62
Views
14
CrossRef citations to date
0
Altmetric
Original Article

CD44 and Adhesion of Normal and Leukemic CD34+ Cells to Bone Marrow Stroma

&
Pages 427-439 | Received 20 May 1998, Published online: 01 Jul 2009

References

  • Dexter T., Moore M., Sheridan P. Maintenance of hematopoietic stem cells in vitro. J Exp Med 1977; 145: 1612–1616
  • Whitlock C., Witte O. Long‐term culture of B lymphocytes and their progenitors from murine bone marrow. Proc Natl Acad Sci USA 1982; 79: 3608–3612
  • Metcalf D. Hematopoietic regulators: Redundancy or subtlety. Blood 1993; 82: 3515–3523
  • Torok‐Storb B. Cellular interactions. Blood 1988; 73: 373–385
  • Whetton A., Dexter T. Influence of growth factors and substrates on differentiation of haemopoietic stem cells. Curr. Opinion in Cell Biol. 1993; 5: 1044–1049
  • Verfaillie C. M. Direct contact between human primative hemopoietic progenitors and bone marrow stroma is not required for long‐term in vitro hemopoiesis. Blood 1992; 79: 2821–2826
  • Roberts R. A., Gallagher J., Spooncer E., Allen T. D., Bloomfield F., Dexter T. M. Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature 1988; 332: 376–378
  • Gordon M. Y., Riley G. P., Watt S. M., Greaves M. F. Compartmentalization of a haematopoietic growth factor (GM‐CSF) by glycosaminoglycans in the bone marrow microenvironment. Nature 1987; 326: 403–405
  • Alon R., Cahalon L., Hershkoviz R., Elbaz D., Reizis B., Wallach D., Akiyama S. K., Yamada K. M., Lider O. TNF‐alpha binds to the N‐terminal domain of fibronectin and augments the beta(1)‐integrin‐mediated adhesion of CD4+ T‐lymphocytes to the glycoprotein. J Immunol 1994; 152: 1304–1313
  • Boudreau N., Sympson C., Werb Z., Bissell M. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 1995; 267: 891–893
  • Zhu X., Ohtsubo M., Bohmer R., Roberts J., Assoian R. Adhesion‐dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E‐cdk2, and phosphorylation of the retinoblastoma protein. J Cell Biol 1996; 133: 391–403
  • Soligo D., Schiro R., Luksch R. Expression of integrins in human bone marrow. Br J Haematol 1990; 76: 323–332
  • Simmons P. J., Masinovsky B., Longnecker B. M., Berenson R., Torok‐Storb B., Gallatin W. M. Vascular cell adhesion molecule‐1 expressed by bone marrow stromal cells mediates the binding of hematpoietic progenitor cells. Blood 1992; 80: 388–395
  • Kansas G., Muirhead M., Dailey M. Expression of CD11/18, leukocyte adhesion molecule 1, and CD44 adhesion molecules during normal and erythroid differentiation in humans. Blood 1990; 76: 2483–2492
  • Long M. W., Briddell R., Walter A. W., Bruno E., Hoffman R. Human hematopoietic stem cell adherence to cytokines and matrix molecules. J Clin Invest 1992; 90: 251–255
  • Long M. W., Dixit V. M. ThrombosponClin functions as a cytoadhesion molecule for human hemopoietic progenitor cells. Blood 1990; 75: 2311–2318
  • Dercksen M., Gerritsen W., Rodenhuis S., Dirkson M., Slaper‐Cortenbach I., Schaasberg W., Pinedo H., von dem Borne A., van der School C. Expression of adhesion molecules on CD34+ cells: CD34+L‐selectin+ cells predict a rapid platelet recovery after peripheral blood stem cell translation. Blood 1995; 85: 3313–3319
  • Salmi M., Jalkanen S. Regulation of L‐selectin expression on cultured bone marrow leukocytes and their precursors. Eur J Immunol 1992; 22: 835–843
  • Leavesley D., Oliver J., Swart B., Berndt M., Haylock D., Simmons P. Signals from platelet/endothelial cell adhesion molecule enhance the adhesive activity of the very late antigen‐4 integrin of human CD34+ hemopoietic progenitor cells. J Immunol 1994; 153: 4673–4683
  • Dougherty G., Landsorp P., Cooper D., Humpheries R. Molecular cloning of CD44R1 and CD44R2, two novel isoforms of the human CD44 lymphocyte homing receptor expressed by hematopoietic cells. J Exp Med 1990; 174: 1–5
  • Liesveld J. L., Winslow J. M., Frediani K. E., Ryan D. H., Abboud C. N. Expression of integrins and examination of their adhesive function in normal and leukemic hematopoietic cells. Blood 1993; 81: 112–121
  • Teixido J., Hemler M. E., Greenberger J. S., Anklesaria P. Role of β1 and β2 integrins in the adhesion of CD34hi stem cells to bone marrow stroma. J Clin Invest 1992; 90: 358–367
  • Bendall L. J., Kortlepel K., Gottlieb D. J. Human acute myeloid leukemia cells bind to bone marrow stroma via a combination of beta‐1 and beta‐2 integrin mechanisms. Blood 1993; 82: 3125–3132
  • Bradstock K. E., Makrynikola V., Bianchi A., Byth K. Analysis of the mechanism of adhesion of precursor‐B acute lymphoblastic leukemia cells to bone marrow fibroblasts. Blood 1993; 82: 3437–3444
  • Hardy C. L., Matsuoka T., Travassoli M. Distribution of homing protein on hemopoietic stromal and progenitor cells. Exp Hematol 1991; 19: 968–972
  • Shiota Y., Wilson J. G., Harjes K., Zanjani E. D., Tavassoli M. A novel 37‐Kd adhesion membrane protein from cloned murine bone marrow stromal cells and cloned murine hematopoietic progenitor cells. Blood 1993; 82: 1436–1444
  • Bendall L., Bradstock K., Gottlieb D. Identification of novel K562 membrane proteins which adhere to bone marrow fibroblasts. Blood 1996; 88: 277–288
  • Kinashi T., Springer T. Steel factor and c‐kit regulate cell‐matrix adhesion. Blood. 1994; 83: 1033–1038
  • Miyake K., Medina K. L., Hayashi S. ‐I., Ono S., Hamaoka T., Kincade P. W. Monoclonal antibodies to Pgp‐1/CD44 block lymphohemopoiesis in long‐term bone marrow cultures. J Exp Med 1990; 171: 477–488
  • Ghaffari S., Dougherty G., Eaves A., Eaves C. Diverse effects of anti‐CD44 antibodies on the stromal cell‐mediated support of normal but not leukaemic (CML) haemopoiesis in vivo. Br. J. Haematol 1997; 97: 22–28
  • Screaton G., Bell M., Jackson D., Cornells E., Germ U., Bell J. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci USA 1992; 89: 12160–12164
  • Carter W., Wayner E. Characterisation of the class III collagen receptor, a phosphorylated transmembrane glycoprotein expressed in nucleated human cells. J Biol Chem 1988; 263: 4193–4201
  • Brown T., Bouchard T., St John T., Wagner E., Carter W. Human keratinocytes express a new CD44 core protein (CD44E) as a heparin‐sulfate intrinsic membrane proteoglycan with additional exons. J Cell Biol 1991; 113: 207–221
  • Jalkanen S., Jalkanen M., Bargatze R., Tammi M., Butcher E. C. Biochemical properties of glycoproteins involved in lymphocyte recognition of high endothelial vessels in man. J Immunol 1988; 141: 1615–1623
  • Goldstein L., Zhou D., Picker L., Minty C., Bargatze R., Ding J., Butcher E. A human lymphocyte homing receptor, the Hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell 1989; 56: 1063–1072
  • Stamenkovic I., Amiot M., Pesando J., Seed B. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 1989; 56: 1057–1062
  • Brissett N., Perkins S. The protein fold of the hyaluronate‐binding proteoglycan tandem repeat domain of link protein, aggrecan and CD44 is similar to that of the C‐type lectin superfamily. FEBS Lett. 1996; 388: 211–216
  • Bourdon M., Krusius T., Campbell S., Schwartz N., Ruoslahti E. Identification and synthesis of a recognition signal for the attachment of glycosaminoglycans to proteins. Proc. Natl. Acad. Sci. USA 1987; 84: 3194–3198
  • Jackson D., Bell J., Timans J., Shields J., Whittle N. Proteoglycan forms of the lymphocyte homing receptor CD44 are alternatively spliced variants containing the v3 exon. J. Cell Biol. 1995; 128: 673–685
  • Liu D., Sy M. Phorbol myristate acetate stimulates the dimerization of CD44 involving a cysteine in the transmembrane domain. J. Immunol. 1997; 159: 2702–2711
  • Goldstein L., Butcher E. Identification of mRNA that encodes an alternative form of H‐CAM (CD44) in lymphoid and nonlymphoid tissues. Immunogenetics 1990; 32: 389–397
  • Perschl A., Lesley J., English N., Hyman R., Trowbridge I. Transmembrane domain of CD44 is required for its detergent insolubility in fibroblasts. J. Cell Sci. 1995; 108: 1033–1041
  • Tarone G., Ferracini R., Galetto G., Comoglio P. A cell surface integral membrane protein of 85000 mol wt (gp85) associated with the Triton X‐100‐insoluble cell skeleton. J Cell Biol 1984; 99: 512–519
  • Lacy B., Underhill C. The hyaluronan receptor is associated with actin filaments. J Cell Biol. 1987; 105: 2115–2124
  • Neame S., Isacke C. Phosphorylation of CD44 in vivo requires both Ser323 and Ser325, but does not regulate membrane localisation or cytoskeletal interaction in epithelial cells. EMBO J. 1992; 11: 4733–4738
  • Lokeshwar V., Bourguignon L. The lymphoma transmembrane glycoprotein GP85 (CD44) is a novel guanine nucleatide‐binding protein which regulates GP85 (CD44)‐ankyrin interaction. J Biol Chem 1992; 267: 22073–22078
  • Kalomiris E., Bourguignon L. Protein kinase C is associated with the transmembrane glycoprotein, GP85, and may function in GP85‐ankyrin binding. J. Biol. Chem. 1989; 264: 8113–8119
  • Tsukita S., Oishi K., Sato N., Sagara J., Kawai A., Tsukita S. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin‐based cytoskeletons. J. Cell Biol. 1994; 126: 391–401
  • Tsukita S., Yonemura S., Tsukita S. ERM proteins‐head‐to‐tail regulation of actin‐plasma membrane interactions. Trends in Biochem. Sci. 1997; 22: 53–58
  • Hirao M., Sato N., Kondo T., Yonemura S., Monden M., Sasaki T., Takai Y., Tsukita S., Tsukita S. Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphotidylinositol timover and Rho‐dependent signalling pathway. J. Cell Biol. 1996; 135: 37–51
  • Taher T., Smit L., Griffioen A., