464
Views
8
CrossRef citations to date
0
Altmetric
Original Articles: Clinical

Protein profiles distinguish stable and progressive chronic lymphocytic leukemia

, , , , , , , & show all
Pages 1033-1043 | Received 06 Aug 2014, Accepted 11 Sep 2015, Published online: 16 Nov 2015

References

  • Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9–29.
  • Redaelli A, Laskin BL, Stephens JM, et al. The clinical and epidemiological burden of chronic lymphocytic leukaemia. Eur J Cancer Care 2004; 13: 279–287.
  • Rozman C, Montserrat E. Current concepts – chronic lymphocytic-leukemia. N Engl J Med 1995; 333: 1052–1057.
  • Vidal L, Gafter-Gvili A, Gurion R, et al. Bendamustine for patients with indolent B cell lymphoid malignancies including chronic lymphocytic leukaemia. Cochrane Database of Systematic Reviews 2012; 9: 1–45.
  • Chen EI, Yates JR, III. Cancer proteomics by quantitative shotgun proteomics. Molecular Oncology 2007; 1: 144–159.
  • Hung KE, Faca V, Song K, et al. Comprehensive proteome analysis of an apc mouse model uncovers proteins associated with intestinal tumorigenesis. Cancer Prevention Research 2009; 2: 224–233.
  • Kikuchi T, Hassanein M, Amann JM, et al. In-depth proteomic analysis of nonsmall cell lung cancer to discover molecular targets and candidate biomarkers. Mol Cell Proteomics 2012; 11: 916–932.
  • Voss T, Ahorn H, Haberl P, et al. Correlation of clinical data with proteomics profiles in 24 patients with B-cell chronic lymphocytic leukemia. Intl J Cancer 2001; 91: 180–186.
  • Cochran DAE, Evans CA, Blinco D, et al. Proteomic analysis of chronic lymphocytic leukemia subtypes with mutated or unmutated Ig V-H genes. Mol Cell Proteomics 2003; 2: 1331–1341.
  • Rees-Unwin KS, Faragher R, Unwin RD, et al. Ribosome-associated nucleophosmin 1: increased expression and shuttling activity distinguishes prognostic subtypes in chronic lymphocytic leukaemia. Br J Haematol 2010; 148: 534–543.
  • Eagle GL, Zhuang JG, Jenkins RE, et al. Total proteome analysis identifies migration defects as a major pathogenetic factor in immunoglobulin heavy chain variable region (ighv)-unmutated chronic lymphocytic leukemia. Mol Cell Proteomics 2015; 14: 933–945.
  • Ghassemifar R, Forster L, Finlayson J, et al. Differential expression of the Bcl-2 and Bax isoforms in CD19 positive B-lymphocytes isolated from patients diagnosed with chronic lymphocytic leukaemia. Pathology 2012; 44: 632–637.
  • Otake Y, Soundararajan S, Sengupta TK, et al. Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 2007; 109: 3069–3075.
  • Vela JAG, Delgado I, Benito L, et al. CD79b expression in B cell chronic lymphocytic leukemia: its implication for minimal residual disease detection. Leukemia 1999; 13: 1501–1505.
  • Holman SW, Sims PFG, Eyers CE. The use of selected reaction monitoring in quantitative proteomics. Bioanalysis 2012; 4: 1763–1786.
  • Mactier S, Kaufman KL, Wang PH, et al. Protein signatures correspond to survival outcomes of AJCC stage III melanoma patients. Pigment Cell Melanoma Res 2014; 27: 1106–1116.
  • Kim YJ, Sertamo K, Pierrard MA, et al. Verification of the biomarker candidates for non-small-cell lung cancer using a targeted proteomics approach. J Proteome Res 2015; 14: 1412–1419.
  • Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.
  • Best OG, Ibbotson RE, Parker AE, et al. ZAP-70 by flow cytometry: a comparison of different antibodies, anticoagulants, and methods of analysis. Cytometry Part B Clin Cytometry 2006; 70B: 235–241.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate – a practical and powerful approach to multiple testing. J Roy Stat Soc Series B Method 1995; 57: 289–300.
  • MacLean B, Tomazela DM, Shulman N, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010; 26: 966–968.
  • Rosenthal R. Combining results of independent studies. Psycholog Bull 1978; 85: 185–193.
  • Jeromin S, Weissmann S, Haferlach C, et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia 2014; 28: 108–117.
  • Libisch MG, Casas M, Chiribao M, et al. GALNT11 as a new molecular marker in chronic lymphocytic leukemia. Gene 2014; 533: 270–279.
  • Zhu HY, Wu W, Fu Y, et al. Overexpressed BAG3 is a potential therapeutic target in chronic lymphocytic leukemia. Ann Hematol 2014; 93: 425–435.
  • Karan-Djurasevic T, Palibrk V, Zukic B, et al. Expression of Bcl2L12 in chronic lymphocytic leukemia patients: association with clinical and molecular prognostic markers. Medical Oncol 2013; 30: doi: 10.1007/s12032-012-0405-7.
  • Leibundgut EO, Rogenmoser-Dissler D, de Beer D, et al. CLLU1 expression distinguishes chronic lymphocytic leukemia from other mature B-cell neoplasms. Leuk Res 2012; 36: 1204–1207.
  • Martinelli S, Kanduri M, Maffei R, et al. ANGPT2 promoter methylation is strongly associated with gene expression and prognosis in chronic lymphocytic leukemia. Epigenetics 2013; 8: 720–729.
  • Huang PY, Best OG, Almazi JG, et al. Cell surface phenotype profiles distinguish stable and progressive chronic lymphocytic leukemia. Leuk Lymphoma 2014; 55: 2085–2092.
  • Mechref Y, Hu YL, Garcia A, et al. Defining putative glycan cancer biomarkers by MS. Bioanalysis 2012; 4: 2457–2469.
  • Puiggros A, Abrisqueta P, Nonell L, et al. Lenalidomide and dexamethasone combination in patients with chronic lymphocytic leukemia (CLL) relapsing or resistant to treatment (LENDEX-LLC-09): a gene expression profiling study. Blood 2014; 124: 4675.
  • Van Dyke DL, Shanafelt TD, Call TG, et al. A comprehensive evaluation of the prognostic significance of 13q deletions in patients with B-chronic lymphocytic leukaemia. Br J Haematol 2010; 148: 544–550.
  • Vasconcelos Y, De Vos J, Vallat L, et al. Gene expression profiling of chronic lymphocytic leukemia can discriminate cases with stable disease and mutated Ig genes from those with progressive disease and unmutated Ig genes. Leukemia 2005; 19: 2002–2005.
  • Chen R, Pan S, Brentnall TA, Aebersold R. Proteomic profiling of pancreatic cancer for biomarker discovery. Mol Cell Proteomics 2005; 4: 523–533.
  • Rossi D, Khiabanian H, Spina V, et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 2014; 123: 2139–2147.
  • McClung JK, Jupe ER, Liu XT, et al. Prohibitin – potential role in senescence, development, and tumor suppression. Exp Gerontol 1995; 30: 99–124.
  • Woodlock TJ, Bethlendy G, Segel GB. Prohibitin expression is increased in phorbol ester-treated chronic leukemic B-lymphocytes. Blood Cells Mol Dis 2001; 27: 27–34.
  • Yeung K, Seitz T, Li SF, et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 1999; 401: 173–177.
  • Zhang D, Beresford PJ, Greenberg AH, et al. Granzymes A and B directly cleave lamins and disrupt the nuclear lamina during granule-mediated cytolysis. Proc Natl Acad Sci U S A 2001; 98: 5746–5751.
  • Zhang D, Pasternack MS, Beresford PJ, et al. Induction of rapid histone degradation by the cytotoxic T lymphocyte protease Granzyme A. J Biol Chem 2001; 276: 3683–3690.
  • Dicker F, Herholz H, Schnittger S, et al. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia 2009; 23: 117–124.
  • Christensen DJ, Chen Y, Oddo J, et al. SET oncoprotein overexpression in B-cell chronic lymphocytic leukemia and non-Hodgkin’s lymphoma: a predictor of aggressive disease and new treatment target. Blood 2011; 118: 4150–4158.
  • Jin L, Liu G, Zhang CH, et al. Nm23-H1 regulates the proliferation and differentiation of the human chronic myeloid leukemia K562 cell line: a functional proteomics study. Life Sciences 2009; 84: 458–467.
  • Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.
  • Yokoyama A, Okabe-Kado J, Wakimoto N, et al. Evaluation by multivariate analysis of the differentiation inhibitory factor nm23 as a prognostic factor in acute myelogenous leukemia and application to other hematologic malignancies. Blood 1998; 91: 1845–1851.
  • Gupta P, Mittal AK, Weisenburger DD, et al. Heat-shock protein signature is associated with refractory chronic lymphocytic leukemia cells from different in vivo microenvironments. Blood 2011; 118: 1652–1653.
  • Lanneau D, Brunet M, Frisan E, et al. Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med 2008; 12: 743–761.
  • Ghobrial IM, McCormick DJ, Kaufmann SH, et al. Proteomic analysis of mantle-cell lyrnphoma by protein microarray. Blood 2005; 105: 3722–3730.
  • Hwang YJ, Lee SP, Kim SY, et al. Expression of heat shock protein 60 kDa is upregulated in cervical cancer. Yonsei Medical Journal 2009; 50: 399–406.
  • Dempsey NC, Leoni F, Ireland HE, et al. Differential heat shock protein localization in chronic lymphocytic leukemia. J Leukocyte Biol 2010; 87: 467–476.
  • Bacalini MG, Tavolaro S, Peragine N, et al. A subset of chronic lymphocytic leukemia patients display reduced levels of PARP1 expression coupled with a defective irradiation-induced apoptosis. Exp Hematol 2012; 40: 197–206 e191.
  • Bar-Sagi D, Hall A. Ras and Rho GTPases: a family reunion. Cell 2000; 103: 227–238.
  • Ridley AJ. Rho family proteins: coordinating cell responses. Trends Cell Biol 2001; 11: 471–477.
  • Alsagaby SA, Khanna S, Hart KW, et al. Proteomics-based strategies to identify proteins relevant to chronic lymphocytic leukemia. J Proteome Res 2014; 13: 5051–5062.
  • Schramek D, Sendoel A, Segal JP, et al. Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas. Science 2014; 343: 309–313.
  • Derycke L, Stove C, Vercoutter-Edouart A-S, et al. The role of non-muscle myosin IIA in aggregation and invasion of human MCF-7 breast cancer cells. Intl J Dev Biol 2011; 55: 835–840.
  • Pajic T, Cernelc P, Briski AS, et al. Glutamate dehydrogenase activity in lymphocytes of B-cell chronic lymphocytic leukaemia patients. Clin Biochem 2009; 42: 1677–1684.
  • Satoh M, Chan JYF, Ross SJ, et al. Autoantibodies to transcription intermediary factor (TIF)1 beta associated with dermatomyositis. Arthritis Res Therapy 2012; 14: R79.
  • Mkrtchian S, Sandalova T. ERp29, an unusual redox-inactive member of the thioredoxin family. Antiox Redox Signal 2006; 8: 325–337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.