M. Autoimmune lymphoproliferative syndrome with defective fas genotype influence penetrance. American Journal of Human Genetics 1999; 64: 1002–1014
  • Peters A., Kohfink B., Martin H., Griesinger F., Wormann B., Gahr M., Roesler J. Defective apoptosis due to a point mutation in the death domain of CD95 associated with autoimmune lymphoproliferative syndrome, T-cell lymphoma, and Hodgkin's disease. Experimental Hematology 1999; 27: 868–874
  • Rieux-Laucat F., Blachère S., Danielan S., De Villartay J., Oleastro M., Solary E., Bader-Meunier B., Arkwright P., Pondaré C., Bernaudin F., Chapel H., Nielsen S., Berrah M., Fischer A., Le Deist F. Lymphoproliferative syndrome with autoimmunity: a possible genetic basis for dominant interfering expression of the clinical phenotype. Blood 1999; 94: 2575–2582
  • Aspinall A., Pinto A., Auer L., Bridges P., Luider J., Dimnik L., Patel K., Jorgenson K., Woodman R. Identification of new Fas mutations in a patient with autoimmune lymphoproliferative syndrome (ALPS) and eosinophilia. Blood Cells Molecular Discourse 1999; 25: 227–238
  • van der Burg M., de Groot R., Comans-Bitter W., den Hollander J., Hooijkaas H., Neijens H., Berger R., Oranje A., Langerak A., van Dongen J. Autoimmune Lymphoproliferative Syndrome (ALPS) in a child from cosanguineous parents: a dominant or recessive disease?. Pediatric Research 2000; 47: 336–343
  • Bader-Meunier B., Rieux-Laucat F., Croisille L., Yvart J., Mielot F., Dommergues J., Ledeist F., Tchernia G. Dyserythropoiesis associated with a Fas-deficient condition in childhood. British Journal of Haematology 2000; 108: 300–304
  • Shenoy S., Arnold S., Chatila T. Response to steroid therapy in autism secondary to autoimmune lymphoproliferative syndrome. Journal of Pediatrics 2000; 136: 682–687
  • Wu J., Wilson J., He J., Xiang L., Schur P., Mountz J. Fas Ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. Journal of Clinical Investigation 1996; 98: 1107–1113
  • Schulze-Osthoff K., Ferrari D., Los M., Wesselborg S., Peter M. Apoptosis signaling by death receptors. European Journal of Biocheimstry 1998; 254: 439–459
  • Itoh N., Nagata S. A novel protein domain required for apoptosis-Mutational analysis of human fas antigen. Journal of Biological Chemistry 1993; 268: 10932–10937
  • Kischkel F., Hellbardt S., Behrmann I., Germer M., Pawlita M., Krammer P., Peter M. Cytotoxicity-dependent APO-1 (FAS/CD95) associated proteins form a death-inducing signal complex (DISC) with the receptor. Embo Journal 1995; 4: 5579–5588
  • Boldin M., Varfolomeev E., Pancer Z., Mett I., Camonis J., Wallach D. A novel protein that interacts with the death domain of Fas/APO-1 contains a sequence motif related to the death domain. Journal of Biological Chemistry 1995; 270: 7795–7798
  • Chinnaiyan A., O'Rourke K., Tewari M., Dixit V. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81: 505–512
  • Boldin P., Goncharov T., Goltsev Y., Wallach D. Involvement of MACH, a novel MORTI/FADD-interacting protease, in Fas/APO-1 and TNF receptor induced cell death. Cell 1996; 85: 803–815
  • Fernandez-Alnemri T., Armstrong R., Krebs J., Srinivasula S., Wang L. In vitro activation of CPP32 and McH3 by McH4, a novel human apoptotic cysteine protease containing 2 FADD-like domains. Proceedings of the National Academy of Science of the USA 1996; 93: 7464–7469
  • Muzio M., Chinnaiyan A., Kischkel F. K. O. R., Shevchenko A., Ni J., Scaffidi C., Bretz J., Zhang M., Gentz R., Mann M., Krammer P., Peter M., Dixit V. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/Apo-1) death-inducing signaling complex;. Cell 1996; 85: 817–827
  • Medema J., Scaffidi C., Kischkel F., Shevchenko A., Mann M., Krammer P., Peter M. Fice is activated by association with the CD95 death inducing signal complex (DISC). EMBO Journal 1997; 16: 2794–2804
  • Hasegawa J., Kamada S., Kamiike W., Shimizu S., Imazu T., Matsuda H., Tsujimoto Y. Involvement of CPP32/Yama(-like) proteases in Fas-mediated apoptosis. Cancer Research 1996; 56: 1713–1718
  • Schlegel J., Peters I., Orrenius S., Miller D., Thornberry N., Yamin T., Nicholson D. CPP32/apopain is a key Interleukin 1-beta converting enzyme-like protease involved in Fas-mediated apoptosis. Journal of Biological Chemistry 1996; 271: 1841–1844
  • Enari M., Hug H., Nagata S. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 1995; 375: 78–81
  • Stennicke H., Jurgensmeier J., Shin H., Deveraux Q., Wolf B., Yang X., Zhou Q., Ellerby H., Ellerby L., Bredesen D., Green D., Reed J., Froelich C., Salvesen G. Pro-caspase-3 is a major physiologic target of caspase-8. Journal of Bioogical Chemistry 1998; 273: 27084–27090
  • Zheng T., Schlosser S., Dao T., Hingorani R., Crispe I., Boyer J., Flavell R. Caspase-3 controls both cytoplasmatic and nuclear events associated with fas-mediated apoptosis in vivo. Proceedings of the National Academy of Science of the USA 1998; 95: 13618–13623
  • Jackson P., Puck J. Autoimmune Lymphoproliferative Syndrome, a disorder of apoptosis. Current Opinion in Pediatrics 1999; 11: 521–527
  • Martin D. A., Zheng I., Siegel R. M., Huang B., Fisher G. H., Wang J., Jackson C. E., Puck J. M., Dale J., Straus S. E., Peter M. E., Krammer P. H., Fesik S., Lenardo M. J. Defective CD95/Apo-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proceedings of the National Academy of Science of the USA 1999; 96: 4552–4557
  • Lim M. S., Straus S. E., Dale J. K., Fleisher T. A., Stetler-Stevenson M., Strober W., Sneller M. C., Puck J. M., Lenardo M. J., Elenitoba-Johnson K., Lin A. Y., Raffield M., Jaffe E. S. Pathological findings in human autoimmune lymphoproliferative syndrome. American Journal of Pathology 1998; 153: 1541–1550
  • Dianzani U., Bragardo M., DiFranco D., Alliaudi C., Scagni P., Buonfiglio D., Redoglia V., Bonissoni S., Correra A., Dianzani I., Ramenghi U. Deficiency of Fas apoptosis pathway without fas gene mutations in pediatric patients with autoimmunity/lymphoproliferation. Blood 1997; 89: 2871–2879
  • van der Werff ten Bosch J., Delabie J., Böhler T., Verschuere J., Thielemans K. Revision of the diagnosis of T-zone lymphoma in the father of a patient with autoimmune lymphoproliferative syndrome type II. British Journal of Haematology 1999; 106: 1045–1048
  • Strobel P., Nanan R., Gattenlohner S., Muller-Deubert S., Muller-Hermelink H. K., Kreth H. W., Marx A. Reversible monoclonal lymphadenopathy in autoimmune lymphoproliferative syndrome with functional FAS (CD95/APO-1) deficiency. American Journal of Surgical Pathology 1999; 23: 829–837
  • Ramenghi U., Bonissoni S., Migliaretti G., DeFranco S., Bottarel F., Gambaruto C., DiFranco D., Priori R., Conti F., Dianzani I., Valesini G., Merletti F., Dianzani U. Deficiency of the fas apoptosis pathway without fas gene mutations is a familial trait predisposing to development of autoimmune diseases and cancer. Blood 2000; 95: 3176–3182
  • Tepper C. G., Jayadev S., Liu B., Bielawska A., Wolff R., Yonehara S., Hannun Y. A., Seldin M. F. Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Procedings of the National Academy of Science of the USA 1995; 92: 8443–8447
  • Wang J., Zheng L., Lobito A., Chan F., Dale J., Sneller M., Yao X., Puck J., Straus S., Lenardo M. Inherited human caspase-10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 1999; 98: 47–58
  • Vidal S., Kono D. H., Theofilopoulos A. N. Loci predisposing to autoimmunity in MRL-Faslpr and C57BL/6-Faslpr mice. Journal of Clinical Investigation 1998; 101: 696–702
  • Van Parijs L., Refaeli Y., Abbas A. K., Baltimore D. Autoimmunity as a consequence of retrovirus-mediated expression of C-FLIP in lymphocytes. Immunity 1999; 11: 763–770
