303
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Natural Bcl-2 inhibitor (−)– gossypol induces protective autophagy via reactive oxygen species–high mobility group box 1 pathway in Burkitt lymphoma

, , , , , , & show all
Pages 2263-2268 | Received 01 Oct 2012, Accepted 07 Feb 2013, Published online: 13 Mar 2013

References

  • Blum KA, Lozanski G, Byrd JC. Adult Burkitt leukemia and lymphoma. Blood 2004;104:3009–3020.
  • Balakrishnan K, Burger JA, Wierda WG, et al. AT-101 induces apoptosis in CLL B cells and overcomes stromal cell-mediated Mcl-1 induction and drug resistance. Blood 2009;113:149–153.
  • Akagunduz O, Karaca B, Atmaca H, et al. Radiosensitization of hormone-refractory prostate cancer cells by gossypol treatment. J BUON 2010;15:763–767.
  • Mohammad RM, Wang S, Aboukameel A, et al. Preclinical studies of a nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-X(L) [(2)–gossypol] against diffuse large cell lymphoma. Mol Cancer Ther 2005;4:13–21.
  • Etxebarria A, Landeta O, Antonsson B, et al. Regulation of antiapoptotic MCL-1 function by gossypol: mechanistic insights from in vitro reconstituted systems. Biochem Pharmacol 2008;76:1563–1576.
  • Meng Y, Li Y, Li J, et al. (−)Gossypol and its combination with imatinib induce apoptosis in human chronic myeloid leukemic cells. Leuk Lymphoma 2007;48:2204–2212.
  • Kline MP, Rajkumar SV, Timm MM, et al. R-(−)-gossypol (AT-101) activates programmed cell death in multiple myeloma cells. Exp Hematol 2008;36:568–576.
  • Warr MR, Shore GC. Small-molecule Bcl-2 antagonists as targeted therapy in oncology. Curr Oncol 2008;15:256–261.
  • Oliver CL, Miranda MB, Shangary S, et al. (−)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-X(L)-mediated apoptosis resistance. Mol Cancer Ther 2005;4:23–31.
  • Arnold AA, Aboukameel A, Chen J, et al. Preclinical studies of apogossypolone: a new nonpeptidic pan small-molecule inhibitor of Bcl-2, Bcl-XL and Mcl-1 proteins in follicular small cleaved cell lymphoma model. Mol Cancer 2008;7:20.
  • Liu Q, Wang JJ, Pan YC, et al[Expression of autophagy-related genes Beclin1 and MAPLC3 in non-small cell lung cancer].Ai Zheng 2008;27:25–29.
  • Macoska JA, Adsule S, Tantivejkul K, et al. -(−)Gossypol promotes the apoptosis of bladder cancer cells in vitro. Pharmacol Res 2008;58:323–331.
  • Meng Y, Tang W, Dai Y, et al. Natural BH3 mimetic (−)-gossypol chemosensitizes human prostate cancer via Bcl-xL inhibition accompanied by increase of Puma and Noxa. Mol Cancer Ther 2008; 7:2192–2202.
  • Sikora MJ, Bauer JA, Verhaegen M, et al. Anti-oxidant treatment enhances anti-tumor cytotoxicity of (−)-gossypol. Cancer Biol Ther 2008;7:767–776.
  • Gao P, Bauvy C, Souquere S, et al. The Bcl-2 homology domain 3 mimetic gossypol induces both Beclin 1-dependent and Beclin 1-independent cytoprotective autophagy in cancer cells. J Biol Chem 2010;285:25570–25581.
  • Voss VCS, Lang V, Ronellenfitsch MW, et al. The pan-Bcl-2 inhibitor (−)-gossypol triggers autophagic cell death in malignant glioma. Mol Cancer Res 2010;8:15–23.
  • Lian J, Wu X, He F, et al. A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2-Beclin1 interaction at endoplasmic reticulum. Cell Death Differ 2011;18:60–71.
  • Sung B, Ravindran J, Prasad S, et al. Gossypol induces death receptor-5 through activation of the ROS-ERK-CHOP pathway and sensitizes colon cancer cells to TRAIL. J Biol Chem 2010;285: 35418–35427.
  • Balakrishnan K, Wierda WG, Keating MJ, et al. Gossypol, a BH3 mimetic, induces apoptosis in chronic lymphocytic leukemia cells. Blood 2008;112:1971–1980.
  • Lian J, Ni Z, Dai X, et al. Sorafenib sensitizes (−)-gossypol-induced growth suppression in androgen-independent prostate cancer cells via Mcl-1 inhibition and Bak activation. Mol Cancer Ther 2012;11: 416–426.
