184
Views
117
CrossRef citations to date
0
Altmetric
Review Article

Apoptosis Overview Emphasizing the Role of Oxidative Stress, DNA Damage and Signal- Transduction Pathways

, &
Pages 43-93 | Received 29 Oct 1994, Published online: 01 Jul 2009

References

  • Samaha H., Asher E., Payne C.M., Bernstein C., Bernstein H. Evaluation of cell death in EBV-transformed lymphocytes using agarose gel electrophoresis, light microscopy and electron microscopy. I. Induction of classic apoptosis by the bile salt, sodium deoxycholate. Leuk. Lymph. 1995; 19: 95–105
  • Asher E., Payne C.M., Bernstein C. Evaluation of cell death in EBV-transformed lymphocytes using agarose gel electrophoresis, light microscopy and electron microscopy. II. Induction of non-classic apoptosis (“para-apoptosis”) by tritiated thymidine. Leuk Lymph. 1995; 19: 107–119
  • Apoptosis: The Molecular Basis of Cell Death. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1991; 1–321
  • Cell Death in Biology and Pathology. Chapman and Hall, New York 1981; 1493
  • Perspectives on Mammalian Cell Death. Oxford University Press, New York 1987; 1–363
  • Bowen I.D., Bowen S.M. Programmed Cell Death in Tumours and Tissues. Chapman and Hall, New York 1990; 1–268
  • Cell Ageing and Cell Death. Cambridge University Press, New York 1984; 1–362
  • Programmed Cell Death: The Cellular and Molecular Biology of Apoptosis. Harwood Academic Publishers, ChurSwitzerland 1993; 1–331
  • Apoptosis II: The Molecular Basis of Apoptosis in Disease. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1994; 1–430
  • Eastman A. Apoptosis: a product of programmed and un-programmed cell death. Tox. Appl. Pharmacol. 1993; 121: 160–164
  • Wyllie A.H., Kerr J.F.R., Currie A.R. Cell death: The significance of apoptosis. Int. Rev. Cytol. 1992; 68: 251–306
  • Raffray M., McCarthy D., Snowden R.T., Cohen G.M. Apoptosis as a mechanism of tributyltin cytotoxicity to thymocytes: relationship of apoptotic markers to biochemical and cellular effects. Tox. Appl. Pharmacol. 1993; 119: 122–130
  • Fesus L. Biochemical events in naturally occurring forms of cell death. FEBS Leff. 1993; 328: 1–5
  • Schwartzman R.A., Cidlowski J.A. Apoptosis: The biochemistry and molecular biology of programmed cell death. Endocrine Rev. 1993; 14: 133–151
  • Gerschenson L.E., Rotello R.J. Apoptosis: a different type of cell death. FASEB J. 1992; 6: 2450–2455
  • Bursch W., Kleine L., Tenniswood M. The biochemistry of cell death by apoptosis. Biochem. Cell. Biol. 1990; 68: 1071–1074
  • Sen S., d'Incalci M. Biochemical events and relevance to cancer chemotherapy. FFBS Luff. 1992; 307: 122–127
  • Fesus L. Apoptosis. Immunol. Today 1992; 13: A16–A17
  • Williams G.T. Programmed cell death: apoptosis and oncogenesis. Cell. 1991; 65: 1097–1098
  • Cotter T.G., Lennon S.V., Glynn J.G., Martin S.J. Cell death via apoptosis and its relationship to growth. development and differentiation of both tumour and normal cells. Anticancer Res. 1990; 10: 1153–1160
  • Ellis R.E., Yuan J., Horvitz H.R. Mechanisms and functions of cell death. Annttal Rev. Cell Biol. 1991; 7: 663–698
  • Wyllie A.H. Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metast. Rev. 1992; 11: 95–103
  • Cohen J.J. Apoptosis. Immunol. Today. 1993; 14: 126–130
  • Arends M.J., Wyllie A.H. Apoptosis: mechanisms and roles in pathology. Int. Rev. Exper. Pathol. 1991; 32: 223–254
  • Boobis A.R., Fawthrop D.J., Davies D.S. Mechanisms of cell death. TiPS 1989; 10: 275–280
  • Duvall E., Wyllie A.H. Death and the cell. Immunol. Today 1986; 7: 115–119
  • Bursch W., Oberhammer F., Schulte-Hermann R. Cell death by apoptosis and its protective role against disease. TiPS. 1992; 13: 245–251
  • Wyllie A.H., Beattie G.J., Hargreaves A.D. Chromatin changes in apoptosis. Histochem J. 1981; 13: 681–692
  • Wyllie A.H. Apoptosis: cell death in tissue regulation. J. Pathol. 1987; 153: 313–316
  • McConkey D.J., Orrenius S., Jondal M. Cellular signalling in programmed cell death (apoptosis). Immunol. Today. 1990; 11: 120–121
  • Williams G.T., Smith C.A. Molecular regulation of apoptosis: genetic controls on cell death. Cell 1993; 74: 777–779
  • Perez-Polo R. Mechanisms of cell death. Adv. Exp. Med. Biol. 1991; 296: 345–352
  • Schulte-Hermann R., Bursch W., Kraupp-Grasl B., Oberhammer F., Wagner A. Programmed cell death and its protective role with particular reference to apoptosis. Toxicol. Lett. 1992; 64/65: 569–574
  • Sen S. Programmed cell death: concept, mechanism and control. Biol. Rev. 1992; 67: 287–319
  • Lockshin R.A., Beaulaton J. Minireview: programmed cell death. Life Set 1974; 15: 1549–1565
  • Fesus L., Davies P.J.A., Piacentini M. Apoptosis: molecular mechanisms in programmed cell death. Eur. J. Cell Biol. 1991; 56: 170–177
  • Buja L.M., Eigenbrodt M.L., Eigenbrodt E.H. Apoptosis and Necrosis. Basic types and mechanisms of cell death. Arch. Pathol. Lab. Med. 1993; 117: 1208–1214
  • White E. Death-defying acts: a meeting review on apoptosis. Genes Develop. 1993; 7: 2277–2284
  • Ucker D.S. Death by suicide: one way to go in mammalian cellular development?. The New Biol. 1991; 3: 103–109
  • Colombel M., Olsson C.A., Ng P.-Y., Buttyan R. Hormone-regulated apoptosis results from reentry of differentiated prostate cells onto a defective cell cycle. Cancer Res. 1992; 52: 4313–4319
  • Haake A.R., Polakowska R.R. Cell death by apoptosis in epidermal biology. J Invest. Dermatol. 1993; 101: 107–112
  • Collins Lopez M.K.L., Rivas A. The control of apoptosis in mammalian cells. TIBS 1993; 18: 307–309
  • Fawthrop D.J., Boobis A.R., Davies D.S. Mechanisms of cell death. Arch. Toxicol. 1991; 65: 437–444
  • Glucksmann A. Cell deaths in normal vertebrate ontogeny. Biol. Rev. 1951; 26: 59–86
  • Kerr J.F.R., Wyllie A.H., Currie A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 1972; 26: 239–257
  • Searle J., Kerr J.F.R., Bishop C.J. Necrosis and Apoptosis: distinct modes of cell death with fundamentally different significance. Pathol. Annual 1982; 17: 229–259
  • Wyllie A.H., Morris R.G., Smith A.L., Dunlop D. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J. Pathol. 1984; 142: 67–77
  • Wyllie A.H. Cell death: a new classification separating apoptosis from necrosis. Cell Death in Biology und Pathology, I.D. Bowen Lockshin. Chapman and Hall, R. A. New York. New York 1981; 9–34
  • Arends M.J., Moms R.G., Wyllie A.H. Apoptosis. The role of the endonuclease. Amer, J. Pathol. 1990; 136: 593–608
  • Wyllie A.H. Apoptosis (The 1992 Frank Rose Memorial Lecture). Br. J. Cancer. 1993; 67: 205–208
  • Wyllie A.H. Commentary. Histopathol. 1986; 10: 995–998
  • Duke R.C., Cohen J.J. Morphological and biochemical assays of apoptosis. Current Protocols in Immunology, J.E. Coligan, A.M. Krvisbeek, D.H. Margulies, E.M.W. Shevach Strober. Green Publishing and Wiley-Interscience, New York 1992; 3–17.1–3.17.16
  • Cohen J.J. Regulation of programmed cell death. Programmed Cell Death: The Cellular and Molecular Biology of Apoptosis, L.D. Tomei Watters, D. Chur. Harwood Academic Publishers., Switzerland 1993; 145–151
  • Wyllie A.H., Duvall E., Blow J.J. Intracellular mechanisms in cell death in normal and pathological tissues. Cell Ageing and Cell Death, J. Davies, D.C. Sigee. Cambridge University Press, New York 1984; 269–294
  • Bowen I.D., Bowen S.M. Cell death in tissues. Programmed Cell Death in Tumours and Tissues, I.D. Bowen, S.M. Bowen. Chapman and Hall, New York. New York 1990; 15–68
  • Allen T.D. Ultrastructural aspects of cell death. Perspectives on Mammalian Cell Death, C.S. Potten. Oxford University Press, New York. New York 1987; 39–65
  • Kerr J.F.R., Searle I., Harmon B.V., Bishop C.J. Apoptosis. Perspectives on Mammalian Cell Death, C.S. Potten. Oxford University Press, New York, New York 1987; 93–128
  • Kerr J.F.R., Harmon B.V. Definition and incidence of apoptosis: an historical perspective. Apoptosis: The Molecular Basis of Cell Death, L.D. Tomei Cope, F.O. Plainview. Cold Spring Harbor Laboratory Press, New York 1991; 5–29
  • Payne C.M., Cromey D.W. Ultrastructural analysis of apoptotic and normal cells using digital imaging techniques. J. Comput.- Assist. Micros. 1991; 3: 33–50
  • Matter A. Microcinematographic and electron microscopic analysis of target cell lysis induced by cytotoxic T lymphocytes. Immunol. 1979; 36: 179–190
  • Sanderson C.J. The mechanism of lymphocyte-mediated cytotoxicity. Biol. Rev. 1981; 56: 153–197
  • Russell S.W., Rosenau W., Lee J.C. Cytolysis induced by human lymphotoxin. Cinemicrographic and electron microscopic observations. Amer, J. Pathol. 1972; 69: 103–118
  • Wilcock CC., Hahwala S.B., Hickman J.A. Selective inhibition by bis(2chloroethyl)methylamine (nitrogen mustard) of the Na+/K+/CI-cotransporter of murine LI210 leukemia cells. Biochim Biophys. Acta 1988; 946: 368–378
  • Parsons D.F., Marko M., Braun S.J., Wansor K.J. “Dark cells” in normal, hyperplastic, and promoter-treated mouse epidermis studied by conventional and high-voltage electron microscopy. J. Invest. Dermatol. 1983; 81: 62–67
  • Cooper E.H., Bedford A.J., Kenny T.E. Cell death in normal and malignant tissues. Adv. Cancer Res. 1975; 21: 59–120
  • O'Grady S.M., Palfrey H.C., Field M. Characteristics and functions of Na-K-CI cotransport in epithelial tissues. Am. J. Physiol. 1987; 253: C177–C192
  • McConkey D.J., Orrenius S., Okret S., Jondal M. Cyclic AMP potentiates glucocorticoid-induced endogenous endonuclease activation in thymocytes. FASEB J. 1993; 7: 580–585
  • McConkey D.J., Orrenius S., Jondal M. Agents that elevate CAMP stimulate DNA fragmentation in thymocytes. J. Immunol. 1990; 145: 1227–1230
  • Cotter T.G., Lennon S.V., Glynn J.M., Green D.R. Microfilament-disrupting agents prevent the formation of apoptotic bodies in tumor cells undergoing apoptosis. Cancer Res. 1992; 52: 997–1005
  • Kolber M.A., Broschat K.O., Landa-Gonzalez B. Cytochalasin B induces cellular DNA fragmentation. FASEB J. 1990; 4: 3021–3027
  • Houge G., Doskeland S.O., Boe R., Lanotte M. Selective cleavage of 28s rRNA variable regions V3 and V13 in myeloid leukemia cell apoptosis. FEBS Len. 1993; 315: 16–20
  • Lanotte M., Riviere J.B., Hermouet S., et al. Programmed cell death (apoptosis) is induced rapidly and with positive cooperativity by activation of cyclic adenosine monophosphate-kinase I in a myeloid leukemia cell line. J. Cell. Physiol. 1991; 146: 73–80
  • Beaulaton J., Lockshin R.A. The relation of programmed cell death to development and reproduction: comparative studies and an attempt at classification. Int. Rev. Cytol. 1982; 79: 215–235
  • Haussinger D., Lang F. The mutual interaction between cell volume and cell function: a new principle of metabolic regulation. Biochem Cell. Biol 1991; 69: 1–4
  • Alles A., Alley K., Barrett J.C., et al. Apoptosis: a general comment. FASEB J. 1990; 5: 2127–2128
  • Berges R., Isaacs J.T. Programming events in the regulation of cell proliferation and death. Clin. Chem. 1993; 39: 356–361
  • Ellis H.M., Horvitz H.R. Genetic control of programmed cel l death in the nematode. C. elegans. Cell 1986; 44: 817–829
  • White K., Grether M.E., Abrams J.M., Young L., Farrell K., Steller H. Genetic control of programmed cell death in. Drosophila. Science 1994; 264: 677–683
  • Kerr J.F.R. Shrinkage necrosis: a distinct mode of cellular death. J. Pathol. 1971; 105: 13–20
  • Trump B.F., Berezesky Osornio- J.K., Vargas A.R. Cell death and the disease process. The role of calcium. Cell Death in Biology and Pathology., I.D. Bowen, R.A. Lockshin. Chapman and Hall, New York, New York 1981; 209–242
  • Stacey N.H., Bishop C.J., Halliday J.W., et al. Apoptosis as the mode of cell death in antibody-dependent lymphocytotoxicity. J. Cell Sci. 1985; 74: 169–179
  • Don M.M., Ablett G., Bishop C.J., et al. Death of cells by apoptosis following attachment of specifically allergized lymphocytes. in vitro. Austral, J. Exp. Biol. Med. Sci. 1977; 55: 407–417
  • Koury M.J. Programmed cell death (apoptosis) in hematopoiesis. Exp. Hematol. 1992; 20: 391–394
  • Williams G.T., Smith C.A., Spooncer E., Dexter T.M., Taylor D.R. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature 1990; 343: 76–79
  • Mangeney M., Richard Y., Coulaud D., Tursz T., Wiels J. CD77: an antigen of germinal center B cells entering apoptosis. Eur. J. Immunol. 1991; 21: 1131–1140
  • Motyka B., Reynolds J.D. Apoptosis is associated with the extensive B cell death in the sheep ileal Peyer's patch and the chicken bursa of Fabricius: a possible role in B cell selection. Eur. J. Immunol. 1991; 21: 1951–1958
  • Liu Y.J., Joshua D.E., Williams G.T., Smith C.A., Gordon J., Mac Lennan I.C.M. Mechanism of antigen-driven selection in germinal centres. Nature 1989; 342: 929–931
  • Radley J.M., Haller C.J. Fate of senescent megakaryocytes in the bone marrow. Brit. J. Hematol. 1983; 53: 277–287
  • Koury M.J., Bondurant M.C. Control of red cell production: the roles of programmed cell death (apoptosis) and erythropoietin. Transfusion. 1990; 30: 673–674
  • Koury M.J., Bondurant M.C. Erythropoietin retards DNA breakdown and prevents programmed cell death in erythroid progenitor cells. Science 1990; 248: 378–381
  • Her E., Frazer J., Austen K.F., Owen W.F., Jr. Eosinophil hematopoietins antagonize the programmed cell death of eosinophils: cytokine and glucocorticoid effects on eosinophils maintained by endothelial cell-conditioned medium. J. Clin. Invest. 1991; 88: 1982–1987
  • Stern M., Meagher L., Savill J., Haslett C. Apoptosis in human eosinophils. Programmed cell death in the eosinophil leads to phagocytosis by macrophages and is modulated by IL-5. J. Immunol. 1992; 148: 3513–3549
  • Mangan D.F., Welch G.R., Wahl S.M. Lipopolysaccharide. tumor necrosis factor-alpha. and IL-Ibeta prevent programmed cell death (apoptosis) in human peripheral blood monocytes. J. Immunol. 1991; 146: 1541–1546
  • Zacharchuk C.M., Mercep M., Chakraborti Simons P.K.S.S., Jr., Ashwell J.D. Programmed T lymphocyte death. Cell activation- and steroid-induced pathways are mutually antagonistic. J. Immunol. 1990; 145: 4037–4045
  • Janssen O., Wesselborg S., Heckl-Ostreicher B., et al. T cell receptor/CD3-signaling induces death by apoptosis in human Tcell receptor gamma/delta + T cells. J. Immunol. 1991; 146: 35–39
  • Russell J.H., White C.L., Loh D.Y., Meleedy-Rey P. Receptor-stimulated death pathway is opened by antigen in mature T cells. Proc. Natl. Acad. Sci. USA 1991; 88: 2151–2155
  • Nieto M.A., Lopez-Rivas A. IL-2 protects T lymphocytes from glucocorticoid-induced DNA fragmentation and cell death. J. Biol. Chem. 1989; 143: 4166–4170
  • Ramsdell F., Fowlkes B.J. Clonal deletion versus clonal anergy: the role of the thymus in inducing self tolerance. Science 1990; 248: 1342–1348
  • Blackman M., Kappler J., Marrack P. The role of the T cell receptor in positive and negative selection of developing T cells. Science 1990; 248: 1335–1341
  • Smith C.A., Williams G.T., Kingston R., Jenkinson E.J., Owen J.J.T. Antibodies to CD3TT-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature 1989; 337: 181–184
  • Mercep M., Weissman A.M., Frank S.J., Klausner R.D., Ashwell J.D. Activation-driven programmed cell death and T cell receptor zeta eta expression. Science 1989; 246: 1162–1165
  • Cohen J.J. Programmed cell death and apoptosis in lymphocyte development and function. Chest 1993; 103: 99S–101S
  • Haslett C. Resolution of acute inflammation and the role of apoptosis in the tissue fate of granulocytes. Clin. Sci. 1993; 83: 639–648
  • Cohen J.J. Programmed cell death in the immune system. Adv. Immunol. 1991; 50: 55–85
  • Golstein P., Ojcius D.M., Young D.-E. Cell death mechanisms and the immune system. Immunol. Rev. 1991; 121: 29–63
  • Cohen J.J., Duke R.C., Fadok V.A., Sellins K.S. Apoptosis and programmed cell death in immunity. Annual Rev. Immunol. 1992; 10: 267–293
  • Sachs L., Lotem J. Control of programmed cell death in normal and leukemic cells: New implications for therapy. Blood 1993; 82: 15–21
  • Pesce M., Farrace M.G., Piacentini M., Dolci S., De Felici M. Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death (apoptosis). Development 1993; 118: 1089–1094
  • Lotem J., Sachs L. Hematopoietic cytokines inhibit apoptosis induced by transforming growth factor beta I and cancer chemotherapy compounds in myeloid leukemic cells. Blood. 1992; 80: 1750–1757
  • Begley C.G., Lopez A.F., Nicola N.A., et al. Purified colony-stimulating factors enhance the survival of human neutrophils and eosinophils in vitro: a rapid and sensitive microassay for colony-stimulating factors. Blood. 1986; 68: 162–166
  • Collins M.K.L., Perkins G.R., Rodriguez-Tarduchy G., Nieto M.A., Lopez-Rivas A. Growth factors as survival factors: Regulation of apoptosis. BioEssays 1994; 16: 133–138
  • Liu Y.-J., Johnson G.D., Gordon J., Mac Lennan I.C.M. Germinal centres in T-cell-dependent antibody responses. Immunol. Today 1992; 13: 17–21
  • Owen J.J.T., Jenkinson E.J., Kingston R., Williams G.T., Smith C.A. IYW Cell growth and gene rearrangement signals during the development of T lymphocytes within the thymus. Phil. Trans, R. Soc. Lond. B., 327: 111–1; 16
  • Fesus L. Apoptosis fashions T and B cell repertoire. Immunol. Lett. 1991; 30: 277–282
  • Janssen O., Wesselborg S., Kabelitz D. Immunosuppression by OKT3–Induction of programmed cell death (apoptosis) as a possible mechanism of action. Transplant. 1992; 53: 233–234
  • Shi Y., Bissonnette R.P., Parfrey N., Szalay M., Kubo R.T., Green D.R. In vivo administration of monoclonal antibodies to the CD3 T cell receptor complex induces cell death (apoptosis) in immature thymocytes. J. Immunol. 1991; 146: 3340–3346
  • Viney J.L., Mac Donald T.T. Selective death of T cell receptor gamma/delta+ intraepithelial lymphocytes hy apoptosis. Eur. J. Immunol. 1990; 20: 2809–2812
  • Kawabe Y., Hi A. Programmed cell death and extrathymic reduction of Vbeta+ CD4+ T cells in mice tolerant to Staphylococcus aureus enterotoxin B. Nature 1991; 349: 245–248
  • Lawetzky A., Kubbies M., Hunig T. Rat “first-wave” mature thymocytes: cycling lymphoblasts that are sensitive to activation-induced cell death but rescued by interleukin 2. Eur. J. Immunol. 1991; 21: 2599–2604
  • Morris R.G., Hargreaves A.D., Duvall E., Wyllie A.H. Hormone-induced cell death. 2. Surface changes in thymocytes undergoing apoptosis. Amer, J. Pathol. 1984; 115: 426–436
  • Wyllie A.H., Morris R.G. Hormone-induced cell death. Purification and properties of thymocytes undergoing apoptosis after glucocorticoid treatment. Amer. J. Pathol. 1982; 109: 78–87
  • Aw T.Y., Nicotera P., Manzo L., Orrenius S. Tributyltin stimulates apoptosis in rat thymocytes. Arch. Biochem. Biophys. 1990; 283: 46–50
  • Yamada T., Ohyama H., Kinjo Y., Watanabe M. Evidence for the internucleosomal breakage of chromatin in rat thymocytes irradiated. in vitro. Rad. Res. 1981; 85: 544–553
  • Andreeva N., Khodorov B., Stelmashook E., Sokolova SC., Ragoe E., Jr., Victorov I. 5-(N-ethyl-N-isopropyl)amiloride and mild acidosis protect cultured cerebellar granule cells against glutamate-induced delayed neuronal death. Neurosci. 1992; 49: 175–181
  • Compton M.M., Cidlowski J.A. Rapid in vivo effects of glucocorticoids on the integrity of rat lymphocyte genomic deoxyribonucleic acid. Endocrinology 1986; 118: 38–45
  • Wyllie A.H. Glucocorticoid induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980; 284: 555–556
  • Migliorati G., Nicoletti I., Pagliacci M.C., d'Adamio L., Riccardi C. Interleukin-2 induces apoptosis in mouse thymocytes. Cell. Immunol. 1993; 146: 52–61
  • Concordet J.P., Ferry A. Physiological programmed cell death in thymocytes is induced by physical stress (exercise). Am. J. Physiol. 1993; 265: C62–C629
  • Johnson E.M., Jr., Chang J.Y., Koike T., Martin D.P. Why do neurons die when deprived of trophic factor?. Neurobiol. Aging 1989; 10: 549–552
  • Johnson E.M., Jr., Deckwerth T.L. Molecular mechanisms of developmental neuronal death. Ann. Rev. Neurosci. 1993; 16: 31–46
  • Martin D.P., Johnson E.M. Programmed cell death in the peripheral nervous system. Apoptosis: The Molecular Basis of Cell Death, L.D. Tomei Cope, F.O. Plainview. Cold Spring Harbor Laboratory Press, New York 1991; 247–261
  • McConkey D.J., Orrenius S. Cellular signaling in thymocyte apoptosis. Apoptosis: The Molecular Basis or Cell Death, L.D. Tomei Cope, F.O. Plainview. Cold Spring Harbor Laboratory Press., New York 1991; 227–2415
  • Waring P. Induction of apoptosis by the immunomodulating agent gliotoxin. Programmed Cell Death: The Cellular and Molecular Biology of Apoptosis, M. Lavin Watters, D. Chur. Harwood Academic Publishers., Switzerland 1993; 87–96
  • Buttke T.M., Sandstrom P.A. Oxidative stress as a mediator of apoptosis. Immunol. Today. 1994; 15: 7–10
  • Lennon S.V., Martin S.J., Cotter T.G. Induction of apoptosis (programmed cell death) in tumour cell lines by widely diverging stimuli. Biochem. Soc. Trans. 1990; 18: 343–345
  • Lennon S.V., Martin S.J., Cotter T.G. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 1991; 24: 203–214
  • Rafter J.J., Child P., Anderson A.M., Alder R., Eng V., Bruce W.H. Cellular toxicity of fecal water depends on diet. Amer J. Clin. Nutr. 1987; 45: 559–563
  • Velardi A.L.M., Groen Ou A.K., de Elferink R.P.J., Van der Meer R., Palasciano G., Tytgat G.N.J. Cell type-dependent effect of phospholipid and cholesterol on bile salt cytotoxicity. Gastroenterol. 1991; 101: 457–464
  • Garner C.M., Mills C.O., Elias E., Neuberger J.M. The effect of bile salts on human vascular endothelial cells. Biochim. Biophys. Acta. 1991; 1091: 41–45
  • Latta R.K., Fiander H., Ross N.W., Simpson C., Schneider H. Toxicity of bile acids to colon cancer cell lines. Cancer Lett. 1993; 70: 167–173
  • Lapre J.A., Van der Meer R. Diet-induced increase of colonic bile acids stimulates lytic activity of fecal water and proliferation of colonic cells. Carcinogenesis 1992; 13: 41–44
  • Van der Meer R., Termont D. S. M. L., de Vrics H.T. Differential effects of calcium ions and calcium phosphate on cytotoxicity of bile acids. Am J. Physiol. 1991; 260: G142–G147
  • Sholmerich J., Becher M.-S., Schmidt K., et al. Influence of hydroxylation and conjugation of bile salts on their membrane-damaging properties-studies on isolated hepatocytes and lipid membrane vesicles. Hepatol. 1984; 4: 661–666
  • Lapre J.A., Termont D. S. M. L., Groen A.K., Van der Meer R. Lytic effects of mixed micelles of fatty acids and bile acids. Am. J. Physiol. 1992; 263: G333–G337
  • Greenwood J., Adu J., Davey A.J., Abbott N.J., Bradbury M.W.B. The effect of bile salts on the permeability and ultrastructure of the perfused, energy-depleted. rat blood-brain barrier. J. Cerebral Blood Flow Metab. 1991; 11: 644–654
  • Takikawa H., Tomita J., Takemura T., Yamanaka M. Cytotoxic effect and uptake mechanism by isolated rat hepatocytes of lithocholate and its glucuronide and sulfate. Biochim. Biophys. Acta. 1991; 1091: 173–178
  • Coleman R., Lowe P.J., Billington D. Membrane lipid composition and susceptibility to bile salt damage. Biochim. Biophys. Acta 1980; 599: 294–300
  • Coleman R., Iqbal S., Godfrey P.P., Billington D. Membranes and bile formation. Composition of several mammalian biles and their membrane-damaging properties. Biochem, J. 1979; 178: 201–208
  • Rafter Eng J.J., Furrer V. W. S. R., Medline A., Bruce W.R. Effects of calcium and pH on the mucosal damage produced by deoxycholic acid in the rat colon. Gut. 1986; 27: 1320–1329
  • Goerg K.J., Specht W., Nell G., Rummel W., Schulz L. Effect of deoxycholate on the perfused rat colon. Scanning and transmission electron microscopic study of the morphological alterations occurring during the secretagogue action of deoxycholate. Digest. 1982; 25: 145–154
  • Waller D.A., Thomas N.W., Self T.J. Epithelial restitution in the large intestine of the rat following insult with bile salts. Virch. Arch, A. Pathol. Anat. 1988; 414: 77–81
  • Billington D., Evans C.E., Godfrey P.P., Coleman R. Effects of bile salts on the plasma membranes of isolated rat hepatocyter. Biochem. J. 1980; 188: 321–327
  • Attili A.F., Angelico M., Cantafora A., Alvaro D., Capocaccia L. Bile acid-induced liver toxicity: relation to the hydrophobic-hydrophilic balance of bile acids. Med. Hypoth. 1986; 19: 57–69
  • van Munster J.P., Tangerman A., De Haan A.F.J., Nayongast F.M. A new method for the determination of the cytotoxicity of bile acids and agneous phase of stool: the effect of calcium. Eur. J. Clin. Invest. 1993; 23: 773–777
  • Payne C.M., Bjore C.G., Jr., Schultz D.A. Change in the frequency of apoptosis alter low- and high-dose x-irradiation of human lymphocytes. J. Leuk. Biol. 1992; 52: 432–440
  • Payne C.M., Glasser L., Tischler M.E., Wyckoff D., Cromey D., Fiederlein R., et al. Programmed cell death of the normal human neutrophil: An in vitro model of senescence. Microsc. Res. Tech. 1994; 28: 327–341
  • Tomei L.D., Cope F.O. Introduction. Apoptosis: The Molecular Basis of Cell Death, L.D. Tomei, F.O. Cope. Cold Spring Harbor Laboratory Press, Plainview. New York 1991; 1991, 1–3
  • Taetle R., Payne Dos C., Santos B., Russell M., Segarini P. Effects of transforming growth factor betal on growth and apoptosis of human acute myelogenous leukemia cells. Cancer Res. 1993; 53: 3386–3393
  • Snow M.H.L. Cell death in embryonic development. Perspectives on Mammalian Cell Death, C.S. Potten. Oxford University Press, New York. New York 1987; 202–228
  • Zychlinsky A., Zheng L.M., Liu C.-C., Young J. D.-E. Cytolytic lymphocytes induce both apoptosis and necrosis in target cells. J. Immunol. 1991; 146: 393–400
  • Curnow S.J., Glennie M.J., Stevenson G.T. The role of apoptosis in antibody-dependent cellular cytotoxicity. Cancer Immunol. Immunother. 1993; 36: 149–155
  • Henkart P.A. Mechanism of lymphocyte-mediated cytotoxicity. Annual Rev. Immunol. 1985; 3: 31–58
  • Ojcius D.M., Young J. D.-E. Cell-mediated killing: effector mechanisms and mediators. Cancer Cells 1990; 2: 138–145
  • Meuer S.C., Dienes H.P. Lymphocyte mediated cell lysis. Virch. Arch. B Cell Pathol. 1989; 57: 1–9
  • Tschopp J., Nabholz M. Perforin-mediated target cell lysis by cytolytic T lymphocytes. Annual Rev. Immunol. 1990; 8: 279–302
  • Podack E.R., Young -E J.D., Cohn Z.A. Isolation and biochemical and functional characterization od perforin I from cytolytic T-cell granules. Proc. Natl. Acad. Sci. USA 1985; 82: 8629–8633
  • Henkart P.A., Millard P.J., Reynolds C.W., Henkart M.P. Cytolytic activity of purified cytoplasmic granules from cytotoxic rat large granular lymphocyte tumors. J. Exp. Med. 1984; 160: 75–93
  • Payne C.M., Tennican P.M. A quantitative ultra-structural study of peripheral blood lymphocytes containing parallel tubular arrays in Epstein-Barr virus and cytomegalovirus mononucleosis. Amer, J. Pathol. 1982; 106: 71–83
  • Payne Glasser C.M., Fiederlein L.R., Lindberg R. New ultrastructural observations: parallel tubular arrays in human T., lymphoid cells. J. Immunol. Methods. 1983; 65: 307–317
  • Payne C.M., Glasser L. The effect of steroids on peripheral blood lymphocytes containing parallel tubular arrays. Amer. J. Pathol. 1978; 92: 611–618
  • Payne C.M., Glasser L. Evaluation of surface markers on normal human lymphocytes containing parallel tubular arrays: A quantitative ultrastructural study. Blood 1981; 57: 567–573
  • Young -E J.D., Cohn Z.A. How killer cells kill. Sci. Amer. 1988; 258: 38–44
  • Podack E.R. The molecular mechanism of lymphocyte-mediated tumor cell lysis. Immunol. Today 1985; 6: 21–27
  • Tschopp J., Jongeneel C.V. Cytotoxic T lymphocyte mediated cytolysis. Biochem. 1988; 27: 2641–2646
  • Duke R.C., Cohen J.J., Chervenak R. Differences in target cell DNA fragmentation induced by mouse cytotoxic T lymphocytes and natural killer cells. J. Immunol. 1986; 137: 1442–1447
  • Duke R.C., Persechini P.M., Chang S., Liu C.-C., Cohen J.J., Young J. D.-E. Purified perforin induces target cell lysis but not DNA fragmentation. J. Exp. Med. 1989; 170: 1451–1456
  • Shi L., Kraut R.P., Aebersold R., Greenberg A.H. A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J. Exp. Med. 1992; 175: 553–566
  • Hayes M.P., Berrebi G.A., Henkart P.A. Induction of target cell DNA release by the cytotoxic T lymphocyte granule protease granzyme A. J. Exp. Med. 1989; 170: 933–946
  • Shi L., Kam C.-M., Powers J.C., Aebersold R., Greenberg A.H. Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J. Exp. Med. 1992; 176: 1521–1529
  • Lynch M.P., Nawaz S., Gerschenson L.E. Evidence for soluble factors regulating cell death and cell proliferation in primary cultures of rabbit endometrial cells grown on collagen. Proc. Natl. Acad. Sci. USA 1986; 83: 4784–4788
  • Korystov Y.N., Shaposhnikova Dobrovinskaya O. R V.V., Eidus L.K. Intercellular interactions in the interphase death of irradiated thymocytes. Rad. Res. 1993; 134: 301–306
  • O'Mahony A.M., O'Sullivan G.C., O'Connell J., Cotter T.G., Collins J.K. An immune suppressive factor derived from esophageal squamous carcinoma induces apoptosis in normal and transformed cells of lymphoid lineage. J. Immunol. 1993; 151: 4847–4856
  • Szatrowski T.P., Nathan C.F. Production of large amount of hydrogen peroxide by tumor cells. Cancer Res. 1991; 51: 794–798
  • Burns E.R., Zucker-Franklin D., Valentine F. Characterization of the cell population mediating cytotoxicity and emperipolesis in human malignant melanomas. Trans. Assoc. Amer. Physicians 1981; 94: 366–371
  • Burns E.R., Zucker-Franklin D., Valentine F. Cytotoxicity of natural killer cells. Correlation with emperipolesis and surface enzymes. Lab. Invest. 1982; 47: 99–107
  • Payne C.M., Cromey D.W. Cytotoxic mechanisms and disorders associated with natural killer (NK) cells. Proc. EMSA 1989; 872–873, 47th Annual Meeting
  • McConkey D.J., Hartzell P., Duddy S.K., Hakansson H., Orrenius S. 2, 3.7.8-tetrachlorodibenm-p-dioxin kills immature thymocytes by Ca2+-mediated endonuclease activation. Science 1988; 242: 256–259
  • Mo Conkey D.J., Hartzell P., Nicotera P., Orrenius S. Calcium-activated DNA fragmentation kills immature thymocytes. FASEB J. 1989; 3: 1843–1849
  • Kyprianou N., English H.F., Isaacs J.T. Activation of a Ca2+-Mg2+-dependent endonuclease as an early event in castration-induced prostatic cell death. The Prostate. 1988; 13: 103–117
  • Cohen J.J., Duke R.C. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J. Immunol. 1984; 132: 38–42
  • Compton M.M. A biochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer Metast. Rev. 1992; 11: 105–119
  • Nikonova L.V., Nelipovich P.A., Umansky S.R. The involvement of nuclear nucleases in rat thymocyte DNA degradation after gamma-irradiation. Biochim Biophys. Acta 1982; 699: 281–289
  • Nakamura M., Sakaki Y., Watanabe N., Takagi Y. Purification and characterization of the Ca2+ plus Mg2+—dependent endodeoxyribonuclease from calf thymus chromatin. J. Biochem. 1981; 89: 143–152
  • Peitsch M.C., Polzar B., Stephan H., et al. Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J. 1993; 12: 371–377
  • Barry M.A., Eastman A. Identification of deoxyribonuclease II as an endonuclease involved in apoptosis. Arch. Biochem Biophys. 1993; 300: 440–450
  • Fraser M.J., Ireland C.M., Tynan S.J., Papaioannou A. Evidence for the role of an endo-exonuclease in the chromatin DNA fragmentation which accompanies apoptosis. Programmed Cell Death: The Cellular and Molecular Biology of Apoptosis, L.D. Tomei Watters, D. Chur. Harwood Academic Publishers, Switzerland 1993; 111–122
  • Ramotar D., Auchincloss A.H., Fraser M.J. Nuclear endo-exonuclease of Neurospora crassa. Evidence for a role in DNA repair. J. Biol. Chem. 1987; 262: 425–431
  • Tomei L.D. Apoptosis: a program for death or survival?. Apoptosis: The Molecular Basis of Cell Death, L.D. Tomei Cope, F.O. Plainview. Cold Spring Harbor Laboratory Press, New York 1991; 279–316
  • Tomei L.D., Shapiro J.P., Cope F.O. Apoptosis in C3W/10Te1/2 mouse embryonic cells: Evidence for internucleosomal DNA modification in the absence of double-strand cleavage. Proc. Natl. Acad. Sci. USA 1993; 90: 853–857
  • Peitsch M.C., Muller C., Tschopp J. DNA fragmentation during apoptosis is caused by frequent single-strand cuts. Nucleic Acids Res. 1993; 21: 4206–4209
  • Schwartzman R.A., Cidlowski J.A. Mechanism of tissue-specific induction of internucleosomal deoxyribonucleic acid cleavage activity and apoptosis by glucocorticoids. Endocrinology 1993; 133: 591–599
  • Wesselborg S., Kabelitz D. Activation-driven death of human T cell clones: time course kinetics of the induction of cell shrinkage, DNA fragmentation. and cell death. Cell. Immunol. 1993; 148: 234–241
  • Robaye B., Mosselmans R., Fiers W., Dumony J.E., Galand P. Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells. in viro. Amer, J. Pathol. 1991; 138: 447–453
  • Zeleznik A.J., Ihrig L.L., Bassett S.G. Developmental expression of Ca++/Mg++-dependent endonuclease activity in rat granulosa and heal cells. Endocrinology 1989; 125: 2218–2220
  • Rotello R.J., Hocker M.B., Gerschenson L.E. Biochemical evidence for programmed cell death in rabbit uterine epithelium. Amer, J. Pathol. 1989; 134: 491–495
  • Rice W.G., Hillyer C.D., Harten B., et al. Induction of endonuclease-mediated apoptosis in tumor cells by C-nitroso-substituted ligands of poly(ADP-ribose)polymerase. Proc. Natl. Acad. Sci. USA 1992; 89: 7703–7707
  • Sokolova J.A., Volgin A.U., Makarova N.V., Volgina V.V., Shishkin S.S., Khodarev N.N. Internucleosomal chromatin degradation in myeloma and B-hybridoma cell cultures. FEBS Lett. 1992; 313: 295–299
  • Cohen G.M., Sun X.-M., Snowden R.T., Dinsdale D., Skilleter D.N. Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J. 1992; 286: 331–334
  • Oberhammer F., Bunch W., Tiefenbacher R., et al. Apoptosis is induced by transforming growth factor-beta I within 5 hours in regressing liver without significant fragmentation of the DNA. Hepatol. 1993; 18: 1238–1246
  • Oberhammer F., Fritsch G., Schmied M., et al. Condensation of the chromatin at the membrane of an apoptotic nucleus is not associated with activation of an endonuclease. J. Cell Sci. 1993; 104: 317–326
  • Zakeri Z.F., Guaglino D., Latham T., Lockshin R.A. Delayed internucleosomal DNA fragmentation in programmed cell death. FASEB J. 1993; 7: 470–478
  • Falcieri E., Martelli A.M., Bareggi R., Cataldi A., Cocco L. The protein kinase inhibitor staurosporine induces morphological changes typical of apoptosis in Molt 4 cells without concomitant DNA fragmentation. Biochem. Biophys. Res. Comm. 1993; 193: 19–25
  • Garcia-Martinez V., Macias D., Ganan Y., et al. Internucleosomal DNA fragmentation and programmed cell death (apoptosis) in the interdigital tissue of the embryonic chick leg bud. J. Cell Sci. 1993; 106: 210–208
  • Fukuda K., Kojiro M., Chiu J.-F. Demonstration of extensive chromatin cleavage in transplanted Morris hepatoma 7777 tissue: Apoptosis or necrosis?. Amer. J. Pathol. 1993; 142: 935–946
  • Collins R.J., Harmon B.V., Gobe G.C., Kerr J.F.R. Internucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int. J. Rad. Biol. 1992; 61: 451–453
  • Hedgecock E.M., Sulston J.E., Thomson J.N. Mutations affecting programmed cell deaths in the nematode. Caenorhabditis elegans. Science 1983; 220: 1277–1279
  • Brown D.G., Sun X.-M., Cohen G.M. Dexamethasone-induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation. J. Biol. Chem. 1993; 268: 3037–3039
  • Servomaa K., Rytomaa T. Suicidal death of rat chloroleukemia cells by activation of the long interspersed repetitive DNA element (LIRn). Cell Tissue Kinet. 1988; 21: 33–43
  • Servomaa K., Rytomaa T. UV light and ionizing radiations cause programmed death of rat chloroleukaemia cells by inducing retropositions of a mobile DNA element (LIRn). Int. J. Rod. Biol. 1990; 57: 331–343
  • Luokkamaki M., Servomaa K., Rytomaa T. Onset of chromatin fragmentation in chloroma cell apoptosis is highly sensitive to W and begins at non-B DNA conformation. Int. J. Rad Biol. 1993; 63: 207–213
  • Gorczyca W., Bigman K., Mittelman A., et al. Induction of DNA strand breaks associated with apoptosis during treatment of leukemias. Leukemia. 1993; 7: 659–670
  • Gold R., Schmied M., Rothe G., et al. Detection of DNA fragmentation in apoptosis: application of in situ nick translation to cell culture systems and tissue sections. J Histochem. Cytochem. 1993; 41: 1023–1030
  • Gavrieli Y., Sherman Ben- Y., Sasson S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 1992; 119: 493–501
  • Wijsman J.H., Jonker R.R., Keijzer R., van de Velde C.J.H., Cornelisse C.J., van Dierendonck J.H. A new method to detect apoptosis in paraffin sections: In situ end-labeling of fragmented DNA. J. Histochem. Cytochem 1993; 41: 7–12
  • Ansari B., Comes P.J., Greenstein B.D., Hall P.A. In situ end-labelling detects DNA strand breaks in apoptosis and other physiological and pathological states. J. Pathol. 1993; 170: 1–8
  • Wood K.A., Dipasquale B., Youle R.J. In situ la beling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron 1993; 11: 621–632
  • Coulton G.R., Rogers B., Strutt P., Skynner M.J., Watt D.J. In situ localisation of single-stranded DNA breaks in nuclei of a subpopulation of cells within regenerating skeletal muscle of the dystrophic mdx mouse. J. Cell Sci. 1992; 102: 653–662
  • Fey E.G., Penman S. Nuclear matric proteins reflect cell type of origin in cultured human cells. Proc. Natl. Acad. Sci USA 1988; 85: 121–125
  • Jackson D.A., Cook P.R. Visualization of a filamentous nucleoskeleton with a 23 nm axial repeat. EMBO J. 1988; 7: 3667–3677
  • Berezney R. The nuclear matrix: A heuristic model for investigating genomic organization and function in the cell nucleus. J. Cell. Biochem. 1991; 47: 109–123
  • de long L., van Driel R., Stuurman N., Meijne A.M.L., van Renswoude J. Principles of nuclear organization. Cell Biol. In;. Rep. 1990; 14: 1051–1074
  • Getzenberg R.H., Pienta K.J., Ward W.S., Coffey D.S. Nuclear structure and the three-dimensional organization of DNA. J. Cell. Biochem. 1991; 47: 289–299
  • He D., Nickerson J.A., Penman S. Core filaments of the nuclear matrix. J. Cell Biol. 1990; 110: 569–580
  • Lacks S.A. Deoxyribonuclease I in mammalian tissues. Specificity of inhibition by actin. J. Biol. Chem. 1981; 256: 2644–2648
  • Lazarides E., Lindberg U. Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc. Natl. Acad. Sci. USA 1974; 71: 4742–4746
  • Polzar B., Nowak E., Goody R.S., Mannherz H.G. The complex of actin and deoxyribonuclease I as a model system to study the interactions of nucleotides. cations and cytochalasin D with monomeric actin. Eur. J. Biochem. 1989; 182: 267–275
  • Hinshaw D.B., Armstrong B.C., Burger J.M., Beals T.F., Hyslop P.A. ATP and microfilaments in cellular oxidant injury. Amer. J. Pathol. 1988; 132: 479–488
  • Earnshaw W.C., Heck M.M.S. Localization of topoisomerase II in mitotic chromosomes. J. Cell Biol. 1985; 100: 1716–1725
  • Walker P.R., Kokileva L., Leblanc J., Sikorska M. Detection of the initial stages of DNA fragmentation in apoptosis. BioTech 1993; 15: 1032–1040
  • Oberhammer F., Wilson J.W., Dive C., et al. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 1993; 12: 3679–3684
  • Kruman I.I., Gukovskaya A.S., Petrunyaka V.V., Beletsky J.P., Trepakova E.S. Apoptosis of murine BW 5147 thymoma cells induced by cold shock. J. Cell. Physiol. 1992; 153: 112–117
  • Ucker D.S., Obermiller P.S., Eckhart W., Apgar J.R., Berger N.A., Meyers J. Genome digestion is a dispensable consequence of physiological cell death mediated by cytotoxic T lymphocytes. Mol. Cell. Biol. 1992; 12: 3060–3069
  • Peter M., Nakagawa J., Doree M., Labbe J.C., Nigg E.A. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 1990; 61: 591–602
  • Kaufmann S.H. Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin. and other cytotoxic anticancer drugs: a cautionary note. Cancer Res. 1989; 49: 5870–5878
  • Miller T., Beausang L.A., Meneghini M., Lidgard G. Death-induced changes to the nuclear matrix: the use of anti-nuclear matrix antibodies to study agents of apoptosis. BioTech. 1993; 15: 1042–1047
  • Compton D.A., Szilak I., Cleveland O.W. Primary structure of NuMA, an intranuclear protein that defines a novel pathway for segregation of proteins at mitosis. J. Cell Biol. 1992; 116: 1395–1408
  • Yang C.H., Lambie E.J., Snyder M. NuMA An unusually long coiled-coil related protein in the mammalian nucleus. J. Cell Biol. 1994; 116: 1303–1317
  • Croall O.E., De Martino G.N. Calcium-activated neutral protease (calpain) system: Structure. function. and regulation. Physiol. Rev. 1991; 71: 813–847
  • Sarin A., Adams O.H., Henkart P.A. Protease inhibitors selctively block T cell receptor-triggered programmed cell death in a murine T cell hybridoma and activated peripheral T cells. J. Exp. Med. 1993; 178: 1693–1700
  • Ruggiero V., Johnson S.E., Baglioni C. Protection from tumor necrosis factor cytotoxicity by protease inhibitors. Cell. Immunol. 1987; 107: 317–325
  • Bruno S.D, El Bino G., Lassota P., Giaretti W., Danynkiewicz Z. Inhibitors of proteases prevent endonucleolysis accompanying apoptotic death of HL-60 leukemic cells and normal thymocytes. Leukemia. 1992; 6: 1113–1120
  • Squier M.K.T., Miller A.C.K., Malkinson A.M., Cohen J.J. Calpain activation in apoptosis. J. Cell. Physiol. 1994; 159: 229–237
  • Yuan J., Horvitz H.R. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev. Biol. 1990; 138: 33–41
  • Miura M., Zhu H., Rotello R., Hartwieg E.A., Yuan J. Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of the C. elegans cell death gene. ced-3. Cell 1993; 75: 653–660
  • Mayer R.J., Arnold J., Laszlo L., Landon M., Lowe J. Ubiquitin in health and disease. Biochim. Biophys. Acta. 1991; 1089: 141–157
  • Hershko A., Ciechanover A. The ubiquitin pathway for the degradation of intracellular proteins. Prog. Nucl. Acid Res. 1986; 33: 19–56
  • Delic J., Morange M., Magdelenat H. Ubiquitin pathway involvement in human lymphocyte gamma-irradiation-induced apoptosis. Mol. Cell. Biol. 1993; 13: 4875–4883
  • Roy C., Brown O.L., Little J.E., et al. The topoisomerase II inhibitor teniposide (VM-26) induces apoptosis in unstimulated mature murine lymphocytes. Exp. Cell Res. 1992; 200: 416–424
  • Schwartz L.M., Myer A., Kosz L., Engelstein M., Maier C. Activation of polyubiquitin gene expression during developmentally programmed cell death. Neuron. 1990; 5: 411–419
  • Fornace A.J., Jr., Alamo I., Jr., Hollander M.C., Lamoreaux E. Ubiquitin mRNA is a major stress-induced transcript in mammalian cells. Nucleic Acids Res. 1989; 17: 1215–1230
  • Martin S.J., Cotter T.G. Apoptosis of human leukemia: Induction, morphology, and molecular mechanisms. Apoptosis II: The Molecular Basis of Apoptosis in Disease, L.D. Tomei, F.O. Cope. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1994; 185–229
  • Tsukidate K., Yamamoto K., Snyder J.W., Farber J.L. Microtubule antagonists activate programmed cell death (apoptosis) in cultured rat hepatocytes. Amer. J. Pathol. 1993; 143: 918–925
  • Martin S.J., Cotter T.G. Specific loss of microtubules in HL-60 cells leads to programmed cell death (apoptosis). Biochem. Soc. Trans. 1990; 18: 299–301
  • Bellomo G., Perotti M., Taddei F., et al. Tumor necrosis factor alpha induces apoptosis in mammary adenocarcinoma cells by an increase in intranuclear free Ca2+ concentration and DNA fragmentation. Cancer Res. 1992; 52: 1342–1346
  • Story M.D., Stephens L.C., Tomasovic S.P., Meyn R.E. A role for calcium in regulating apoptosis in rat thymocytes irradiated. in vitro. Int. J. Rad Biol. 1992; 61: 243–251
  • McConkey D.J., Hartzell Amador- P., Perez J.F., Orrenius S., Jondal M. Calcium-dependent killing of immature thymocytes by stimulation via the CD3m cell receptor complex. J. Immunol. 1989; 143: 1801–1806
  • McConkey O.J., Nicotera P., Hartzell P., Bellomo G., Wyllie A.H., Orrenius S. Glucocorticoids activate a suicide process in thymocytes through an elevation of cytosolic Ca2+ concentration. Arch. Biochem. Biophys. 1989; 269: 365–370
  • Kaiser N., Edelman J.S. Further studies on the role of calcium in glucocorticoid-induced lymphocytolysis. Endocrinology 1978; 103: 936–942
  • Hirai -I S., Kawasaki H., Yaniv M., Suzuki K. Degradation of transcription factors, c-Jun and c-Fos, by calpain. FEBS Lett. 1991; 287: 57–61
  • Jewell S.A., Bellomo G., Thor H., Orrenius S., Smith M.T. Bleb formation in hepatocytes during drug metabolism is caused by disturbances in thiol and calcium ion homeostasis. Science 1982; 217: 1257–1259
  • Smith G.J., Bagnell C.R., Bakewell W.E., et al. Application of con focal scanning laser microscopy in experimental pathology. J. Elect. Micros. Tech. 1991; 18: 38–49
  • Song Q., Baxter G.O., Kovacs E.M., Findik D., Lavin M.F. Inhibition of apoptosis in human tumour cells by okadaic acid. J. Cell. Physiol. 1992; 153: 550–556
  • Halliwell B., Gutteridge J.M.C. Oxygen is poisonous-an introduction to oxygen toxicity and free radicals. Free Radicals in Biology and Medicine, B. Halliwell, J.M.C. Gutteridge. Oxford University Press, Oxford 1985; 1–19
  • Cross C.E., Halliwell B., Borish E.T., et al. Oxygen radicals and human disease. Annals Intern. Med. 1987; 107: 526–545
  • Pacifici R.E., Davies K.J.A. Protein, lipid and DNA repair systems in oxidative stress: The free-radical theory of aging revisited. Gerontol. 1991; 37: 166–180
  • Halliwell B., Gutteridge J.M.C. Lipid peroxidation: a radical chain reaction. Free Radicals in Biology and Medicine, B. Halliwell, J.M.C. Gutteridge. Oxford University Press., Oxford 1985; 139–189
  • Casini A.F., Pompella A., Comporti M. Liver glutathione depletion induced by bromobenzene. iodobenzene. and diethylmaleate poisoning and its relation to lipid peroxidation and necrosis. Amer. J. Pathol. 1985; 118: 225–237
  • McConkey D.J., Harttzell P., Nicotera P., Wyllie A.H., Orrenius S. Stimulation of endogenous endonuclease activity in hepatocytes exposed to oxidative stress. Toxicol. Lett. 1988; 42: 123–130
  • Brown D.M., Warner Ales- G.L., Martinez J.E., Scott D.W., Phipps R.P. Prostaglandin E2 induces apoptosis in immature normal and malignant B lymphocytes. Clin. Immunol. Immunopathol. 1992; 63: 221–229
  • Wu F. Y.-H., Chang N.-T., Chen W.-J., Juan C.-C. Vitamin KI-induced cell cycle arrest and apoptotic cell death are accompanied by altered expression of c-fos and c-myc in nasopharyngeal carcinoma cells. Oncogene 1993; 8: 2237–2244
  • Waring P., Eichner R.D., Mullbacher A., Sjaarda A. Gliotoxin induces apoptosis in macrophages unrelated to its antiphagocytic properties. J. Biol. Chem. 1988; 263: 18493–18499
  • Lancaster J.R., Jr. Nitric oxide in cells. Amer. Scient. 1992; 80: 248–259
  • Sarih M., Souvannavong V., Adam A. Nitric oxide synthase induces macrophage death by apoptosis. Biochem. Biophys. Res. Comm. 1993; 191: 503–508
  • Albina J.E., Cui S., Mateo R.B., Reichner J.S. Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J. Immunol. 1993; 150: 5080–5085
  • Ramakrishnan N., McClain D.E., Catravas G.N. Membranes as sensitive targets in thymocyte apnptosis. Int. J. Rad. Biol. 1993; 63: 693–701
  • Ramakrishnan N., Catravas G.N. N-(2-mercaptnethyl)-1,3-propanediamine (WR-1065) protects thymocytes from programed cell death. J. Immunol. 1992; 148: 1817–1821
  • Ratan R.R., Murphy T.H., Barban J.M. Oxidative stress induces apoptosis in embryonic cortical neurons. J. Neurochem. 1994; 62: 376–379
  • Galli G., Fratelli M. Activation of apnptosis by serum deprivation in a teratocarcinoma cell line: Inhibition by L-acetyl-carnitine. Exp. Cell Rex. 1993; 204: 54–60
  • Malorni W., Rivabene R., Santini M.T., Donelli C. N-acetylcysteine inhibits apoptosis and decreases viral particles in HIV-chronically infected U937 cells. FEBS Lett. 1993; 327: 75–78
  • Endresen P.C., Eide T.J., Aarbakke J. Cell death initiatd by 3-deazaadenosine in HL-60 cells is apnptosis and is partially inhibited by homncysteine. Biochem. Pharmacol. 1993; 46: 1893–1901
  • Forrest V.J., Kang Y.-H., McClain D.E., Robinson D.H., Ramakrishnan N. Oxidative stress-induced apoptosis prevented by trolox. Free Rad. Biol. Med. 1994; 16: 675–684
  • Brune B., Hutzell P., Nicotera P., Orrenius S. Spermine prevents endonuclease activation and apoptosis in thymocytes. Exp. Cell Res 1991; 195: 323–329
  • Iwata M., Mukai M., Nakai Y., Iseki R. Retinoic acids inhibit activation-induced apoptosis in T cell hybridomas and thymocytes. J. Immunol. 1992; 149: 3302–3308
  • Adelman R., Saul R.L., Ames B.N. Oxidative damage to DNA: relation to species metabolic rate and life span. Proc. Nod. Acad Sci. (USA). 1988; 85: 2706–2708
  • Ames B.N. Dietary carcinogens and anticarcinogens. Oxygen radicals & degenerative diseases. Science 1983; 221: 1256–1263
  • Richer C., Park J.-W., Amer B.N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Nd. Accid. Sci. USA 1988; 85: 6465–6467
  • Ames B.N., Shigenaga M.K. Oxidants arc a major contributor to aging. Annuls N. Y. Acad Sci. 1992; 663: 85–96
  • Shigenaga M.K., Gimeno C.J., Ames B.N. Urinary 8-hydroxy-2′-deoxyguanosine as a biological market of in vivo oxidative DNA damage. Proc. Natl. Acad. Sci. USA 1989; 86: 9697–9701
  • Simic M.G., Bergtold D.S. Dietary modulation of DNA damage in human. Mutation Res. 1991; 250: 17–24
  • Freeman B.A., Crapo J.D. Free radicals and tissue injury. Lab. Invest. 1982; 47: 412–426
  • Schiller H.J., Andreoni K.A., Bulkley G.B. Free radical ablation for the prevention of post-ischemic renal failure following renal transplantation. Klin. Wochenschr. 1991; 69: 1083–1094
  • Janssen Vim Y.M.W., Houten B., Borm P.J.A., Mossman B.T. Cell and tissue responses to oxidative damage. Lab. Invest. 1993; 69: 261–171
  • Rose R.C., Bode A.M. Biology of free radical scavengers: an evaluation of ascorbate. FASEB J. 1993; 7: 1135–1142
  • Krinsky N.I. Mechanism of action of biological antioxidants. Proc. Soc. Exp. Biol. Med. 1992; 200: 248–254
  • Halliwell B., Gutteridge J.M.C. Protection against oxygen radicals in biological systems: the superoxide theory of oxygen toxicity. Free Radicals in Biology and Medicine, B. Halliwell, J.M.C. Gutteridge. Oxford university Press, Oxford 1985; 67–138
  • Tipping E., Ketterer B. The influence of soluble binding proteins on lipophile transport and metabolism in hepatocytes. Biochem. J. 1981; 195: 441–452
  • Bennett C.F., Spector D.L., Yeoman L.C. Nonhistone protein BA is a glutathione S-transferase localized to interchromatinic regions of the nucleus. J. Cell Biol. 1986; 102: 600–609
  • Meister A. New aspects of glutathione biochemistry and transport: selective alteration of glutathione metabolism. Fed. Proc. 1984; 43: 3031–3042
  • Halliwell B., Gutteridge J.M.C. The antioxidants of human extracellular fluids. Arch. Biochem. Biophys. 1990; 280: 1–8
  • Frei B., Stocker R., Ames B.N. Small molecule antioxidant defenses in human extracellular fluids. Molecular Biology of Free Radical Scavenging System, J.G. Scandalios. Cold Spring Harbor Laboratory Press., Plainview 1992; 23–45
  • Cantin A.M., North S.L., Hubbard R.C., Crystal R.C. Normal alveolar epithelial lining fluid contains high levels of glutathione. J. Appl. Physiol. 1987; 63: 152–157
  • Fraga C.G., Motchnik P.A., Shigenaga M.K., Helbock H.J., Jacob R.A., Ames B.N. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc. Natl. Acad. Sci. USA 1991; 88: 11003–11006
  • Washko P.W., Wang Y., Levine M. Ascorbic acid recycling in human neutrophils. J. Biol. Chon. 1993; 268: 15531–15535
  • Sies H., De Groot H. Role of reactive oxygen species in cell toxicity. Toxicol. Lett. 1993; 64/65: 547–551
  • Jackson J.H., Cochrane C.G. Leukocyte-induced tissue injury. Hematol./Oncol. Clinics N. Amer. 1988; 2: 317–334
  • Simmonds N.J., Rampton D.S. Inflammatory bowel disease-a radical view. Gut 1993; 34: 865–868
  • Groux H., Torpier G., Monte D., Mouton Y., Capron A., Ameisen J.C. Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J. Exp. Med. 1992; 175: 331–310
  • Banda N.K., Bernier J., Kurahara D.K., et al. Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apnptosis. J. Exp. Med. 1992; 176: 1099–1106
  • Cohen D.A., Fitzpatrick E.A., Barve S.S., et al. Activation-dependent apoptosis in CD4+ T cells during murine AIDS. Cell. Immunol. 1993; 151: 392–403
  • Gougeon M.-L., Montagnier L. Apoptosis in AIDS. Science 1993; 260: 1169–1270
  • Terai C., Kornbluth R.S., Pauza C.D., Richman D.D., Carson D.A. Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-I. J. Clin. Invest. 1991; 87: 1710–1715
  • Laurent-Crawford A.G., Krust B., Muller S., et al. The cytopathic effect of HIV is associated with apoptosis. Virology 1991; 185: 829–839
  • Droge W., Eck H.-P., Mihm S. HIV-induced cysteine deficiency and T-cell dysfunction-a rationale for treatment with N-acetylcysteine. Immunol. Today. 1992; 211: 211–114
  • Buhl R., Holroyd K.J., Mastrangcli A., et al. Systemic glutathione deficiency in symptom-free HIV-seropositive individuals. Lancet. 1989; 2: 1294–1298
  • Staal F.J.T., Ela S.W., Roederer M., Anderson M.T., Herzenberg L.A. Glutathione deficiency and human immunodeficiency virus infection. Lancet 1992; 1: 909–912
  • Sandstrom P.A., Tebbey P.W., van Cleare S., Buttke T.M. Lipid hydroperoxides induce apoptosis in T cell displaying a HIV-associated glutathione peroxidase deficiency. J. Biol. Chem 1991; 269: 798–801
  • Droge W., Eck H.-P., Gmunder H., Mihm S. Requirement for prooxidant and antioxidant states in T cell mediated immune responses. Relevance for the pathogenetic mechanism of AIDS?. Klin. Wochenschr. 1991; 69: 1118–1122
  • Droge W., Eck H.P., Gmunder H., Mihm S. Modulation of lymphocyte functions and immune responses by cysteine and cysteine derivatives. Amer. J. Med. 1991; 91: 140S–144S, Suppl 3C
  • Gmunder H., Eck H.-P., Benninghoff B., Roth S., Droge W. Macrophages regulate intracellular glutathione levels of lymphocytes. Evidence for an immunoregulatory role of cysteine. Cell. Immunol. 1990; 129: 32–46
  • Gmunder H., Eck H.-P., Droge W. Low membrane transport activity for cystine in resting and mitogenically stimulate human lymphocyte preparations and human T cell clones. Eur. J. Biochem. 1991; 201: 113–117
  • Brewton G.W., Hersh E.M., Rios A., Mansell P.W.A., Hollinger B., Reuben J.M. A pilot study of diethyldithiocarbamate in patients with acquired immune deficiency syndrome (AIDS) and the AIDS-related complex. Life Sci. 1989; 45: 2509–2520
  • Reisinger E.C., Kern P., Ernst M., et al. Inhibition of HIV progression by dithiocarb. Lancet 1990; 335: 679–682
  • Evans R.G. Tumor radiosensitization with concomitant bone marrow radioprotection: A study in mice using diethyldithiocarbamate (DDC) under oxygenated and hypoxic conditions. Int. J. Radiat. Oncol. Biol. Phys. 1985; 11: 1163–1169
  • Gougerot-Pocidalo M.-A. Glutathione and HIV infection. Lancer 1990; 335: 234
  • Dupuy J.-M., Revillard J.-P., Hersh E.M., El Habib R., Caraux J. Glutathione and HIV infection. Lancer 1990; 335: 234–235
  • Harari P.M., Tome M.E., Fuller D.J.M., Carper S.W., Gerner E.W. Effects of diethyldithiocarbamate and endogenous polyamine content on cellular responses to hydrogen peroxide cytotoxicity. Biochem J. 1989; 260: 487–490
  • Pegg A.E. Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res. 1988; 48: 759–774
  • Halliwell B., Cross C.E. Reactive oxygen species, antioxidants. and acquired immunodeficiency syndrome. Arch. Int. Med 1991; 151: 29–31
  • Whitacre C.M., Cathcart M.K. Oxygen free radical generation and regulation of proliferative activity of human mononuclear cells responding to different mitogens. Cell. Immunol. 1992; 144: 287–295
  • Murrell G.A.C., Francis M.J.O., Bromley L. Modulation of fibroblast proliferation by oxygen free radicals. Biochem. J. 1990; 265: 659–665
  • Nishhira J., Ishibashi T., Takeichi N., Sakamoto W., Nakamura M. A role for oxygen radicals in rat monocytic leukemia cell differentiation under stimulation with platelet-activating factor. Biochim Biophys. Acta 1994; 1220: 286–290
  • Dornand J., Gerber M. Inhibition of murine T-cell responses by anti-oxidants: the targets of lipo-oxygenase pathway inhibitors. Immunol. 1989; 68: 384–391
  • Chen-Levy Z., Nourse J., Cleary M.L. The bcl-2 candidate proto-oncogene product is a 24-kilodalton integral-membrane protein highly expressed in lymphoid cell lines and lymphomas carrying the t(14; 18) translocation. Mol. Cell. Biol. 1989; 9: 701–710
  • Monaghan P., Robertson D., Amos T.A.S., Dyer M.J.S., Mason D.Y., Greaves M.F. Ultrastructural localization of BCL-2 protein. J. Histochem. Cytochem 1992; 40: 1819–1825
  • Hockenbery D.M., Oltvai Z.N., Yin X.-M., Milliman C.L., Korsmeyer S.J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75: 241–251
  • Chen-Levy Z., Cleary M.L. Membrane topology of the bcl-2 proto-oncogenic protein demonstrated. in vitro, J. Biol. Chem 1990; 265: 4929–4933
  • Strasser A., Harris A.W., Cory S. The bcl-2 oncogene regulates lymphocyte survival and potentiates lymphomagenesis. Programmed Cell Death: The Cellular and Molecular Biology of Apoptosis, M. Lavin Watters, D. Chur. Harwood Academic Publishers, Switzerland 1993; 1993, 167–177
  • Adachi M., Tsujimoto Y. Juxtaposition of human bcl-2 and immunoglobulin lambda light gene in chronic lymphocytic leukemia is the result of a reciprocal chromosome translocation between chromosome 18 and 22. Oncogene 1989; 4: 1073–1075
  • Tsujimoto Y., Yunis J., Onorato-Showe L., Erikson J., Nowell P.C., Croce C.M. Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 1984; 224: 1403–1406
  • Tsujimoto Y., Cossman J., Jaffe E., Croce C.M. Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985; 228: 1440–1443
  • Bakhshi A., Jensen J.P., Goldman P., et al. Cloning the chromosomal breakpoint of t(14; 18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 1985; 41: 899–906
  • Cleary M.L., Sklar J. Nucleotide sequence of a t(14; 18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc. Natl. Acad. Sci. USA 1985; 82: 7439–1443
  • Korsmeyer S.J. Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 1992; 80: 879–886
  • Korsmeyer S.J., McDonnell T.J., Nunez G., Hockenbery D., Young R. Bcl-2:B cell life, death and neoplasia. Curr. Top. Micro. Immunol. 1990; 166: 203–207
  • Korsmeyer S.J. Bcl-2: a repressor of lymphocyte death. Immunol. Today 1992; 13: 285–288
  • Hockenbery D.M., Zutter M., Hickey W., Nahm M., Korsmeyer S.J. BCL2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc. Natl. Acad. Sci. USA 1991; 88: 6961–6965
  • Vaux D.L., Cory S., Adams J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335: 440–442
  • Reed J.C., Talwar H.S., Cuddy M., et al. Mitochondrial protein p26 BCL2 reduces growth factor requirements of NIH3T3 fibroblasts. Exp. Cell Res. 1991; 195: 277–283
  • Nunez G., London L., Hockenbery D., Alexander M., McKeam J.P., Korsmeyer S.J. Deregulated bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J. Immunol. 1990; 144: 3602–3610
  • Baffy G., Miyashita T., Williamson J.R., Reed J.C. Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3–dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced bcl-2 oncoprotein production. J. Biol. Chem. 1993; 268: 6511–6519
  • Fairbairn L.J., Cowling G.J., Reipert B.M., Dexter T.M. Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell 1993; 74: 823–832
  • Allsopp T.E., Wyatt S., Paterson H.F., Davies A.M. The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell 1993; 73: 295–307
  • Mah S.P., Zhong L.T., Liu Y., Roghani A., Edwards R.H., Bredesen D.E. The protooncogene bcl-2 inhibits apoptosis in PC12 cells. J. Neurochem 1993; 60: 1183–1186
  • Reed J.C., Meister L., Tanaka S., et al. Differential expression of bc12 protooncogene in neuroblastoma and other human cell lines of neural origin. Cancer Res. 1991; 51: 6529–6538
  • Zhong L.-T., Sarafian T., Kane D.J., et al. bcl-2 inhibits death of central neural cells induced by multiple agents. Proc. Natl. Acad. Sci. USA 1993; 90: 4533–4537
  • Strasser A., Harris A.W., Cory S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 1991; 67: 889–899
  • Akbar A.N., Salmon M., Savill J., Janossy G. A possible role for bcl-2 in regulating T-cell memory-a “balancing act” between cell death and survival. Immunol. Today 1993; 14: 526–532
  • Colombel M., Symmans F., Gil S., et al. Detection of the apoptosis-suppressing oncoprotein bcl-2 in hormone-refractory human prostate cancers. Amer, J. Pathol. 1993; 143: 390–400
  • McDonnell T.J., Troncoso P., Brisbay S., . Bcl-2 expression in the prostate and its association with androgen-independent prostate cancer. Programmed Cell Death: The Cellular and Molecular Biology of Apoptosis, M. Lavin Watters, D. Chur, et al. Harwood Academic Publishers, Switzerland 1993; 179–183
  • Ohmori T., Podack E.R., Nishio K., et al. Apoptosis of lung cancer cells caused by some anticancer agents (MMC, CPT-II, ADM) is inhibited by. bcl-2. Biochem Biophys. Res. Comm. 1993; 192: 30–36
  • Finke J., Lange W., Mertelsmann R., Dolken G. Bcl-2 induction is part of the strategy of Epstein-Bam virus. Led. Lymph. 1994; 12: 413–419
  • Finke J., Fritzen R., Terns P., et al. Expression of bcl-2 in Burkitt's lymphoma cell lines: induction by latent Epstein-Barr virus genes. Blood 1992; 80: 459–469
  • Henderson S., Rowe M., Gregory C., et al. Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein I protects infected B cells from programmed cell death. Cell 1991; 65: 1107–1115
  • Gregory C.D., Dive C., Henderson S., et al. Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis. Nature 1991; 349: 612–614
  • Vaux D.L., Weissman I.L., Kim S.K. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 1992; 258: 1955–1957
  • Veis D.J., Sorenson C.M., Shutter J.R., Korsmeyer S.J. Bcl-2 deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 1993; 75: 229–240
  • Prota G. Recent advances in the chemistry of melanogenesis in mammals. J. Invest. Dermatol. 1980; 75: 122–127
  • Yohn J.J., Norris D.A., Yrastorza D.G., et al. Disparate antioxidant enzyme activities in cultured human cutaneous fibroblasts, keratinocytes, and melanocytes. J. Invest. Dermatol. 1991; 97: 405–409
  • Richter C. Pro-oxidants and mitochondrial Ca2+ their relationship to apoptosis and oncogenesis. FEBS Lett. 1993; 325: 104–107
  • Richter C., Kass G.E.N. Oxidative stress in mitochondria: its relationship to cellular Ca2+ homeostasis, cell death, proliferation. and differentiation. Chem. -Biol. Interact. 1991; 77: 1–23
  • Hennet T., Bertoni G., Richter C., Peterhans E. Expression of bcl-2 protein enhances the survival of mouse IV brosarcoid cells in tumor necrosis factor-mediated cytotoxicity. Cancer Res. 1993; 53: 1456–1460
  • Hennet T., Richter C., Peterhans E. Tumour necrosis factor-alpha induces superoxide anion generation in mitochondria of L929 cells. Biochem, J. 1993; 289: 587–592
  • Schulze-Osthoff K., Bakker A.C., Vanhaesebroeck B., Beyaert R., Jacob W.A., Fiers W. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvemnet of mitochondrial radical generation. J. Biol. Chem. 1992; 267: 5317–5323
  • Jacobson M.D., Burne J.F., King M.P., Miyashita T., Reed J.C., Raff M.C. Bcl-2 blocks apnptosis in cells lacking mitochondrial DNA. Nature 1993; 361: 365–369
  • Strasser A., Whittingham S., Vaux D.L., et al. Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc. Natl. Acad. Sci. USA 1991; 88: 8661–8665
  • McDonnell T.J., Korsmeyer S.J. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature 1991; 349: 256–256
  • Mac Lennan J.C.M., Liu Y.L., Ling N.R. B cell proliferation in follicles, germinal centre formation and the site of neo-plastic transformation in Burkitt's lymphoma. Curr. Top. Micro. Immunol. 1988; 141: 138–148
  • Oltvai Z.N., Milliman C.L., Korsmeyer S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog. Bax, that accelerates programmed cell death. Cell 1993; 74: 609–619
  • Boise L.H., Gonzalez-Garcia M., Postema C.E., et al. bcl-x, a bcl-2–related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597–608
  • Kozopas K.M., Yang T., Buchan H.L., Zhou P., Craig R.W. MCLI, a gene expressed in programmed myeloid cell differentiation. has sequence similarity to. BCU. Proc. Natl. Acad Sci. USA 1993; 90: 3516–3520
  • Henderson S., Huen D., Rowe M., Dawson C., Johnson G., Rickinson A. Epstein-Barr virus-coded BHRFI protein, a viral homologue of bcl-2, protects human B cells from programmed cell death. Proc. National Acad. Science USA 1993; 90: 8479–8483
  • Holder M.J., Wang H., Milner A.E., et al. Suppression of apoptosis in normal and neoplastic human B lymphocytes by CD40 ligand is independent of bcl-2 induction. Eur. J. Immunol. 1993; 23: 2368–2371
  • Falk M.H., Hultner L., Milner A., Gregory C.D., Bomkamm G.W. Irradiated fibroblast., protect Burkitt lymphoma cells from apoptosis by a mechanism independent of bcl-2. Int. J. Cancer. 1993; 55: 485–491
  • Milner A.E., Johnson G.D., Gregory C.D. Prevention of programmed cell death in Burkitt lymphoma cell lines by bcl-2–dependent and -independent mechanisms. Int. J. Cancer. 1992; 52: 636–644
  • Cuende Ales- E., Martinez J.E., Ding L., Gonzalez-Garcia M., Martinez-A C., Nunez G. Programmed cell death by bcl-2-depenentand independent mechanisms in B lymphoma cells. EMBO J. 1993; 12: 1555–1560
  • Starke P.E., Gilbertson J.D., Farber J.L. Lysosomal origin of the ferric ion required for cell killing by hydrogen peroxide. Biochem. Biophys. Res. Comm. 1985; 133: 371–379
  • Oliver C.N. Inactivation of enzymes and oxidative modification of proteins by stimulated neutrophils. Arch. Biochem Biophys. 1987; 253: 62–72
  • Leanderson P., Tagesson C. Rapid and sensitive detection of hydroxy l radicals formed by activated neutrophils in the presence of chelated iron: hydroxylation of deoxyguanosine to 8-hydroxydeoxyguanosine. Agents Actions 1992; 36: 50–57
  • Jaattela M., Wissing D. Emerging role of heat shock proteins in biology and medicine. Ann. Med. 1992; 24: 249–258
  • Chiang H.-L., Terlecky S.R., Plant C.P., Dice J.F. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 1989; 246: 382–385
  • Owens G.P., Hahn W.E., Cohen J.J. Identification of mRNAs associated with programmed cell death in immature thymocytes. Md. Cell. Biol. 1991; 11: 4177–4188
  • Freeman R.S., Estus S., Horigome K., Johnson E.M., Jr. Cell death genes in invertebrates and (maybe) vertebrates. Curr. Opin. Neurobiol. 1993; 3: 25–31
  • Tenniswood M., Taillefer D., Lakins I., . Control of gene expression during apoptosis in hormone-dependent tissues. Apoptosis II: The Molecular Basis of Apoptosis in Disease, L.D. Tomei, F.O. Cope, et al. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1994; 283–311
  • Dipasquale B., Youle R.J. Programmed cell death in heterokaryons. A study of the transfer of apoptosis between nuclei. Amer. J. Pathol. 1992; 141: 1471–1479
  • Chang D.J, Ringold G.M., Heller R.A. Cell killing and induction of manganous superoxide dismutase by tumor necrosis factor-alpha is mediated by lipoxygenase metabolites of arachidonic acid. Biochem. Biophys. Res. Comm. 1992; 188: 538–546
  • Hirose K., Longo D.L., Oppenheim J.J., Matsushima K. Overexpression of mitochondrial manganese superoxide dismutase promotes the survival of tumor cells exposed to interleukin-I, tumor necrosis factor, selected anticancer drugs, and ionizing radiation. FASEBJ. 1993; 7: 361–368
  • Wong G.H.W., Wel D.V. Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 1988; 242: 941–944
  • Visner G.A, Dougall W.C., Wilson J.M., Burr I.A., Nick H.S. Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-I, and tumor necrosis factor. Role in the acute inflammatory response. J. Biol Chem. 1990; 265: 2856–2864
  • van Loon A. P. G. M., Pesold-Hun B., Schatz G. A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc. Natl. Acad. Sci. USA 1986; 83: 3820–3824
  • Larrick J.W., Wright S.C. Cytotoxic mechanism of tumor necrosis factor-alpha. FASEB J. 1990; 4: 3215–3223
  • Pagliacci M.C., Migliorati G., Smacchia M., Grignani F., Riccardi C., Nicoletti I. Cellular stress and glucocorticoid hormones protect L929 mouse fibroblasts from tumor necrosis factor alpha cytotoxicity. J. Endocrinol. Invest. 1993; 16: 591–599
  • Arai A., Vanderklish P., Kessler M., Lee K., Lynch G. A brief period of hypoxia causes proteolysis of cytoskeletal proteins in hippocampal slices. Brain Res. 1991; 555: 276–280
  • Nicotera P., Hartzell P., Davis G., Orrenius S. The formation of plasma membrane blebs in hepatocytes exposed to agents that in- cytosolic Ca2+ is mediated by the activation of a non-lysosomal proteolytic system. FEBS Lett. 1986; 209: 139–144
  • Mirabelli F., Salis A., Marinoni V., et al. Menadione-induced bleb formation in hepatocytes is associated with the oxidation of thiol groups in actin. Arch Biochem Biophys. 1988; 264: 261–269
  • Orrenius S., McConkey D.J., Bellomo G., Nicotera P. Role of Ca2+ in toxic cell killing. TiPS 1989; 10: 281–285
  • Thor H., Hartzell P., Orrenius S. Potentiation of oxidative all injury in hepatocytes which have accumulated Ca2+. J. Biol Chem 1984; 259: 6612–6615
  • Shen W., Kamendulis L.M., Ray S.D., Corcoran G.B. Acetaminophen-induced cytotoxicity in cultured mouse hepatocytes: effects of Ca2+-endonuclease, DNA repair. and glutathione depletion inhibitors on DNA fragmentation and cell death. Tox. Appl. Pharmacol. 1992; 112: 32–40
  • Bellomo G., Mirabelli F., Salis A., et al. Oxidative stress-induced plasma membrane blebbing and cytoskeletal alterations in normal and cancer cells. Annals. N. Y. Acad Sci. 1988; 551: 128–130
  • Thor H., Mirabelli F., Salis A., Cohen G.M., Bellomo G., Orrenius S. Alterations in hepatocyte cytoskeleton caused by redox cycling and alkylating quinones. Arch Biochem Biophys. 1988; 266: 397–407
  • Pittman S.M., Geyp M., Tynan S.J., . Tubulin in apoptotic cells. Programmed Cell Death: The Cellular and Molecular Biology of Apoptosis, M. Lavin Watters, D. Chur, et al. Harwood Academic Publishers, Switzerland 1993; 315–323
  • Girotti A.W., Thomas J.P. Damaging effects of oxygen radicals on resealed erythrocyte ghosts. J. Biol. Chem. 1984; 259: 176–1752
  • Rubin R., Farber J.L. Mechanisms of the killing of cultured hepatocytes by hydrogen peroxide. Arch. Biochem Biophys. 1984; 228: 450–459
  • Meerson F.Z., Kagan V.E., Kozlov Yu.-P., Belkina L.M., Arkhipenko Yu.-V. The role of lipid peroxidation in pathogenesis of ischemic damage and the antioxidant protection of the heart. Basic Res. Cardiol. 1982; 77: 465–485
  • Crompton M., Costi A., Hayat L. Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem J. 1987; 245: 915–918
  • Glende E.A., Jr., Pushpendran C.K. Activation of phospholipase A2 by carbon tetrachloride in isolated rat hepatocytes. Biochem Pharmacol. 1986; 35: 3301–3307
  • Schlegel R.A., Stevens M., Lumley-Sapanski K., Williamson P. Altered lipid packing identifies apoptotic thymocytes. Immunol. Leu. 1993; 36: 283–288
  • Savill J., Fadok V., Henson P., Haslett C. Phagocyte recognition of cells undergoing apoptosis. Immunol. Today 1993; 14: 131–136
  • Fadok V.A., Voelker D.R., Campbell P.A., et al. The ability to recognize phosphatidylserine on apoptotic cells is an inducible function in murine bone marrow-derived macrophages. chest 1993; 103: 102S
  • Fadok V.A., Voelker D.R., Campbell P.A., Cohen J.J., Bratton D.L., Henson P.M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 1992; 148: 2207–2216
  • Schraufstatter J.U., Hyslop P.A., Hinshaw D.B., Spragg R.G., Sklar L.A., Cochrane C.G. Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly (ADP-ribose) polymerase. Proc. Null. Acad Sci. USA 1986; 83: 4908–4912
  • Wielckens K., Schmidt A., George E., Bredehorst R., Hilz H. DNA fragmentation and NAD depletion. Their relation to the turnover of endogenous mono(ADP-ribosyl) and poly(ADP-ribosyl) proteins. J. Biol. Chem. 1982; 257: 12872–12877
  • Berger N.A., Sikorski G.W. Nicotinamide stimulates repair of DNA damage in human lymphocytes. Biochem Biophys. Res. Comm. 1980; 95: 67–72
  • Junod A.F., Jornot L., Petersen H. Differential effects of hyperoxia and hydrogen peroxide on DNA damage, polyadenosine diphosphate-ribose polymerase activity, and nicotinamide adenine dinucleotide and adenosine triphosphate contents in cultured endothelial cells and fibroblasts. J. Cell. Physiol. 1989; 140: 177–185
  • Hyslop P.A., Hinshaw D.B., Halser W.A., Jr., et al. Mechanisms of oxidant-mediated cell injury. The glycolytic and mitochondrial pathways of ADP phosphorylation arc major intra-cellular targets inactivated by hydrogen peroxide. J. Biol Chem 1988; 263: 1665–1675
  • Kirkland J.B. Lipid peroxidation. protein thiol oxidation and DNA damage in hydrogen peroxide-induced injury to endothelial cells: role of activation of poly(ADP-ribose)polymerase. Biochim Biophys. Acta. 1991; 1092: 319–325
  • Hoshino J., Beckmann G., Kroger H. 3-aminobenzamide protects the mouse thymocytes in vitro from dexamethasone-mediated apoptotic cell death and cytolysis without changing DNA strand breakage. J. Steroid Biochem. 1993; 44: 113–119
  • Gaal J.C., Smith K.R., Pearson C.K. Cellular euthanasia mediated by a nuclear enzyme: a central role for nuclear ADP-ribosylation in cellular metabolism. TIBS 1987; 12: 129–130
  • Wielckens K., Delfs T., Muth A., Freese V., Kleeberg H.-J. Glucocorticoid-induced lymphoma cell death: The good and the evil. J. Steroid Biochem 1987; 27: 413–419
  • Schraufstatter J.U., Hinshaw D.B., Hyslop P.A., Spragg R G., Cochrane C.G. Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J. Clin Invest. 1986; 77: 1312–1320
  • Spragg R.G., Hinshaw D.B., Hyslop P.A., Schraufstatter I.U., Cochrane C.G. Alterations in adenosine triphosphate and energy charge in cultured endothelial and P388DI cells after oxidant injury. J. Clin. Invest. 1985; 76: 1471–1476
  • Redegeld F.A.M., Moison R.M.W., Koster A.S.J., Noordhoek J. Alterations in energy status by menadione metabolism in hepatocytes isolated from fasted and fed rats. Arch. Biochem. Biophys. 1989; 273: 215–222
  • Kawanishi T., Nieminen A.-L., Herman B., Lemasters J.J. Suppression of Ca2+ oscillations in cultured rat hepatocytes by chemical hypoxia. J. Biol Chem 1991; 266: 20062–20069
  • Carson D.A., Seto S., Wasson D.B., Carrera C.J. DNA strand breaks, NAD metabolism, and programmed cel l death. Exp. Cell Res. 1986; 164: 273–281
  • Nicotera P., Bellomo G., Orrenius S. Calcium-mediated mechanisms in chemically induced cell death. Annual Rev. Pharmacol. Toxicol. 1992; 32: 449–470
  • Bast A. Oxidative stress and calcium homeostasis. DNA Damage und Free Radicals, B. Halliwell, O.J. Aruoma. Ellis Horwood., New York 1993; 95–108
  • Ueda N., Shah S.V. Endonuclease-induced DNA damage and cell death in oxidant injury to renal tubular epithelial cells. J. Clin. Invest. 1992; 90: 2593–2597
  • Muehlematter D., Larsson R., Cerutti P. Active oxygen induced DNA strand breakage and ply ADP-ribosylation in promotable and non-promotable JB6 mouse epidermal cells. Carcinogenesis 1988; 9: 239–245
  • Sullivan N.F., Willis A.E. Elevation of c-myc protein by DNA strand breakage. Oncogene 1989; 4: 1497–1502
  • Maki A., Berezesky J.K., Fargnoli J., Holbrook N.J., Trump B.F. Role of [Ca2+]1, in induction of c-fos. c-jun, and c-myc mRNA in rat PTE after oxidative stress. FASEB J. 1902; 6: 919–921
  • Vandenberghe Y., Tee L., Morel F., Rogiers V., Guillouzo A., Yeoh G. Regulation of glutathione S-transferase gene expression by phenobarbital in cultured adult rat hepatocytes. FEBS. Lett. 1991; 284: 103–108
  • Paulson K.E. Xenobiotic regulation of glutathione S-transferase Ya gene expression. Mol. Toxicol. 1989; 2: 215–235
  • Rushmore T.H., King R.G., Paulson K.E., Pickett C.B. Regulation of glutathione S-transferase Ya subunit gene expression: Identification of a unique xenobiotic-responsive clement controlling inducible expression by planar aromatic compounds. Proc. Natl. Acad. Sci. USA 1990; 87: 3826–3830
  • Wyllie A.H., Rose K.A., Morris R.G., Steel C.M., Foster E., Spandidos D.A. Rodent fibroblast tumours expressing human my and ras genes: growth, metastasis and endogenous oncogene expression. Br. J. Cower. 1987; 56: 251–259
  • Smeyne R.J., Vendrell M., Hayward M., et al. Continuous c-fos. expression precedes programmed cell death, in vivo. Nature 1993; 363: 166–169
  • Shi Y., Glynn J.M., Guilbert L.J., Cotter T.G., Bissonnette R.P., Green D.R. Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas. Science 1992; 257: 212–214
  • Green D.R., Cotter T.G. Macromolecular synthesis. c-myc, and apoptosis. Programmed Cell Death: The Cellular and Molecular Biology of Apoptosis, L.D. Tomei Watters, D. Chur. Harwood Acad. Publ., Switzerland 1993; 153–165
  • Flomerfelt F.A., Briehl M.M., Dowd D.R., Dieken E.S., Miesfeld R.L. Elevated glutathione S-transferase gene expression is an early event during steroid-induced lymphocyte apoptosis. J. Cull. Physiol. 1993; 154: 573–581
  • Briehl M.M., Miesfeld R.L. Isolation and characterization of transcripts induced by androgen withdrawal and apoptotic cell death in the rat ventral prostate. Mol. Endocrinol. 1991; 5: 1381–1388
  • Bissonnette R.P., Shi Y., Mahboubi A., Glynn J.M., Green D.R. C-myc and apoptosis. Apoptosis II: The Molecular Basis of Apoptosis in Disease, L.D. Tomei Cope, F.O. Cold. Spring Harbor Lab. Press., Spring Harb. Cold 1994; 327–356
  • Colotta F., Polentarutti N., Sironi M., Mantovani A. Expression and involvement c-fos and c-jun protooncogenes in programmed cell death induced by growth factor deprivation in lymphoid cell lines. J. Biol. Chem. 1991; 267: 18278–18283
  • Buttyan R., Zakeri Z., Lockshin R., Wolgemuth D. Cascade induction of c-fos. c-myc. and heat chock 70K transcripts during regression of the rat ventral prostate gland. Mol. Endocrinol. 1988; 2: 650–657
  • Fisher C., Byers M.R., Iadarola M.J., Powers E.A. Patterns of epithelial expression of Fos protein suggest important role in the transition from viable to cornified cell during keratinization. Development 1991; 111: 253–258
  • Nicotera P., Bellomo G., Orrenius S. The role of Ca2+ in cell killing. Chem. Res. Toxicol. 1990; 3: 484–494
  • Nicotera P., McConkey D.J., Dypbukt J.M., Jones D.P., Orrenius S. Ca2+-activated mechanisms in cell killing. Drug Metah. Rev. 1989; 20: 193–201
  • Storz G., Tartaglia L.A., Ames B.N. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 1990; 248: 189–194
  • Pognonec P., Kato H., Roeder R.G. The helix-loop-helix/leucine repeat transcription factor USF can he functionally regulated in a redox-dependent manner. J. Biol. Chem. 1992; 267: 24563–24567
  • Abate C., Patel L., Rauscher. F. J I, II, Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science 1990; 249: 1157–1161
  • Demple Amabile- B., Cuevas C.F. Redox redux: the control of oxidative stress responses. Cell 1991; 67: 837–839
  • Meyer M., Schreck R., Baeuerle P.A. H2O2 and antioxidants have opposite effects on activation of NF-kappaB and AP-I in intact cells: AP-I as secondary antioxidant-responsive factor. EMBO J. 1993; 12: 2005–2015
  • Israel N., Gougerot-Pocidalo M.-A., Aillet F., Virelizier J.-L. Redox status of cells influences constitutive or induced NF-kB translocation and HIV long terminal repeat activity in human T and monocytic cell lines. J. Immunol. 1992; 149: 3386–3393
  • Staal F.J.T., Roederer M., Herzenberg L.A., Herzenberg L.A. Intracellular thiols regulate activation of nuclear factor kB and transcription of human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 1990; 87: 9943–9947
  • Schreck R., Rieber P., Baeuerle P.A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NK-kappaB transcription factor and HIV-I. EMBO J. 1991; 10: 2247–2258
  • Schreck R., Grassmann R., Fleckenstein B., Baeuerle P.A. Antioxidants selectively suppress activation of NF-kB by human T-cell leukemia virus type I tax protein. J. Virol. 1992; 66: 6288–6293
  • Jones D.P., Thor H., Smith M.T., Jewell S A., Orrenius S. Inhibition of ATP-dependent microsomal Ca++ sequestration during oxidative mess and its prevention by glutathione. J. Biol. Chem. 1983; 258: 6390–6393
  • Nicotera P., Moore M., Mirabelli F., Bellomo G., Orrenius S. Inhibition of hepatocyte plasma membrane Ca2+-ATPase activity by menadione metabolism and its restoration by thiols. FEBS Lett. 1985; 181: 119–153
  • Bellomo G., Mirabelli F., Richelmi P., Orrenius S. Critical role of sulfhydryl group(s) in ATP-dependent Ca2+ sequestration by the plasma membrane fraction from rat liver. FEBS Lett. 1983; 163.: 136–139
  • Kastan M.B., Onyekwere O., Sidransky D., Vogelstein B., Craig R.W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991; 51: 6304–6311
  • Levine A.J., Momand J., Finlay C.A. The p53 tumour suppressor gene. Nature 1901; 351: 453–456
  • Lane D.P. p53. guardian of the genome. Nature 1992; 358: 15–16
  • Kuerbitz S.J., Plunkett B.S., Walsh W.V., Kastan M.B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. USA 1992; 89: 7491–7495
  • Lowe S.W., Ruley H.E., Jacks T., Housman D.E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993; 74: 957–967
  • Clarke A.R., Purdie C.A., Harrison D.J., et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993; 362: 849–852
  • Ryan J.J., Danish R., Goulieb C.A., Clarke M.F. Cell cycle analysis of p53-induced cell death in murine crythroleukemia cells. Mol. Cell Biol. 1993; 13: 711–719
  • Lotem J., Sechs L. Hematopoletic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood 1993; 82: 1092–1096
  • Shaw P., Bovey R., Tardy S., Sahli R., Sordat B., Costa J. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cel l line. Proc. Natl. Acad. Sci. USA 1992; 89: 4495–499
  • Yonish-Rouach E., Resnitzky D., Lotem J., Sachs L., Kimchi A., Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991; 352: 345–347
  • Debbas M., White E. Wild-type p53 mediates apoptosis by El A. which is inhibited by EIB. Genes Develop. 1993; 7: 546–554
  • Yonish-Rouach E., Grunwald D., Wilder S., et al. p53–mediated cell death: relationship to cell cycle control. Mol. Cell. Biol. 1993; 13: 1415–1423
  • Lowe S.W., Ruley H.E. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 El A and accompanies apoptosis. Genes Develop. 1993; 7: 535–545
  • Ramqvist T., Magnusson K.P., Wang Y., Szekely L., Klein G., Wiman K.G. Wild-type p53 induces apoptosis in a Burkitt lymphoma (BL) line that carries mutant p53. Oncogene 1993; 8: 1495–1500
  • Hague A., Manning A.M., Hanlon K.A., Huschtscha L.I., Hart D., Paraskeva C. Sodium butyrate induces apoptosis in human colonic tumour cell lines in a p53–independent pathway: implications for the possible role of dietary fibre in the prevention of large-bowel cancer. Int. J. Cancer 1993; 55: 498–505
  • Berges R.R., Furuya Y., Remington L., English H.F., Jacks T., Isaacs J.T. Cell proliferation, DNA repair, and p53 function are not required for programmed death of prostatic glandular cells induced by androgen ablation. Proc. Natl. Acad. Sci. USA 1993; 90: 8910–8914
  • Halliwell B., Gutteridge J.M.C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984; 219: 1–14
  • Filho Mello, Hoffmann M. E A.C., Meneghini R. Cell killing and DNA damage by hydrogen peroxide are mediated by intracellular iron. Biochem. J. 1984; 218: 273–275
  • Aruoma Halliwell O.I.B., Gajewski E., Dizdaroglu M. Damage to the bases in DNA induced by hydrogen peroxide and ferric ion chelates. J. Biol. Chem. 1989; 264: 20509–20512
  • Halliwell B., Aruoma O.I. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett. 1991; 281: 9–19
  • Shibutani S., Takeshita M., Grollman A.P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 1991; 349: 431–434
  • Shibutani S., Takeshita M., Grollman A.P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 1991; 349: 431–434
  • Saunders J.W., Jr. Death in embryonic systems. Science 1966; 154: 604–612
  • Whitten J.M. Cell death during early morphogenesis: parallels between insect limb and vertebrate limb development. Science 1969; 163: 1456–1457
  • Fallon J.F., Cameron J.A. Interdigital cell death during limb development of the turtle and lizard with an interpretation of evolutionary significance. J. Embryol. exp. Morph. 1977; 40: 285–289
  • Lee K.K.H., Chan W.Y., Sze L.Y. Histogenetic potential of rat hind-limb interdigital tissues prior to and during the onset of programmed cell death. Anat. Rec. 1993; 236: 568–572
  • Yonenobu K., Tada K., Tsuyuguchi Y. Apert's syndrome-A report of five cases. The Hand. 1982; 14: 317–325
  • Mason W.H., Wymore M., Berger E. Foot deformities in Apert's syndrome. Review of the literature and case reports. J. Amer. Podiatr. Med. Assoc. 1990; 80: 540–544
  • Green S.M. Pathological anatomy of the hands in Apert's syndrome. J. Hand Surgery 1982; 7: 450–453
  • Sohal G.S. The role of target site in neuronal survival. J. Neurobiol. 1992; 23: 1124–1130
  • Cunningham T.J. Naturally occurring neuron death and its regulation by developing neural pathways. Int. Rev. Cytol. 1982; 74: 163–186
  • Oppenheim R.W., Schwartz L.M., Shatz C.J. Neuronal death, a tradition of dying. J. Neurobiol. 1992; 23: 1111–1115
  • Barde Y.-A. Trophic factors and neuronal survival. Neuron 1989; 2: 1525–1534
  • Oppenheim R.W. Cell death during development of the nervous system. Ann. Rev. Neuro. Sci. 1991; 14: 453–501
  • Oppenheim R.W., Haverkamp L.J., Prevette D., McManaman J.L., Appel S.H. Reduction of naturally occurring motoneuron death in vivo by a target-derived neurotrophic factor. Science 1988; 240: 919–922
  • Hamburger Brunso- V., Bechtold J.K., Yip J.W. Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor. J. Neurosci. 1981; 1: 60–71
  • Shall S. ADP-ribose in DNA repair: a new component of DNA excision repair. Adv. Rad. Biol. 1984; 11: 2–69
  • Wintersberger U., Wintersberger E. Poly ADP-ribosylation-A cellular emergency reaction?. FEBS Lett. 1985; 188: 189–191
  • Berger N.A. Symposium: Cellular response to DNA damage: The role of poly(ADP-ribose). Poly(ADP-ribose) in the cellular response to DNA damage. Rad. Res 1985; 101: 4–15
  • Sims J.L., Berger S.J., Berger N.A. Effects of nicotinamide on NAD and poly(ADP-ribose) metabolism in DNA-damaged human lymphocytes. J. Supramolec. Struct. Cell. Biochem 1981; 16: 281–288
  • Berger N.A., Sikorski G.W., Petzold S.J., Kurohara K.K. Association of poly(adenosine diphosphoribose) synthesis with DNA damage and repair in normal human lymphocytes. J. Clin. Invest. 1979; 63: 1164–1171
  • Benjamin R.C., Gill D.M. Poly(ADP-ribose) synthesis in vitro programmed by damaged DNA. A comparison of DNA molecules containing different types of strand breaks. J. Biol. Chem 1980; 255: 10502–10508
  • Durkacz B.W., Omidiji O., Gray D.A., Shall S. (ADP-ribose), participates in DNA excision repair. Nature 1980; 283: 593–596
  • Ueda K., Hayaishi O. ADP-ribosylation. Annul Rev. Biochem 1985; 54: 73–100
  • De Murcia G., Huletsky A., Poirier G.G. Review: Modulation of chromatin structure by poly(ADP-ribosyl)ation. Biochem Cell. Biol. 1988; 66: 626–635
  • Aubin R.J., Frechette A., De Murcia G., et al. Correlation between endogenous nucleosomal hyper(ADP-ribosy1)ation of histone HI and the induction of chromatin relaxation. EMBO J. 1983; 2: 1685–1693
  • Niedergang C.P., De Murcia G., Ittel -E M., Pouyet J., Mandel P. Time course of polynucleosome relaxation and ADP-ribosylation. Correlation between relaxation and histone HI hyper-ADP-ribosylation. Eur. J. Biochem. 1985; 146: 185–191
  • Frechette A., Huletsky A., Aubin R.J., et al. Poly(ADP-ribosyl)ation of chromatin: kinetics of relaxation and its effect on chromatin solubility. Canad. J. Biochem Cell. Biol. 1985; 63: 764–773
  • Poirier G.G., De Murcia G., Jongstra-Bilen J., Niedergang C., Mandel P. Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc. Natl. Acad. Sci. USA 1982; 79: 3423–3427
  • De Murcia C., Huletsky A., Lamarre D., et al. Modulation of chromatin superstructure induced by poly(ADP-ribose) synthesis and degradation. J. Biol. Chein. 1986; 261: 7011–7017
  • Yoshihara K., Tanigawa Y., Burzio L., Koide S.S. Evidence for adenosine diphosphate ribosylation of Ca2+. Mg2+-dependent endonuclease. Proc. Natl. Acad. Sci. (USA). 1975; 72: 289–293
  • Tanaka Y., Yoshihara K., Itaya A., Kamiya T., Koide S.S. Mechanism of the inhibition of Ca2+. Mg2+-dependent endonuclease of bull seminal plasma induced by ADP-ribosylation. J. Bol. Chem. 1984; 259: 6579–6585
  • Gilill J.C., Pearson C.K. Eukaryotic nuclear ADP-ribosylation reactions. Biochem. J. 1985; 230: 1–18
  • Gaal J.C., Pearson C.K. Covalent modification of proteins by ADP-ribosylation. TIBS 1986; 11: 171–175
  • Ludwig A., Behnke B., Holtlund J., Hilz H. Immunoquantitation and size determination of intrinsic poly(ADP-ribose) polymerase from acid precipitates. An analysis of the in vivo status in mammalian species and in lower eukaryotes. J. Biol. Chem. 1988; 263: 6993–6999
  • Yamanaka H., Penning C.A., Willis E.H., Wasson D.B., Carson D.A. Characterization of human poly(ADP-ribose) polymerase with autoantibodies. J. Biol. Chem 1988; 263: 3879–3883
  • Lehmann A.R., Broughton B.C. Poly(ADP-ribosylation) reduces the steady-state level of breaks in DNA following treatment of human cells with alkylating agents. Carcinogenesis 1984; 5: 117–119
  • Sudhakar S., Tew K.D., Schein P.S., Woolley P.V., Smulson M.E. Nitrosourea interaction with chromatin and effect on poly(adenosine diphosphate rib) polymerase activity. Cancer Res. 1979; 39: 1411–1417
  • Farzaneh F., Zalin R., Brill D., Shall S. DNA strand breaks and ADP-ribosyl transferase activation during cell differentiation. Nature 1982; 300: 362–366
  • Berger S.J., Sudar D.C., Berger N.A. Metabolic consequences of DNA damage: DNA damage induces alterations in glucose metabolism by activation of poly(ADP-ribose) polymerase. Biochem. Biophys. Res. Corn 1986; 134: 227–232
  • Tanizawa A., Kubota M., Hashimoto H., et al. VP-164-duced nucleotide pool changes and poly(ADP-ribose) synthesis: The role of VP-16 in interphase death. Exp. Cell Res. 1989; 185: 237–246
  • Scovassi A.I., Izzo R., Franchi E., Bertazzoni U. Structural analysis of poly(ADP-ribose) polymerase in higher and lower eukaryotes. Eur. J. Biochem. 1986; 159: 77–84
  • Haegele A.D., Briggs S.P., Thompson H.J. Antioxidant status and dietary lipid unsaturation modulate oxidative DNA damage. Free Rad. Biol. Med. 1994; 16: 111–115
  • Nathan C.F., Arrick B.A., Murray H.W., De Santis N.M., Cohn Z.A. Tumor cell anti-oxidant defenses. Inhibition of the glutathione redox cycle enhances macrophage-mediated cytolysis. J. Exp. Med. 1980; 153: 766–782
  • Matsuda M., Masutani H., Nakamura H., et al. Protective activity of adult T cell leukemia-derived factor (ADF) against tumor necrosis factor-dependent cytotoxicity on U937 cells. J. Immunol. 1991; 147: 3837–3841
  • Ohira A., Honda O., Gauntt C.D., et al. Oxidative stress induces adult T cell leukemia derived factor/thioredoxin in the rat retina. Lob. Invest. 1994; 70: 279–279
  • Sandstrom P.A., Buttke T.M. Autocrine production of extracellular catalase prevents apoptosis of the human CEM T-cell line in serum-free medium. Proc. Natl. Acad. Sci. USA 1993; 90: 4708–4712
  • Shi Y., Szalay M.G., Paskar L., Boyer M., Singh B., Green D.R. Activation-induced cell death in T cell hybridomas is due to apoptosis. Morphologic aspects and DNA fragmentation. J. Immunol. 1990; 144: 3326–3333
  • Zheng L.M., Zychlinsky A., Liu C.-C., Ojcius D.M., Young J. D.-E. Extracellular ATP as a trigger for apoptosis or programmed cell death. J. Cell Biol. 1991; 112: 279–288
  • Tata J.R. Requirement for RNA and protein synthesis for induced regression of the tadpole tail in organ culture. Dev. Biol. 1966; 13: 77–94
  • Inouye M., Tamarus M., Kameyama Y. Effects of cycloheximide and actinomycin D on radiation-induced apoptotic cell death in the developing mouse cerebellum. Int. J. Rad. Biol. 1992; 61: 669–674
  • Duke R.C., Cohen J.J. IL-2 addiction: withdrawal of growth factor activates a suicide program in dependent T cells. Lymphokine Res. 1986; 5: 289–299
  • Lockshin R.A., Zakeri Z.F. Programmed cell death: new thoughts and relevance to aging. J. Gerontol. 1990; 45: B135–B140
  • Ratan R.R., Murphy T.H., Baraban J.M. Macromolecular synthesis inhibitors prevent oxidative stress-induced apoptosis in embryonic cortical neurons by shunting cysteine from protein synthesis to glutathione. J. Neurosci 1994; 14: 4385–4392
  • Dowd D.R., Mac Donald P.N., Komm B.S., Haussler M.R., Miesfeld R. Evidence for early induction of calmodulin gene expression in lymphocytes undergoing glucocorticoid-mediated apoptosis. J. Biol. Chem. 1991; 266: 18423–18426
  • Beauchamp C., Fridovich I. A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase. J. Biol. Chem. 1970; 245: 4641–4646
  • Pascoe G.A., Olafsdottir K., Reed D.J. Vitamin E protection against chemical-induced cell injury, I. Maintenance of cellular protein thiols as a cytoprotective mechanism. Arch. Biochem. Biophys. 1987; 256: 150–158
  • Di Monte D., Bellomo G., Thor H., Nicotera P., Orrenius S. Menadione-induced cytotoxicity is associated with protein thiol oxidation and alteration in intracellular Ca++ homeostasis. Arch. Biochem. Biophys. 1984; 235: 343–350
  • Pavoine C., Lotersztajn S., Mallat A., Pecker F. The high affinity (Ca2+-Mg2+)-ATPase in liver plasma membranes is a Ca2+ pump. Reconstitution of the purified enzyme into phospho-lipid vesicles. J. Biol. Chem. 1987; 262: 5113–5117
  • Butler J., Hoey B.M. Redox cycling drugs and DNA damage. DNA and Free Radicals, B. Halliwell, O.I. Aruoma. Ellis Horwood, New York 1993; 243–273
  • Bino Del, Lassota G.P., Danynkiewicz Z. The S-phase cytotoxicity of camptothecin. Exp. Cell Res 1991; 193: 27–35
  • Darzynkiewicz Z., Traganos F., Sharpless T., Melamed M.R. Conformation of RNA in situ as studied by acridine orange staining and automated cytofluorometry. Exp. Cell Res. 1975; 95: 143–153
  • Yanagihara K., Tsumuraya M. Transforming growth factor beta, induces apoptotic cell death in cultured human gastric carcinoma cells. Cancer Res. 1992; 52: 4042–4045
  • Martikainen P., Kyprianou N., Isaacs J.T. Effect of transforming growth factor-PI on proliferation and death of rat prostatic cells. Endocrinology 1990; 127: 2963–2968
  • Lin J.-K., Chou C.-K. In vitro apoptosis in the human hepatoma cell line induced by transforming growth factor pY. Cancer Res. 1992; 52: 385–388
  • Rodriguez-Tarduchy G., Collins M.K.L., Garcia J., Lopez-Rivas A. Insulin-like growth factor-I inhibits apoptosis in IL-3-dependent hemopoietic cells. J. Immunol. 1992; 149: 535–540
  • Whetton A.D., Dexter T.M. Effect of haematopoietic cell growth factor on intracellular ATP levels. Nature 1983; 303: 629–631
  • Lotem JC., Ragoe E.J., Jr., Sachs L. Rescue from programmed cell death in leukemic and normal myeloid cells. Blood 1991; 78: 953–960
  • Schneider C., Gustincich S.D, El Sal G. The complexity of cell proliferation control in mammalian cells. Curr. Opin. Cell Biol. 1991; 3: 276–281
  • Whitaker M., Patel R. Calcium and cell cycle control. Development 1990; 108: 525–542
  • Lewin B. Driving the cell cycle: M phase kina., its partners. and substrates. Cell 1990; 61: 743–752
  • Fridovich-Keil J.L., Hansen L.J., Keyomarsi K., Pardee A.B. Progression through the cell cycle:. An overview. Amer. Rev. Resp. Dis. 1990; 142: S3–S6
  • The Cell Cycle. CSHSQB. 1991; 56: 1–782
  • Brooks R., Fantes P., Hunt T., Wheatley D. The Cell Cycle. Proceedings of the British Society for Cell Biology-Journal of cell Science Symposium. St. Andrews. April 1989. J. Cell Sci., Supplement 1989; 12: 1–300
  • Perkins C.R., Marvel J., Collins M.K.J. Interleukin 2 activates extracellular signal-regulated protein kinase 2. J. Exp. Med. 1993; 178: 1429–1434
  • Nakamura Y., Komatsu N., Nakauchi H. A truncated eythropoietin receptor that fails to prevent programmed cell death of erythroid cells. Science 1992; 257: 1138–1141
  • Rajotte D., Haddad P., Haman A., Cragoe E.J., Jr., Hoang T. Role of protein kinase C and the Na+/H+ antiporter in suppression of apoptosis by granulocyte macrophage colony-stimulating factor and interleukin-3. J. Biol Chem 1992; 267: 9980–9987
  • Illera V.A., Perandones C.E., Stunz Mower L.L.D.A., Jr., Ashman R.F. Apoptosis in splenic B lymphocytes. Regulation by protein kinase C and L-4. J. Immunol. 1993; 151: 2965–2973
  • Sanchez V., Lucas M., Sanz A., Goberna R. Decreased protein kinase c activity is associated with programmed cell death (apoptosis) in freshly isolated rat hepatocytes. Biosci. Rep. 1992; 12: 199–206
  • Walker P.R., Kwast-Welfeld J., Gourdeau H., Leblanc J., Neugebauer W., Sikorska M. Relationship between apoptosis and the cell cycle in lymphocytes: Roles of protein kinase C. tyrosine phosphorylation, and API. Exp. Cell Res. 1993; 207: 142–151
  • Saitoh T., Masliah E, Jin L.-W., Cole G.M., Wieloch T., Shapiro J.P. Protein kin- and phosphorylation in neurologic disorders and cell death. Lab. Invest. 1991; 64: 596–616
  • Ojeda F., Guards M.I., Maldonado C., Folch H. Protein kinase-C involvement in thymocyte apoptosis induced by hydrocortisone. Cell. Immunol. 1990; 125: 535–539
  • McConkey D.J., Hartzell P., Jondal M., Orrenius S. Inhibition of DNA fragmentation in thymocytes and isolated thymocyte nuclei by agents that stimulate protein kinase C. J. Biol. Chem. 1989; 264: 13399–13402
  • Ojeda F., Guarda M.I., Maldonado C., Folch H., Diehl H. Role of protein kinase-C in thymocyte apoptosis induced by irradiation. Int. J. Rad Biol. 1992; 61: 663–667
  • Von Brauchitsch D., Crook R.B. Protein kinase C regulation of a Na+ K+ Cl− cotransporter in fetal human pigmented ciliary epithelial cells. Exp. Eye Res. 1993; 57: 699–708
  • Von Crook R.B., Brauchitsch D.K., Polansky J.R. Potassium transport in nonpigmented epithelial cells of ocular ciliary body: Inhibition of a Na+, K+, CI− cotransporter by protein kinase C. J. Cell. Physiol. 1992; 153: 214–220
  • Dancescu M., Rubio-Trujillo M., Bron D., Delespesse G., Sarfati M. Interleukin 4 protects chronic lymphocytic leukemic B cells from death by apoptosis and upregulates bcl-2 expression. J. Exp. Med. 1992; 176: 1319–1326
  • Pan Z., Perez-Polo R. Role of nerve growth factor in oxidant homeostasis: glutathione metabolism. J. Neurochem 1993; 61: 1713–1721
  • Jackson G.R., Apffel L., Werrbach-Perez Perez- K., Polo J.R. Role of nerve growth factor in oxidant-antioxidant balance and neuronal injury. I. Stimulation of hydrogen peroxide resistance. J. Neurosci. Res. 1990; 25: 360–368
  • Jackson G.R., Werrbach-Perez Perez- K., Polo J.R. Role of nerve growth factor in oxidant-antioxidant balance and neuronal injury. II. A conditioning lesion paradigm. J. Neurosci. Res. 1990; 25: 369–374
  • Jackson G.R., Werrbach-Perez K., Ezell E.L., Post Perez- J.F.M., Polo J.R. Nerve growth factor effects on pyridine nucleotides after oxidant injury of rat pheochromocytoma cells. Brain Res. 1992; 592: 239–248
  • Nistico G., Ciriolo M.R., Fiskin K., Iannone M., De Martino A., Rotilio G. NGF restores decrease in catalase and increases glutathione peroxidase activity in the brain of aged rats. Neurosci. Lett. 1991; 130: 117–119
  • Garcia I., Martinou I., Tsujimoto Y., Martinou J.-C. Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene. Science 1992; 258: 302–304
  • Tschan T., Hoerler I., Houze Y., Winterhalter K.H., Richter C., Bruckner P. Resting chondrocytes in culture survive without growth factors. but are sensitive to toxic oxygen metabolites. J. Cell Biol. 1990; 111: 257–260
  • Fetsch J., Maurer H.R. Glutathione: An in vitro granulopoiesis inhibitor at nanomolar concentration, isolated from calf spleen. Exp. Hematol. 1990; 18: 322–325
  • Cohen P. Signal integration at the level of protein kinases, protein phosphatases and their substrates. TIBS 1992; 17: 408–413
  • Houslay M.D. Crosstalk a pivotal role for protein kinase C in modulating relationships between signal transduction pathways. Eur. J. Biochem 1991; 195: 9–27
  • Nishizuka Y. Signal transduction: crosstalk. TIBS. 1992; 17: 367
  • Lavin M.F., Baxter G.D., Song Q., Findik D., Kovacs E. Protein modification in apoptosis. Programmed Cell Death: The Cellular and Molecular Biology of Apoptosis, M. Lavin Watters, D. Chur. Harwood Academic Publishers, Switzerland 1993; 45–57
  • Alnemri E.S., Robertson N.M., Fernandes T.F., Croce C.M., Litwack G. Overexpressed full-length human BCL2 extends the survival of baculovirus-infected Sf9 insect cells. Proc. Natl. Acad. Sci. USA 1992; 89: 7295–7299
  • Bischoff J.R., Friedman P.N., Marshak D.R., Prives C., Beach D. Human p53 is phosphorylated by p60–cdc2 and cyclin B-cdc2. Proc. Natl. Acad Sci. USA 1990; 81: 4766–4770
  • Meek D.W., Simon S., Kikkawa U., Eckhart W. The p53 tumour suppressor protein is phosphorylated at wine 389 by casein kinase II. EM BO J. 1990; 9: 3253–3260
  • Baxter G.D., Lavin M.F. Specific protein dephosphorylation in apoptosis induced by ionizing radiation and heat shock in human lymphoid tumor lines. J. Immunol. 1992; 148: 1949–1954
  • Song Q., Lavin M.F. Calyculin A, a potent inhibitor of phosphatases-I and -2A. prevents apoptosis. Biochem Biophys. Res. Comm. 1993; 190: 47–55
  • Hutson J.M., Fallat M.E., Kamagata S., Donahce P.K., Budzik G.P. Phosphorylation events during mullerian duct regression. Science 1984; 223: 586–589
  • Knox K.A., Gordon J. Mein tyrosine phosphorylation is mandatory for CD-mediatd rescue of germinal center B cells from apoptosis. Eur. J. Immunol. 1993; 23: 2578–2584
  • Valentine M.A., Licciardi K.A. Rescue from anti-IgM-induced programmed cell death by the B cell surface proteins CD20 and CD40. Eur. J. Immunol. 1992; 22: 3141–3148
  • Williams L.T., Escobedo J.A., Fantl W.J., Turck C.W., Klippel A. Interactions of growth factor receptors with cytoplasmic signaling molecules. CSHSQB 1991; 56: 243–250
  • Heffetz D., Bushkin I., Dror R., Zick Y. The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J. Biol. Chem. 1990; 265: 2896–2902
  • Chan T.M., Chen E, Tatoyan A., Shargill N.S., Pleta M., Hochstein P. Stimulation of tyrosine-specific protein phosphorylation in the rat liver plasma membrane by oxygen radicals. Biochem Biophys. Res. Comm 1986; 139: 439–445
  • Schick M.R., Nguyen V.Q., Levy S. Anti-TAPA-l antibodies induce protein tyrosine phosphorylation that is prevented by increasing intracellular thiol levels. J. Immunol. 1993; 151: 1918–1925
  • Kanner S.B., Kavanagh T.J., Grossman A., et al. Sulfhydryl oxidation down-regulates T-cell signaling and inhibits tyrosine phosphorylation of phospholipase Cγl. Proc. Natl. Acad. Sci. (USA) 1992; 89: 300–304
  • Hwang C., Sinskey A.J., Lodish H.F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 1992; 257: 1496–1502
  • Wang S., Pittman R.N. Altered protein binding to the octamer motif appears to be an early event in programmed neuronal cell death. Proc. Natl. Acad. Sci. (USA) 1993; 90: 10385–10389
  • Karin M., Smeal T. Control of transcription factors by signal transduction pathways: the beginning of the end. TIBS 1992; 17: 41–22
  • Driscoll M. Molecular genetics of cell death in the nematode. Caenorhabditis elegant. J. Neurobiol. 1992; 23: 1327–1351
  • McCabe M.J., Jr., Orrenius S. Genistein induces apoptosis in immature human thymocytes by inhibiting topoisomerase-II. Biochem. Biophys. Res. Chem. 1993; 194: 944–950
  • Back R., Gjertsen B.T., Vintermyr O.K., Houge G., Lanotte M., Doskeland S.O. The protein phosphatase inhibitor okadaic acid induces morphological changes typical of apnptosis in mammalian cells. Exp. Cell Res 1991; 195: 237–246
  • Yao X.-R., Scott D.W. Antisense oligodcoxynucleotides to the blk tyrosine kinase prevent anti-mu-chain-mediated growth inhibition and apoptosis in a B-cell lymphoma. Proc. Natl. Acad. Sci. (USA). 1993; 90: 7946–7950
  • Vintermyr O.K., Gjertsen B.T., Lanotte M., Doskeland D.O. Microinjected catalytic subunit of cAMP-dependent protein kinase induces apoptosis in myeloid leukemia (IPC-81) cells. Exp. Cull Res. 1993; 206: 157–161
  • Truman J.W. Cell death in invertebrate nervous systems. Ann. Rev. Neurosci 1984; 7: 171–188
  • Sherley J.L. Guanine nucleotide biosynthesis is regulated by the cellular p53 concentration. J. Biol. Chem. 1991; 266: 24815–24828
  • Reiser G. Nitric oxide formation caused by Ca+ release from internal stores in neuronal cell line is enhanced by cyclic AMP. Eur. J. Pharmacol. 1992; 227: 89–93
  • Brinkley B.R. The cytoskeleton: A perspective. Meth. Cell. Biol. 1982; 24: 1–8
  • Aderem A. Signal transduction and the actin cytoskeleton: the roles of MARCKS and profilin. TIBS 1992; 17: 438–453
  • Gurland G., Gundersen G.G. Protein phosphatase inhibitors induce the selective breakdown of stable microtubules in fibroblasts and epithelial cells. Proc Natl. Acad. Sci. USA 1993; 90: 8827–8831
  • Keyse S.M., Emslie E.A. Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature 1992; 359: 644–647
  • Hunter T. A thousand and one kinases. Cell. 1987; 50: 823–829
  • Hanks S.K., Quinn A.M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 1988; 241: 42–52
  • Cohen P., Cohen P.T.W. Protein phosphatases come of age. J Biol. Chem 1989; 264: 21435–21438
  • Pol D.A., Dixon J.E. A thousand and two protein tyrosine phosphatases. Biochim. Biophys. Acta. 1992; 1136: 35–43
  • Charbonneau H., Tonks N.K. 1002 protein phosphatases?. Annal Rev. Cell Biol. 1992; 8: 463–493
  • Cohen P. The structure and regulation of protein phosphatases. Annual Rev. Biochem. 1989; 58: 453–508
  • Tritton T.R., Hickman J.A. How to kill cancer cells: membranes and cell signaling as targets in cancer chemotherapy. Cancer Cells 1990; 2: 95–105
  • Cordella-Miele E., Miele L., Mukherjec A.B. A novel transglutaminase-mediated post-translational modification of phospholipase A: dramatically increases its catalytic activity. J. Biol. Chem. 1990; 265: 17180–17188
  • Hinchliffe J R. Cell death in embryogenesis. Cell Death in Biology and Pathology, J.D. Bowen, R.A. Lockshin. Chapman and Hall, New York. New York 1981; 35–78
  • Lockshin R.A. Cell death in metamorphosis. Cell Death in Biology and Pathology, I.D. Bowen, R.A. Lockshin. Chapman and Hall., New York. New York 1981; 79–121
  • Koseki C., Herzlinger D., Al-Awqati Q. Apoptosis in metanephric development. J. Cell Biol. 1992; 119: 1327–1333
  • Pierce C.B., Gramzinski R.A., Parchment R.E. Amine oxidases, programmed cell death, and tissue renewal. Phil. Trans. R. Soc Lond. B 1990; 327: 67–74