  • Irmler M., Thome M., Hahne M., Schneider P., Hofinannn K. Inhibition of death receptor signals by cellular FLIP. Nature 1997; 388: 190–195
  • Fuss I. J., Strober W., Dale J. K., Fritz S., Pearlstein G. R., Puck J. M. Characteristic T helper 2 cell cytokine abnormalities in autoimmune lymphoproliferative syndrome, a syndrome marked by detective apoptosis and humoral autoimmunity. Journal of immunology 1997; 158: 1912–1918
  • Varfolomeev E. E., Boldin M. P., Goncharov T. M., Wallach D. A potential mechanism of “cross-talk” between the p55 tumor necrosis factor receptor and Fas/APO1: proteins binding to the death domains of the two receptors also bind to each other. Journal of Experimental Medicine 1996; 183: 1271–1275
  • Körner H., Cretney E., Wilhelm P., Kelly J., Rollinghoff M., Sedgwick J., Smyth M. Tumor necrosis factor sustains the generalized lymphoproliferative disorder (gld) phenotype. Journal of Experimental Medicine 2000; 191: 89–96
  • Jenkins J. M., Keir M., McCune J. M. A membrane-bound Fas decoy receptor expressed by human thymocytes. Journal of Biological Chemistry, 275: 7988–7993
  • Knipping E., Krammer P. H., Onel K. B., Lehman T. J., Mysler E., Elkon K. B. Levels of soluble Fas/APO-1/CD95 in systemic lupus erythematosus and juvenile rheumatoid arthritis. Arthritis and Rheumatology 1995; 38: 1935–1737
  • Goel N., Ulrich D. T., St. Clair E. W., Fleming J. A., Lynch D. H., Seldin M. F. Lack of correlation between serum soluble Fas/APO-1 levels and autoimmune disease. Arthritis and Rheumatology 1995; 38: 1938–1743
  • Wong B., Arron J., Choi Y. T cell receptor signals enhance susceptibility to Fas-mediated apoptosis. Journal of Experimental Medicine 1997; 186: 1939–1944
  • Combadiere B., Sousa C. R., Germain R. N., Lenardo M. J. Selective induction of apoptosis in mature T lymphocytes by variant T cell receptor ligands. Journal of Experimental Medicine 1998; 187: 349–355
  • Kroemer G., Zamzani N., Susin S. Mitochondrial control of apoptosis. Immunology Today 1997; 18: 44–51
  • Yang E., Korsmeyer S. Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood 1996; 88: 386–401
  • Armstrong R. C., Aja T., Xiang J., Gaur S., Krebs J. F., Hoang K., Bai X., Korsmeyer S. J., Karanewsky D. S., Fritz L. C., Tomaselli K. J. Fas-induced activation of the cell death-related protease CPP32 Is inhibited by Bcl-2 and by ICE family protease inhibitors. Journal of Biological Chemistry 1996; 271: 16850–16855
  • Boise L., Thompson S. Bcl-XI can inhibit apoptosis in cells that have undergone Fas-induced protease activation. Procedings of the National Academy of Science of the USA 1997; 94: 3759–3764
  • Warrier S., Kaplan J., Ravindranath Y. Persistent immune activation in children with Evans syndrome: evidence for a role of fas system. ASH 1998, Miami, Abstract number 711
  • Vaishnaw A. K., Toubi E., Ohsako S., Drappa J., Buys S., Estrada J., Sitarz A., Zemel L., Chu J. L., Elkon K. B. The spectrum of apoptotic defects and clinical manifestations, including systemic lupus erythematosus, in humans with CD95 (Fas/APO-1) mutations. The Journal of Arthritis and reumatology 1999; 42: 1833–1842
  • Mysler E., Bin P., Drappa J., Ramos P., Friedman S. M., Krammer P. H., Elkon K. B. The apoptosis-1/Fas protein in human systemic lupus erythematosus. Journal of clinical Investigation 1994; 93: 1029–1034
  • Debatin K. M., Krammer P. H. Resistance to APO-1 (CD95) induced apoptosis in T-ALL is determined by a BCL-2 independent anti-apoptotic program. Leukemia 1995; 9: 815–820
  • van der Werff ten Bosch J. E., Demanet C., Balduck N., Bakkus M. H. C., De Raeve H., Desprechins B., Otten J., Thielemans K. The use of the anti malaria drug Fansidar (pyrimethamine and sulfadoxine) in the treatment of a patient with autoimmune lymphoproliferative syndrome and Fas deficiency. British Journal of Heamatology 1998; 102: 578–581

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.