  • Chen Y, Azad MB, Gibson SB. Methods for detecting autophagy and determining autophagy-induced cell death. Can J Physiol Pharmacol 2010;88:285–295.
  • Li X, Lu Y, Pan T, et al. Roles of autophagy in cetuximab-mediated cancer therapy against EGFR. Autophagy 2010;6:1066–1077.
  • Yan HL, Xue G, Mei Q, et al. Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 2009;28:2719–2732.
  • Yang X, Zhang Y, Zhang L, et al. Silencing alpha-fetoprotein expression induces growth arrest and apoptosis in human hepatocellular cancer cell. Cancer Lett 2008;271:281–293.
  • Paglin S, Hollister T, Delohery T, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 2001;61:439–444.
  • Kang R, Livesey KM, Zeh HJ 3rd, et al. HMGB1 as an autophagy sensor in oxidative stress. Autophagy 2011;7:904–908.
  • Dalby KN, Tekedereli I, Lopez-Berestein G, et al. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 2010;6:322–329.
  • Baehrecke EH. Autophagy: dual roles in life and death?Nat Rev Mol Cell Biol 2005;6:505–510.
  • Kondo Y, Kondo S. Autophagy and cancer therapy. Autophagy 2006;2:85–90.
  • Lian J, Karnak D, Xu L. The Bcl-2-Beclin 1 interaction in (−)-gossypol-induced autophagy versus apoptosis in prostate cancer cells. Autophagy 2010;6:1201–1203.
  • Maiuri MC, Criollo A, Tasdemir E, et al. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 2007;3:374–376.
  • Dewaele M, Maes H, Agostinis P. ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 2010;6:838–854.
  • Scherz-Shouval R, Elazar Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 2007;17:422–427.
  • Low ICC, Kang J, Pervaiz S. Bcl-2: a prime regulator of mitochondrial redox metabolism in cancer cells. Antioxid Redox Signal 2011;15:2975–2987.
  • Arinbasarova AY, Medentsev AG, Krupyanko VI. Gossypol inhibits electron transport and stimulates ROS generation in Yarrowia lipolytica mitochondria. Open Biochem J 2012;6:11–15.
  • Wong CH, Iskandar KB, Yadav SK, et al. Simultaneous induction of non-canonical autophagy and apoptosis in cancer cells by ROS-dependent ERK and JNK activation. PLoS One 2010;5:e9996.
  • Yuan Y, Xue X, Guo R-B, et al. Resveratrol enhances the antitumor effects of temozolomide in glioblastoma via ROS-dependent AMPK-TSC-mTOR signaling pathway. CNS Neurosci Ther 2012;18:536–546.
  • Walker T, Mitchell C, Park MA, et al. Sorafenib and vorinostat kill colon cancer cells by CD95-dependent and -independent mechanisms. Mol Pharmacol 2009;76:342–355.
  • Kim KW, Moretti L, Lu B. M867, a novel selective inhibitor of caspase-3 enhances cell death and extends tumor growth delay in irradiated lung cancer models. PLoS One 2008;3:e2275.
  • Jia L, Coward LC, Kerstner-Wood CD, et al. Comparison of pharmacokinetic and metabolic profiling among gossypol, apogossypol and apogossypol hexaacetate. Cancer Chemother Pharmacol 2008; 61:63–73.
  • Wu DF, Yu YW, Tang ZM, et al. Pharmacokinetics of (+/2)–, (+)2, and (−)–gossypol in humans and dogs. Clin Pharmacol Ther 1986;39:613–618.
  • Schrier BP, Lichtendonk WJ, Witjes JA. The effect of N-acetyl-L-cysteine on the viscosity of ileal neobladder mucus. World J Urol 2002;20:64–67.
  • Conesa EL, Valero F, Nadal JC, et al. N-acetyl-L-cysteine improves renal medullary hypoperfusion in acute renal failure. Am J Physiol Regul Integr Comp Physiol 2001;281:R730–R737.
  • Shimamoto K, Hayashi H, Taniai E, et al. Antioxidant N-acetyl-L-cysteine (NAC) supplementation reduces reactive oxygen species (ROS)-mediated hepatocellular tumor promotion of indole-3-carbinol (I3C) in rats. J Toxicol Sci 2011;36:775–786.
  • Barkholt L, Remberger M, Hassan Z, et al. A prospective randomized study using N-acetyl-L-cysteine for early liver toxicity after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2008;41:785–790.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.