  • Pierce G.B., Parchment K.E., Lewellyn A.L. Hydrogen peroxide as a mediator of programmed cell death in the blastocyst. Differentiation 1991; 46: 181–186
  • Gramzinski R.A., Parchment R.E., Pierce G.B. Evidence linking programmed cell death in the blastocyst to polyamine oxidation. Differentiation 1990; 43: 59–65
  • Pierce G.B., Lewellyn A.L., Parchment R.E. Mechanism of programmed cell death in the blastocyst. Proc. Natl. Acad. Sci. USA 1989; 86: 3654–3658
  • Coffino P., Poznanski A. Killer polyamines?. J. Cell. Biochem. 1991; 45: 54–58
  • Harari P.M., Fuller D.J.M., Gerner E.W. Heat shock stimulates polyamine oxidation by two distinct mechanisms in mammalian cell cultures. Int. J. Radiat. Oncol. Biol. Phys. 1989; 16: 451–457
  • Nasr-Esfahani M.H., Aitken J.R., Johnson M.H. Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vivo or in viva. Development 1990; 109: 501–507
  • Turner E., Hager L.J., Shapiro B.M. Ovothiol replaces glutathione peroxidase as a hydrogen peroxide scavenger in sea urchin eggs. Science 1988; 242: 939–941
  • Sasaki F., Kinoshita T., Takahama H., Watanabe K. Cytochemical studies of hydrogen peroxide production in the tadpole tail of Rana japonica during metamorphic climax. Histochem. J. 1988; 20: 99–107
  • Little Ci H., Flores A. Inhibition of programmed cell death by catalase and phenylalanine methyl ester. Comp. Biochem. Physiol. 1993; 105A: 79–83
  • Lang R.A., Bishop J.M. Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell. 1993; 74: 453–462
  • Sulston J.E., Albertson D.G., Thomson J.N. The Caenorhabditis elegans. male: postembryonic development of nongonadal structures. Dev. Biol. 1980; 78: 542–576
  • Flescher E., Fossum D., Talal N. Polyamine-dependent production of lymphocytotoxic levels of ammonia by human peripheral blood monocytes. Immunol. Lett. 1991; 211: 85–90
  • Cross S.L., Halden N.F., Lenardo M.J., Leonard W.I. Functionally distinct NF-KB binding sites in the immunoglobulin kappa and IL-2 receptor alpha chain genes. Science 1989; 244: 466–469
  • Henle K.J., Moss A.J., Nagle W.A. Mechanism of spermidine cytotoxicity at 37°C and 43°C in Chinese hamster ovary cells. Cancer Res. 1986; 46: 175–182
  • Aggeler J., Seely K. Cytoskeletal dynamics in rabbit synovial fibroblasts: J. Effects of acrylamide on intermediate filaments and microfilaments. Cell Motilin. and the Cytoskeleton. 1990; 16: 110–120
  • Ecken B.S., Yeagle P.L. Acrylamide treatment of PtKI cells causes dephosphorylation of keratin polypeptides. Cell Motility and the Cytoskeleton 1988; 11: 24–30
  • Sager P.R. Cytoskeletal effects of acrylamide and 2.5-hexancdione: Selective aggregation of vimentin filaments. Tax. Appl. Pharmacol. 1989; 97: 141–155
  • Ohkuma S. The lysosomal proton pump and its effect on protein breakdown. Lysosomes: Their Role in Protein Breakdown, H. Glaumann, F.J. Ballard. Academic Press., New York 1987; 115–148
  • De Duve C., De Barsy T., Poole B., Trouet A., Tulkens P., van Hoof F. Lysosomotropic agents. Biochem. Pharmacol. 1971; 23: 2405–2531
  • Leung K.H. Human lymphokine-activated killer (IAK) cells, I. Depletion of monocytes from peripheral blood mononuclear cells by L-phenylalanine methyl ester: an optimization of LAK cell generation at high cell density. Cancer Immunol. Immunother. 1989; 30: 247–253
  • West Cannon W.H., Kay G. B. H. D., Bonard G.D., Herberman R B. Natural cytotoxic reactivity of human lymphocytes against a myeloid cell line: characterization of effector cells. J Immunol. 1977; 118: 355–361
  • Yust I., Smith R.W., Wunderlich J K., Mann D.L. Temporary inhibition of antibody-dependent. cell-mediated cytotoxicity by pretreatment of human attacking cells with ammonium chloride. J. Immunol. 1976; 116: 1170–1172
  • Krensky A.M., Ault K.A., Reiss C.S., Strominger J.L., Burakoff S.J. Generation of long-term human cytolytic cell lines with persistent natural killer activity. J. Immunol. 1982; 129: 1748–1751
  • Lapointe J., Bergeron D., Dufour M., Dube D., Govindan M.V., Lambert R.D. Biochemical and morphological characterizations of DU-I45 cell mortality in rabbit embryo-fetal fluid. Cell Prolif. 1993; 26: 125–138
  • Parchment R.E., Pierce G.B. Polyamine oxidation. programmed cell death. and regulation of melanoma in the murine embryonic limb. Cancer Res. 1989; 49: 6680–6686
  • Pierce G.B., Arechaga J., Jones A., Lewellyn A., Wells R.S. The fate of embryonal-carcinoma cells in mouse blastocysts. Differentiation 1987; 33: 247–253
  • Sarraf C.E., Bowen J.D. Proportions of mitotic and apoptotic cells in a range of untreated experimental tumours. Cell Tissue Kinet. 1988; 21: 45–49
  • Kerr J.F.R., Searle J. A suggested explanation for the paradoxically slow growth rate of basal-cell carcinomas that contain numerous mitotic figures. J. Pathol. 1972; 107: 41–44
  • Hollowood K., McCartney J.C. Reduced apoptotic cell death in follicular lymphoma. J. Pathol. 1991; 163: 337–342
  • Gerschenson L.E., Rotello R.J. Apoptosis & cell proliferation m terms of the growth equation. Apoptosis: the molecular his of cell death, L.D. Tomei Cope, F.O. Plainview. Spring Harbor Lab Press., N. York Cold 1991; 1: 175–192
  • Morrero R., Marnett L.J. The role of organic peroxyl radicals in carcinogenesis. DNA and Free Radicals, B. Halliwell, O.I. Aruoma. Ellis Horwood, New York 1993; 145–161
  • Weitzman S.A., Gordon L.I. Inflammation and cancer Role of phagocyte-generated oxidants in carcinogenesis. J. Amer. Soc. Hematol. 1990; 76: 655–663
  • Breimer L.H. Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: The role of DNA base damage. Mol. Carcinogenesis 1990; 3: 188–197
  • Kikuchi-Yanoshita R., Konishi M., Ito S., et al. Genetic changes of both p53 alleles associated with the conversion from colorectal adenoma to early carcinoma in familial adenomatous polyposis and non-familial adenomatous polyposis patients. Cancer Res. 1992; 52: 3965–3971
  • Lee J.M., Bernstein A. p53 mutations increase resistance to ionizing radiation. Proc. Natl. Acad. Sci USA 1993; 90: 5742–5746
  • Yin J., Harpaz N., Tong Y., et al. p53 point mutations in dysplastic and cancerous ulcerative colitis lesions. Gastroenterol. 1993; 104: 1633–1639
  • Burmer G.C., Rabinovitch P.S., Haggitt R.C., et al. Neoplastic progression in ulcerative colitis: histology, DNA content, and loss of a p53 allele. Gastroenterol. 1992; 103: 1602–1610
  • Hicks G.G., Egan S.E., Greenberg A.H., Mowat M. Mutant p53 tumor suppressor alleles release ras-induced cell cycle growth arrest. Mol. Cell. Biol. 1991; 11: 1344–1352
  • Rodrigues N.R., Rowan A., Smith M.E.F., et al. p53 mutations in colorectal cancer. Proc. Natl. Acad. Sci USA 1990; 87: 7555–7559
  • Srivastava S., Wang S., Tong Y.A., Pirollo K., Chang E.H. Several mutant p53 proteins detected in cancer-prone families with Li-Fraumeni syndrome exhibit transdominant effects on the biochemical properties of the wild-type p53. Oncogene. 1993; 8: 2449–2456
  • Takahashi T., Nau M.M., Chiba J., et al. p53: A frequent target for genetic abnormalities in lung cancer. Science 1989; 246: 491–494
  • Srivastava S., Zou Z., Pirollo K., Blattner W., Chang E.H. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 1990; 348: 747–749
  • Malkin D., Li F.P., Strong L.C., et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990; 250: 1233–1238
  • Kraiss S., Spiess S., Reihsaus E., Montenarh M. Correlation of metabolic stability & altered quaternary structure of oncoprotein p53 with cell transf. Exp. Cell Res. 1991; 192: 157–164
  • Rives C., Manfredi J.J. The p53 tumor suppressor protein: meeting review. Genes Develop. 1993; 7: 529–534
  • Munroe D.G., Rovinski B., Bernstein A., Benchimol S. Loss of a highly conserved domain on p53 as a result of gene deletion during Friend virus-induced erythroleukemia. Oncogene. 1988; 2: 621–624
  • Villuendas R., Pins M.A., Orradre J.L., et al. p53 protein expression in lymphomas and reactive lymphoid tissue. J. Pathol. 1992; 166: 235–241
  • Sugimoto K., Toyoshima H., Sakai R., et al. Frequent mutations in the p53 gene in human myeloid leukemia cell lines. Blood. 1992; 79: 2378–2383
  • Ichikawa A., Hotta T., Takagi N., et al. Mutations of p53 gene and their relation to disease progression in B-cell lymphoma. Blood 1992; 79: 2701–2707
  • Michalovitz D., Halevy O., Oren M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 1990; 62: 671–680
  • Donehower L.A., Harvey M., Slagle B.L., et al. Mice deficient for p53 m developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356: 215–221
  • Huschtscha L.I., Andersson C.E., Bartier W.A., Tattersall M.H.N. Anti-cancer drugs and apoptosis. Programmed Cell Death: The Cellular and Molecular Biology of Apoptosis, M. Lavin Watters, D. Chur. Harwood Academic Publishers, Switzerland 1993; 269–278
  • Galili U., Leizerowitz R., Moreb J., Gamliel H., Gurfel D., Polliack A. Metabolic and ultrastructural aspects of the in vitro lysis of chronic lymphocytic leukemia cells by glucocorticoids. Cancer Res. 1982; 42: 1433–1440
  • Harmon B.V., Corder A.M., Collins R.J., et al. Cell death induced in a murine mastocytoma by 42–47°C heating in vitro: evidence that the form of death changes from apoptosis to necrosis above a critical heat load. Int. J. Rad. Biol. 1990; 58: 845–858
  • Hasbold J., Klaus G.G.B. Anti-immunoglobulin antibodies induce apoptosis in immature B cell lymphomas. Eur. J. Immunol. 1990; 20: 1685–1690
  • Kohler H.-R., Dhein J., Alberti G., Krammer P.H. Ultrastructural analysis of apoptosis induced by the monoclonal antibody anti-APO-1 on a lymphoblastoid B cell line. Ultrastruct. Pathol. 1990; 14: 513–518
  • Sorenson C.M., Barry M.A., Eastman A. Analysis of events associated with cell cycle arrest at G2 phase and cell death induced by cisplatin. J. Natl. Cancer Inst. 1990; 82: 749–755
  • Agarwal M.L., Clay M.E., Harvey E.J., Evans H.H., Antunez A.R., Oleinick N.L. Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Res. 1991; 51: 5993–5996
  • Itoh N., Yonehara S., Ishii A., et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 1991; 66: 233–243
  • Marks D.J., Fox R.M. DNA damage, poly(ADP-ribosyl)ation & apoptotic cell death as a potential common pathway of cytotoxic drug action. Biochem Pharmacol. 1991; 42: 1859–1867
  • Takano Y.S., Harmon B.V., Kerr J.F.R. Apoptosis induced by mild hyperthermia in human and murine tumour cell lines: a study using electron microscopy and DNA gel electrophoresis. J. Pathol. 1991; 163: 329–336
  • Teh B.S., Chen P., Lavin M.F., Seow W.K., Thong Y.H. Demonstration of the induction of apoptosis (programmed cell death) by tetrandine, a novel anti-inflammatory agent. Int. J. Immunopharmac. 1991; 13: 1117–1126
  • Hickman Beere J.A., Wood H.M., Waters C. M A.C., Parmar R. Mechanisms of cytotoxicity caused by antitumour drugs. Toxicol. Lett. 1992; 64/65: 553–561
  • Johnson C.A., Forster T.H., Winterford C.M., Allan D.J. Hydroxyurea induces apnptosis and regular DNA fragmentation in a Burkitt's lymphoma cell line. Biochim. Biophys. Acta 1992; 1136: 1–4
  • Johnston J.B., Lee K., Verburg L., et al. Induction of apoptosis in CD4+ prolymphocytic leukemia by deoxycoformycin. Leukemia Res. 1992; 16: 781–788
  • Thiele D.L., Lipsky P.E. Apoptosis is induced in cells with cytolytic potential by L-leucyl-L-Leucine methyl ester. J. Immunol. 1992; 148: 3950–3957
  • Bertrand R., Solary E., Jenkins I., Pommier Y. Apnptosis and its modulation in human promyelocytic HL-60-cells treated with DNA topoisomerase I and II inhibitors. Exp. Cell Res. 1993; 207: 388–597
  • Diomede L., Colotta F., Piovani B., Re F., Modest E.J., Salmona M. Induction of apoptosis in human leukemic cells by the ether lipid I-octadecyl-7–methyl-rrtc-plycero-3-phos-phwholine. A possible basis for its selective action. Inf. J. Cancer 1993; 53: 124–130
  • Nicolaou K.C., Stabila P., Esmaeli-Azad B., Wrasidlo W., Hiatt A. Cell-specific regulation of apoptosis by designed enediynes. Proc. Natl. Acad. Sci. USA 1993; 90: 3142–31146
  • Piacentini M., Davies P.J.A., Fesus L. Tissue trans-glutaminase in cells undergoing apoptosis. Apoptosis II: The Molecular Basis of Apoptosis in Disease, L.D. Tomei, F.O. Cope. Cold Spring Harbor Laboratory Press., Cold Spring Harbor 1994; 113–163
  • Fesus L., Tarcsa E., Kedei N., Autuori F., Piacentini M. Degradation of cells dying by apoptosis leads to accumulation of epsilon(gamma-glutamyl)lysine isodipeptide in culture fluid and blood. FEBS Lett. 1991; 284: 109–112
  • Fesus L., Thomazy V., Autuori F., Ceru M.P., Tarcsa E., Piacentini M. Apoptotic hepatocytes become insoluble in detergents and chaotropic agents as a result of transglutaminase action. FEBS Lett. 1989; 245: 150–154
  • Fesus L., Thomazy V. Searching for the function of tissue transglutaminase: Its possible involvement in the biochemical pathway of programmed cell death. Adv. Exp. Med. Biol. 1988; 231: 119–134
  • Piacentini M., Annicchianco-Petrutzelli M., Oliverio S., Piredda L., Biedler J.L., Melino G. Phenotype-specific “tissue” transglutaminase regulation in human neuroblastoma cells in response to retinoic acid: Correlation with cell death by apoptosis. Int. J. Cancer 1992; 52: 271–278
  • Fesus L., Thomazy V., Falus A. Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett. 1987; 224: 104–108
  • Piacentini M., Autuori F., Dini L., et al. “Tissue” transglutaminase is specifically expressed in neonatal rat liver cells undergoing apnptosis upon epidermal growth factor-stimulation. Cell Tissue Res. 1991; 263: 227–235
  • Piacentini M., Fesus L., Farrace M.G., Ghibelli L., Piredda L., Melino G. The expression of “IISSUC” transglutaminase in two human cancer cell lines is related with the programmed cell death (apoptosis). Eur. J. Cell Biol. 1991; 54: 246–754
  • Lee F.D. Importance of apoptosis in the histopathology of drug related lesions in the large intestine. J. Clin. Pathol. 1993; 46: 118–122
  • Duncan A.M.V., Heddle J.A. The frequency and distribution of apoptosis induced by three non-carcinogenic agents in mouse colonic crypts. Cancer Lett. 1984; 23: 307–311
  • Ronen A., Heddle J.A. Site-specific induction of nuclear anomalies (apoptotic bodies and micronuclei) by carcinogens in mice. Cancer Res. 1984; 44: 1536–1540
  • Ijiri K., Potten C.S. Further studies on the response of intestinal crypt cells of different hierarchical status to eighteen different cytotoxic agents. Br. J. Cancer 1987; 55: 113–123
  • Hayat M.A. Rinsing. Dehydration and Embedding. Principles and Techniques of Electron Microscopy, M.A. Hayat. CRC Press. Inc., Boca Raton, Florida 1989; 79–137
  • Kerr J.F.R. Definition of apoptosis and overview or its incidence. Programmed Cell Death: The Cellular and Molecular Biology of Apoptosis, M. Lavin Waiters, D. Chur. Harwood Academic Publishers, Switzerland 1993; 1–15
  • Kerr J.F.R., Harmon B., Searle J. An electron-microscope study of cell deletion in the anuran tadpole tail during spontaneous metamorphosis with special reference to apoptosis of striated muscle fibers. J. Cell Sci. 1974; 14: 571–585
  • Payne C.M., Grogan T.M., Spier C.M. Lymphomas of the mediastinum. Ultrastruct. Pathol. 1991; 15: 439–474

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.