78
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Molecular analysis of infant acute leukemia

, &
Pages 191-199 | Received 28 Jun 1996, Published online: 05 Aug 2009

References

  • Kaneko Y., Shikano T., Maseki N., Sakurai M., Sakurai M., Takeda T., Hiyoshi Y., Mimaya J., Fujimoto T. Clinical characteristics of infant acute leukemia with or without 11q23 translocations. Leukemia 1988; 2: 672–676
  • Reaman G., Zeltzer P., Bleyer W. A., Amendola B., Level C., Sather H., Hammond D. Acute lymphoblastic leukemia in infant less than one year of age: a cumulative experience of the Childrens Cancer Study Group. J. Clin. Oncol. 1985; 3: 1513–1521
  • Crist W., Pullen J., Boyett J., Falletta J., Van Eys J., Borowitz M., Jackson J., Dowell B., Frankel L., Quddus F., Ragab A., Vietti T. Clinical and biologic features predict a poor prognosis in acute lymphoid leukemias in infants: a Pediatric Oncology Group study. Blood 1986; 67: 135–140
  • Pui C. H., Williams D. L., Raimondi S. C., Melvin S. L., Behm F. G., Look A. T., Dahl G. V., Ribera G. K., Kalsinsky D. K., Mirro J., Dodge R. K., Murphy S. B. Unfavorable presenting clinical and laboratory features are associated with CALLA-negative non-T, non-B lymphoblastic leukemia in children. Leuk. Res. 1986; 10: 1287–1292
  • Heerema N. A., Arthur D. C., Sather H., Albo V., Feusner J., Lange B. J., Steinherz P. G., Zeltzer P., Hammond D., Reaman G. H. Cytogenetic features of infants less than 12 months of age at diagnosis of acute lymphoblastic leukemia: impact of the 11q23 breakpoint on outcome: a report of the childrens cancer group. Blood 1994; 83: 2274–2284
  • Pui C.-H., Raimondi S. C., Murphy S. B., Ribeiro R. C., Kalwinsky D. K., Dahl G. V., Crist W. M., Williams D. L. An analysis of leukemic cell chromosomal features in infants. Blood 1987; 69: 1289–1293
  • Raimondi S. C., Peiper S. C., Kitchingman G. R., Behm F. G., Williams D. L., Hancock M. L., Mirro J. Childhood acute lymphoblastic leukemia with chromosomal breakpoints at 11q23. Blood 1989; 73: 1627–1634
  • Arthur D. C., Bloomfield C. D., Lindquist L. L., Nesbit M. E. Translocation 4;11 in acute leukemia. Clinical characteristics and prognostic significance. Blood 1982; 59: 96–99
  • Pui C.-H., Frankel L. S., Carroll A. J., Raimondi S. C., Shuster J. J., Head D. R., Crist W. M., Land V. J., Pullen J., Steuber C. P., Behm F. G., Borowitz M. J. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11) (q21:q23): A collaborative study of 40 cases. Blood 1991; 77: 440–447
  • Ziemin-van der Poet S., McCabe N. R., Gill H. J., Espinosa R., III, Patel Y., Harden A., Rubinelli P., Smith S. D., LeBeau M. M., Rowley J. D., Diaz M. O. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc. Natl. Acad. Sci. USA. 1991; 88: 10735–10739
  • Gu Y., Nakamura T., Alder H., Prasad R., Canaani O., Cimino G., Croce C. M., Canaani E. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 1992; 71: 701–708
  • Tkachuk D. C., Kohler S., Cleary M. L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 1992; 71: 691–700
  • Djabali M., Selleri L., Parry P., Bower M., Young B. D., Evans G. A. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukemias. Nature Genetics 1992; 2: 113–118
  • Latchman D. S. Review article: Eukaryotic transcription factors. Biochem. J. 1990; 270: 281–289
  • Rubnitz J. E., Link M. P., Shuster J. J., Carroll A. J., Hakami N., Frankel L., Pullen D. J., Cleary M. L. Frequency and significance of HRX rearrangements in infant acute lymphoblastic leukemia. Blood 1994; 84: 570–573
  • Cimino G., Lo Coco F., Biondi A., Elia L., Luciano A., Croce C. M., Masera G., Mandelli F., Canaani E. ALL-I gene at chromosome 11q23 is consistently altered in acute leukemia of infancy. Blood 1993; 82: 544–546
  • Pui C.-H., Behm F. G., Downing J. R., Hancock M. L., Shurtleff S. A., Ribeiro P. C., Head D. R., Mahmoud H. H., Sandlund J. T., Furman W. L., Roberts W. M., Crist W. M., Raimondi S. C. 11q23/MLL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. J. Clin. Oncol. 1994; 12: 909–915
