45
Views
33
CrossRef citations to date
0
Altmetric
Original Article

Cellular Characteristics of Acute Myeloblasts Leukemia Associated with t(8;21)(q22;q22)

, &
Pages 229-234 | Received 09 Jul 1993, Published online: 01 Jul 2009

References

  • First MIC Cooperative Study Group. Morphologic, immunologic, and cytogenetic (MIC) working classification of acute lymphoblastic leukemias. Cancer Genet. Cytogenet. 1986; 23: 189–197
  • Second MIC Cooperative Study Group. Morphologic, immunologic, and cytogenetic (MIC) working classification of the acute myeloid leukemias. Cancer Genet. Cytogenet. 1988; 30: 1–15
  • Rowley J. D. Identification of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann. Genet. 1973; 16: 109–112
  • Kamada N., Okada K., Oguma N., Tanaka R., Mikami M., Uchino H. C-G translocation in acute myelocytic leukemia with low neutrophil alkaline phosphatase activity. Cancer 1976; 37: 2380–2387
  • Trujillo J. M., Cork A., Ahearm M. J., Youness E. L., McCredie K. B. Hematologic and cytologic characterization of 8/21 translocation acute granulocytic leukemia. Blood 1979; 53: 695–706
  • Fourth International Workshop on Chromosomes in Leukemia, 1982. Translocation (8;21) (q22;q22) in acute nonlymphocytic leukemia. Cancer Genet. Cytogenet 1984; 11: 284–287
  • Swirsky D. M., Li Y. S., Mathews J. G., Flemans R. J., Rees J. K. H., Hayhoe F. G. J. 8;21 translocation in acute granulocytic leukaemia: cytogenetical, cytochemical and clinical features. Br. J. Haematol. 1984; 56: 199–213
  • Ishibashi T., Kimura H., Abe R., Matsuda S., Uchida T., Kariyone S. Involvement of eosinophils in leukemia: Cytogenetic study of eosinophilic colonies from acute myelogenous leukemia associated with translocation (8;21). Cancer Genet. Cytogenet. 1986; 22: 189–194
  • Koeffler H. P. Ayndromes of acute nonlymphocytic leukemia. Ann. Int. Med. 1987; 107: 748–758
  • Bennet J. M., Catovsky D., Daniel M. T., Flandrin G., Galton D. A. G., Gralnick H. R., Sultan C., FAB Cooperative Group. Proposed revised criteria for the classification of acute myeloblastic leukemia. Ann. Int. Med. 1985; 103: 620–625
  • Arthur D. C, Berger R., Golomb H. M., Swansbury G. J., Reeves B. R., Alimena G., Van DenBerghe H., Bloomfield C. D., de la Chapelle A., Dewald G. W., Garson O. M., Hagemeijer A., Kanako Y., Mitlman F., Pierre R. V., Ruutu T., Sakurai M., Lawler S. D., Rowley J. D. The clinical significance of karyotype in acute myelogenous leukemia. Cancer Genet. Cytogenet. 1989; 40: 203–216
  • Greaves M. F., Jannossy G. Pattern of gene expression and the cellular origins of human leukemia. Biochem. Biophys. Acta. 1978; 516: 193–230
  • Foon K. A., Todd R. F., III. Immunologic classification of leukemia and lymphoma. Blood 1986; 68: 1–31
  • Griffin D. J., Ritz J., Nadler L. M., Schlossman S. F. Expression of myeloid differentiation antigens on normal and myeloid cells. J. Clin. Invest. 1982; 68: 932–941
  • Civin C. I., Strayss L. C, Brovall C., Fackler M. J., Schwartz J. F., Shaper J. H. Antigenic analysis of hematopoiesis: III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG1a cells. J. Immunol. 1984; 133: 157–165
  • Andrews R. G., Singer J. W., Berstein L. D. Monoclonal antibody 12–8 recognized a 115-kd molecule present on both unipotent and multipotent hematopoietic colony forming cells and their precursors. Blood 1986; 67: 842–845
  • Caux C., Favre C., Saeland S., Duvert V., Mannoni P., Durand I., Aurbey J. P., de Vries J. E. Sequential loss of CD34 and class II MHC antigen on purified cord blood hematopoietic progenitors cultured with IL-3: characterization of CD34-, HLA-DR+ cells. Blood 1989; 74: 1287–1294
  • Nagasaka M., Maeda S., Maeda H., Chen H., Kita K., Mabuchi O., Misu H., Matsuo T., Sugiyama T. Four cases of t(4;l 1) acute leukemia and its myelomonocytic nature in infant. Blood 1983; 61: 1174–1181
  • Kaneko Y., Maseki N., Takasaki N., Sakurai M., Hay-Ashi Y., Nakazawa S., Mori T., Sakurai M., Takeda T., Shikano T., Hiyoshi Y. Clinical and hematologic characteristics in acute leukemia with 11q23 translocations. Blood 1986; 67: 484–491
  • Tachibana N., Raimondi S. C, Lauser S. J., Sartain P., Dow L. W. Evidence for multipotential stem cell disease in some childhood Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 1987; 70: 1458–1461
  • Francesconi D., Pasquali F. 8/21 translocation, loss of the Y chromosome and Philadelphia chromosome. Br. J. Haematol. 1978; 38: 149–150
  • DeCuia M. R., Alimena G., Gastaldi R., Spiriti M. A. A., Giona F., Mancini M., Mandelli F. Acute myeloblasts leukemia with t(8;21) following Philadelphia positive acute lymphoblastic leukemia. Leukaemia 1989; 3: 310–313
  • Hayashi Y., Raimondi S. C, Behm F. G., Santana V. M., Kalwinsky D. K., Pui C. H., Miro J. J., Williams D. L. Two karyotypically independent leukemic clones with the t(8;21) and 11q23 translocation in acute myeloblasts leukemia at relapse. Blood 1989; 73: 1650–1655
  • Janossy G., Coustan-Smith E., Campana D. The reliability of cytoplasmic CD3 and CD22 antigen expression in the immunodiagnosis of acute leukemia: A study of 500 cases. Leukemia 1989; 3: 170–181
  • Kita K., Nakase K., Miwa H., Masuya M., Nishii K., Morita N., Takaura N., Otsuji A., Shirakawa S., Ueda T., Nasu K., Kyo T., Dohy S., Kamada N. Phenotypical characteristics of acute myelocytic leukemia associated with the t(8;21)(q22;q22) chromosomal abnormality: Frequent expression of immature B-cell antigen CD 19 together with stem cell antigen CD34. Blood 1992; 80: 470–477
  • Parreira A., Pombo de Oliveira M. S., Matutes E., Foroni L., Morilla R., Catovsky D. Terminal deoxynu-cleotidyl transferase positive acute myeloid leukaemia: an association with immature myeloblastic leukaemia. Br. J. Haematol. 1988; 69: 219–224
  • Hurwitz C. A., Ramimondi S. C, Head D., Krance R., Mirro J., Kalwinsky D. K., Ayers G. D., Behm F. G. Distinct immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children. Blood 1992; 80: 3182–3188
  • Nadler L. M., Korsmeyer S. J., Anderson K. C, Boyd A. W., Slaugenhoupt B., Park Jensen E., Coral F., Mayer R. J., Sallan S. E., Ritz J., Shlossman S. F. B cell origin of non-T cell acute lymphoblastic leukemia. A model for discrete stages of neoplastic and normal pre-B cell differentiation. J. Clin. Invest. 1984; 74: 332–340
  • Osier W., Konig K., Ludwig W. D., Ganser A., Lind-Mann A., Mertelsmann R., Herrmann F. Incidence of lineage promiscuity in acute myeloblastic leukemia: Diagnostic implications of immunoglobulin and T-cell receptor gene rearrangement analysis and immunological phenotyping. Leukemia Res. 1988; 12: 887–895
  • Bradstock K. F., Kirk J., Grimsley P. G., Karbral A., Hughes W. G. Unusual immunophenotypes in acute leukaemias: incidence and clinical correlations. Br. J. Haematol. 1989; 72: 512–518
  • Campos L., Guyotat D., Larese A., Mazet L., Bougeot J. P., Ehrsam A., Fiere D. Expression of CD19 antigen on acute monoblastic leukemia cells at diagnosis and after TPA-induced differentiation. Leukemia Res. 1988; 12: 369–372
  • Smith L. J., Curtis J. E., Messner H. A., Senn J. S., Furthmayr H., McCulloch E. A. Lineage infidelity in acute leukemia. Blood 1983; 61: 1138–1145
  • Greaves M. F., Chan L. C, Furley A. J. W., Watt S. M., Molgaad H. V. Lineage promiscuity in hematopoietic differentiation and leukemia. Blood 1986; 67: 1–11
  • Chen S. J., Flandrin G., Daniel M. T., Valensi F., Bar-Anger L., Grausz D., Berheim A., Chen Z., Sigaux F., Berger R. Philadelphia-positive acute leukemia: lineage promiscuity and inconsistently rearranged breakpoint cluster region. Leukemia 1988; 2: 261–273
  • Tax L. V., Bai Y., Pegram S., Capel P., Greaves M. F. A monoclonal antibody (WT1) for detecting leu-kemias of T-cell precursors (T-ALL). Blood 1983; 62: 1108–113
  • Cross A. H., Goorha R. M., Nuss R., Behm F. G., Murphy S. B., Kalwinsky D. K., Rammondi S., Kitching-Mann G. R., Mirro J. Acute myeloid leukemia with T-lymphoid features: A distinct biologic and clinical entity. Blood 1988; 72: 579–587