  • Chen C.-S., Sorensen P. H. B., Domer P. H., Reaman G. H., Korsmeyer S. J., Heerema N. A., Hammond G. D., Kersey J. H. Molecular rearrangements on chromosome 11q23 predominate in infant ALL and are associated with specific biologic variables and a poor outcome. Blood 1993; 81: 2386–2393
  • Hilden J. M., Frested J. L., Moore R. O., Heerema N. A., Arthur D. C., Reaman G. H., Kersey J. H. Molecular analysis of infant acute lymphoblastic leukemia: MLL gene rearrangement and reverse transcriptase-polymerase chain reaction for t(4;11) (q21;q23). Blood 1995; 86: 3876–3882
  • Morrissey J., Tkachuk D. C., Milatovich A., Frankke U., Link M., Cleary M. L. A serine/proline-rich protein is fused to HRX in t(4;11) acute leukemias. Blood 1993; 81: 1124–1131
  • Domer P. H., Fakhzarzadeh S. S., Chen C.-S., Jockel J., Johansen L., Seiverman G. A., Kersey J. H., Korsmeyer S. J. The acute mixed lineage leukemia t(4;11) (q21;q23) generates an MLL-AF-4 fusion transcript. Proc. Natl. Acad Sci. USA 1993; 90: 7884–7888
  • Prasad R., Gu Y., Alder H., Nakamura T., Canaani O., Saito H., Huebner K., Gale R. P., Nowell P. C., Kuriyama K., Miyazaki Y., Croce C. M., Canaani E. Cloning of the ALL-1 fusion partner, the AF-6 gene, involved in acute myeloid leukemias with the t(6;11) chromosome translocation. Cancer Res. 1993; 53: 5624–5628
  • Nakamura T., Alder H., Gu Y., Prasad R., Canaani O., Kamada N., Gale R. P., Lange G., Crist W. M., Nowell P. C., Croce C. M., Canaani E. Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. Proc. Natl. Acad Sci. USA 1993; 90: 4631–4635
  • Rubnitz J. E., Morrissey J., Savage P. A., Cleary M. L. ENL, the gene fused with HRX in t(11;19) leukemias, encodes a nuclear protein with transcriptional activation potential in lymphoid and myeloid cells. Blood 1994; 84: 1747–1752
  • Parry P., We Y., Evans G. Cloning and characterization of the t(X;11) breakpoint from a leukemic cell line identify a new member of the forkhead gene family. Genes. chrom. cancer 1994; 11: 79–84
  • Sorensen P. H. B., Chen C.-S., Smith F. O., Arthur D. C., Domer P. H., Bernstein I. D., Korsmeeyer S. J., Hammond G. H., Kersey J. H. Molecular rearrangements of the MLL gene are present in most cases of infant acute myeloid leukemia and are strongly correlated with monocytic or myelomonocytic phenotypes. J. Clin. Invest. 1994; 93: 429–437
  • Cimino G., Rapanotti M. C., Elia L., Biondi A., Fizzotti M., Testi A. M., Tosti S., Croce C. M., Canaani E., Mandelli F., Coco Lo F. ALL-1 gene rearrangements in acute myeloid leukemia: association with M4-M5 French-American-British classification and young age. Cancer Res. 1995; 55: 1625–1628
  • Hilden J. M., Smith F. O., Frestedt J. L., McGlennen R., Howells W. B., Sorensen P. H. B., Arthur D. C., Woods W. G., Buckley J., Bernstein I. D., Kersey J. H. MLL gene rearrangement, cytogenetic 11q23 abnormalities, and expression of the NG2 molecule in infant acute myeloid leukemia (AML). Blood 1996, submitted
  • Thirman M. J., Gill H. J., Burnett R. C., Mbangkollo D., McCabe N. R., Kobayashi J., Ziemin-van der Poel S., Kaneko Y., Morgan R., Sandberg A. A., Chaganti R. S. K., Larson R. A., LeBeau M. M., Diaz M. O., Rowley J. D. Rearrangement of the MLL gene in acute lymphoblastic and myeloid leukemias with 11q23 chromosomal translocations. N. Engl. J. Med. 1993; 329: 909–914
  • Raimondi S. C., Frestedt J. L., Pui C.-H., Downing J. R., Head D. R., Kersey J. H., Behm F. G. Acute lymphoblastic leukemias with deletion of 11q23 or a novel inversion (11) (p13q23) lack MLL gene rearrangements and have favorable clinical features. Blood 1995; 86: 1881–1886
  • Behm F. G., Raimondi S. C., Frestedt J. L., Lui Q., Crist W. M., Downing J. R., Rivera G. K., Kersey J. H., Pui C.-H. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood 1996; 87: 2870–2877
  • Schichman S. A., Canaani E., Croce C. M. Self-fusion of the ALL1 gene. JAMA 1995; 273: 571–576
  • Schichman S. A., Caligiuri M. A., Strout M. P., Carter S. L., Gu Y., Canaani E., Bloomfield C. D., Croce C. M. ALL-1 tandem duplication in acute myeloid leukemia with a normal karyotype involves homologous recombination between Alu elements. Cancer Res. 1994; 43: 4277–4280
  • Mazo A. M., Huang D.-H., Mozer B. A., Dawid I. B. The trithorax gene, a trans-acting regulator of the bithorax complex in Drosophila, encodes a protein with zinc-binding domains. Proc. Natl. Acad Sci. USA 1990; 87: 2112–2116
  • Kennison J. A. Transcriptional activation of Drosophila homeotic genes from distant regulatory elements. Trends Genet. 1993; 9: 75–79
  • Yu B. D., Hess J. L., Horning S. E., Brown G. A. J., Korsmeyer S. J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 1995; 387: 505–508
  • Fidanza V., Melotti P., Yano T., Nakamura T., Bradley A., Canaani E., Calabretta B., Croce C. M. Double knockout of the ALL-1 gene blocks hematopoietic differentiation in vitro. Cancer Res. 1996; 56: 1179–1183
  • Ma Q., Alder H., Nelson K. K., Chatterjee D., Gu Y., Nakamura T., Canaani E., Croce C. M., Siracusa L. D., Buchberg A. M. Analysis of the murine ALL-1 gene reveals conserved domains with human ALL-1 and identifies a motif shared with DNA methyltransferases. Proc. Natl. Acad. Sci. USA 1993; 90: 6350–6354
  • Klug A., Rhodes D. Zinc fingers: a novel protein motif for nucleic acid recognition. Trends Biochem. Sci. 1987; 12: 464–469
  • Bernard O. A., Mauchauffe M., Mecucci C., Van den Berghe H., Berger R. A novel gene, AF-1p, fused to HRX in t(1;11) (p32;q23), is not related to AF-4, AF-9, nor ENL. Oncogene. 1994; 9: 1039–1045
  • Tse W., Zhu W., Chen H. S., Cohen A. A novel gene, AF1q, fused to MLL in t(1;11) (q21;q23), is specifically expressed in leukemic and immature hematopoietic cells. Blood 1995; 85: 650–656
  • Chaplin T., Ayton P., Bernard O. A., Saha V., Valle V. D., Hillion J., Gregorini A., Lillington D., Berger R., Young B. D. A novel class of zinc finger/leucine zipper genes identified from the molecular cloning of the t(10;11) translocation in acute leukemia. Blood 1995; 85: 1435–1441
  • Prasad R., Leshkowitz D., Gu Y., Alder H., Nakamura T., Saito H., Huebner K., Berger R., Croce C. M., Canaani E. Proc. Natl. Acad Sci. USA 1994; 91: 8107–8111
  • Thirman M. J., Levitan D. A., Kobayashi H., Simon M. C., Rowley J. D. Cloning of ELL, a gene that fuses to MLL in a t(11;19) (q23;p13) in acute myeloid leukemia. Proc. Natl. Acad Sci. USA 1994; 91: 12110–12114
  • Shilatifard A., Lane W. S., Jackson K. W., Conaway R. C., Conaway J. W. An RNA polymerase II elongation factor encoded by the human ELL gene. Science 1996; 271: 1873–1876
  • Theill L. E., Castrillo J. L., Wu D., Karin M. Dissection of functional domains of the pituitary-specific transcription factor GHF-1. Nature 1989; 342: 945–948
  • Chen C.-S., Hilden J. M., Frestedt J., Domer P. H., Moore R., Korsmeyer S. J., Kersey J. H. The chromosome 4q21 gene (AF-4/FEL) is widely expressed in normal tissues and shows breakpoint diversity in t(4;11) (q21;q23) acute leukemia. Blood 1993; 82: 1080–1085
  • Frestedt J. L., Hilden J. M., Moore R. O., Kersey J. H. Differential expression of AF-4/FEL mRNA in human tissues. Genet. Analysis: biomed. eng. 1996; 12: 147–149
  • Frestedt J. L., Hilden J. M., Kersey J. H. AF-4/FEL, a gene involved in infant leukemia: sequence variation, gene structure, and possible homology with a genomic sequence on 5q31. DNA Cell Biol. 1996, in press
  • Ma C., Staudt L. M. LAF-4 encodes a lymphoid nuclear protein with transactivation potential that is homologous to AF-4, the gene fused to MLL in t(4;11) leukemias. Blood 1996; 87: 734–745
  • Hilden J. M., Chen C.-S., Moore R., Frestedt J., Kersey J. H. Heterogeneity in MLUAF-4 fusion messenger RNA detected by the polymerase chain reaction in t(4;11) acute leukemia. Cancer Res. 1993; 53: 3853–3856
  • Biondi A., Rambaldi A., Rossi V., Elia L, Caslini C., Basso G., Battista R., Barbui T., Mandelli F., Masera G., Croce C., Canaani E., Gimino G. Detection of ALL-1/AF4 fusion transcript by reverse transcription-polymerase chain reaction for diagnosis and monitoring of acute leukemias with the t(4;11) translocation. Blood. 1993; 82: 2943–2947
  • Downing J. R., Head D. R., Raimondi S. C., Carroll A. J., Curcio-Brint A. M., Motroni T. A., Hulshof M. G., Pullen J., Domer P. H. The der (11)—encoded MLL/AF-4 fusion transcript is consistently detected in t(4;11) (q21;q23)—containing acute lymphoblastic leukemia. Blood 1994; 83: 330–335
  • Yamamoto K., Seto M., Lika S., Komatsu H., Kamada N., Kojima S., Kodera Y., Nakazawa S., Saito H., Takahashi T., Ueda R. A reverse transcriptase-polymerase chain reaction detects heterogeneous chimeric mRNAs in leukemias with 11q23 abnormalities. Blood 1994; 83: 2912–2921
  • Borkhardt A., Repp R., Haupt E., Brettreich S., Buchen U., Gossen R., Lampert F. Molecular analysis of MLL-1/Af4 recombination in infant acute lymphoblastic leukemia. Leukemia 1994; 8: 549–553
  • Repp R., Borkhardt A., Haupt E., Kreuder J., Brettreich S., Hammermann J., Nishida K., Harbott J., Lampert F. Detection of four different 11q23 chromosomal abnormalities by multiplex-PCR and fluorescence-based automatic DNA-fragment analysis. Leukemia. 1994; 9: 210–215
  • Janssen J. W. G., Ludwig W. D., Borkhardt A., Spaldinger U., Fonatsch C., Hossfeld D. K., Harbot J., Schulz A. S., Reiter A., Hoelzer D., Bartram C. R. Pre-pre-B acute lympblastic leukemia: high frequency of alternatively spliced ALL1/AF4 transcripts and absence of minimal residual disease during complete remission. Blood 1994; 84: 3835–3842
  • Drexler H. G., Borkhardt A., Janssen J. W.G. Detection of chromosomal translocations in leukemia-lymphoma cells by polymerase chain reaction. Leuk, Lymphoma 1995; 19: 359–380
  • Lochner K., Siegler G., Fuhrer M., Greil J., Beck J. D., Fey G. H., Marschalek R. A specific deletion in the breakpoint cluster region of the ALL-1 gene is associated with acute lymphoblastic T-cell leukemia. Cancer Res. 1996; 56: 2171–2177
  • Baffa R., Negrini M., Schichman S. A., Huebner K., Croce C. M. Involvement of the ALL-1 gene in a solid tumor. Proc. Natl. Acad. Sri. USA 1995; 92: 4922–4926
  • Lo Coco F., Mandelli F., Breccia M., Annino L., Guglielmi C., Petti M. C., Testi A. M., Alimena G., Croce C. M., Canaani E., Cimino G. Southern blot analysis of ALL-1 rearrangements at chromosome 11q23 in acute leukemia. Cancer Res. 1993; 53: 3800–3803
  • Stock W., Thirman M. J., Dodge R. K., Rowley J. D., Diaz M. O., Wurster-Hill D., Sobol R. E., Davey F. R., Larson R. A., Westbrook C. A., Bloomfield C. D. Detection of MLL rearrangements in adult acute lymphoblastic leukemia. A cancer and leukemia group B study. Leukemia 1994; 8: 1918–1922
  • Smith F. O., Rauch C., Williams D. E., March C. J., Arthur D., Hilden J., Lampkin B. C., Buckley J. D., Buckley C. V., Woods W. G., Dinndorf P. A., Sorensen P., Kersey J., Hammond D., Bernstein I. D. The human homologue of rat NG2, a chondroitin sulfate proteoglycan, is not expressed on the cell surface of normal hematopoietic cells but is expressed by acute myeloid leukemia blasts from poor-prognosis patients with abnormalities of chromosome band 11q23. Blood 1996; 87: 1123–1133
  • Behm F. G., Smith F. O., Raimondi S. C., Pui C.-H., Bernstein I. D. Human homologue of the rat chondroitin sulfate proteoglycan, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11) (q21;q23) or t(11:19) (q23;p13) and MLL gene rearrangements. Blood 1996; 87: 1134–1139
  • Ross J. A., Potter J. D., Robison L. L. Infant leukemia, topoisomerase II inhibitors, and the MLL gene, JNCI 1994; 86: 1678–1680

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.