  • Lo Coco F., De Rossi G., Pasqualetti D., Lopez M., Diverio D., Latagliata R., Fenu S., Mandelli F. CD7 positive acute myeloid leukaemia: a subtype associated with cell immaturity. Br. J. Haematol. 1989; 73: 480–485
  • Kita K., Miwa H., Nakase K., Kawakami K., Kobayashi T., Shirakawa S., Tanaka I., Ohta C., Tsutani H., Oguma S., Kyo T., Dohy H., Kamada N., Nasu K., Uchino H. Clinical importance of CD7 expression in acute myelocytic leukemia. Blood 1993; 81: 2399–2405
  • Zutter M. M., Martin P. J., Hanke D., Kidd P. CD7+ acute non-lymphocytic leukemia: Evidence for an early multipotential progenitor. Leukemia Res. 1990; 14: 23–26
  • Sutherland D. R., Rudd C. E., Greaves M. F. Isolation and characterization of a human T lymphocyte associated glycoprotein (gp40). J. Immunol. 1984; 133: 327–333
  • Lobach D. F., Hensley L. L., Ho W., Haynes B. F. Ontogeny of human T cell antigens. Leukeocyte Typing II, E. L. Reinherz, B. F. Haynes, L. M. Nadler, I. D. Bernstein. Springer-Verlag, Inc., New York 1985; vol. 2: 397–406
  • Kurtzberg J., Waldmann T. A., Davey M. P., Binger S. H., Moore J. O., Hershfield M. S., Haynes B. F. CD7+, CD4-, CD8- acute leukemia: A syndrome of malignant pluripotent lymphohematopoietic cells. Blood 1989; 73: 381–390
  • Ema H., Kitano K., Suda T., Sato T., Muroi K., Ohta M., Yoshida M., Sakamoto S., Eguchi M., Miura Y. In vitro differentiation of leukemia cells to eosinophils in the presence of interleukin-5 in two cases of acute myeloid leukemia with the translocation (8;21) (q22;q22). Blood 1990; 75: 350–356
  • Seiff C. A. Hematopoietic growth factors. J. Clin. Invest. 1987; 79: 1549–1557
  • Metcalf D. The molecular control of cell division, differentiation commitment and maturation in hematopoietic cells. Nature 1990; 339: 27–30
  • Kitamura T., Sato N., Arai K.-I., Miyajima A. Expression cloning of the human IL-3 receptor cDNA reveals a shared subunit for the human IL-3 and GM-CSF receptors. Cell 1991; 66: 1165–1174
  • Tavemier J., Devos R., Cornells S., Tuypens T., Van der Hyden J., Fiers W., Plaetinck G. A human high affinity interleukin-5 receptor (IL-5R) is composed of an IL-5 specific α chain and α β chain shared with the receptor for GM-CSF. Cell 1991; 66: 1175–1184
  • Gao J., Erickson P., Gardiner K., Le Beau M. M., Diaz M. O., Patterson D., Rowly J. D., Drabkin H. A. Isolation of a yeast artificial chromosome spanning the 8;21 translocation breakpoint t(8;21)(q22;q22.3) in acute myelogenous leukemia. Proc. Natl. Acad. Sci. USA 1991; 88: 488–4886
  • Miyoshi H., Shimizu K., Kozu T., Maseki N., Kaneko Y., Ohki M. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene. AML1. Proc. Natl. Acad. Sci. USA 1991; 88: 10431–10434
  • Erickson P., Gao J., Chang K.-S., Look T., Whisenant E., Raimondi S., Lasher R., Trujillo J., Rowly J., Drabkin H. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophia segmentation gene. Runt. Blood 1992; 80: 1825–1831
  • Maseki N., Miyoshi H., Shimizu K., Homma C., Ohki M., Sakurai M., Kaneko Y. The 8;21 chromosome translocation in acute myeloid leukemia is always detectable by molecular analysis using AML1. Blood 1993; 81: 1573–1579
  • Tighe J. E., Daga A., Calabi F. Translocation breakpoints are clustered on both chromosome 8 and chromosome 21 in the t(8;21) of acute myeloid leukemia. Blood 1993; 81: 592–596
  • Nucifora G., Birn D. J., Erikson P., Gao J., LeBeau M. M., Drabkin H. A., Rowly J. D. Detection of DNA rearrangements in the AMLI and ETO loci and of and AMLI/ETO fusion mRNA in patients with t(8;21) acute myeloid leukemia. Blood 1993; 81: 883–888
  • Daga A., Tighe J. E., Calabi F. Leukemia/Dro-sophia homology. Nature 1992; 356: 484
  • Duffy J. B., Gergen J. P. The Drosophia segmentation gene runt acts as a position-specific numerator element necessary for the uniform expression of the sex-determining gene Sex-lethal. Gene Dev. 1991; 5: 2176–2187

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.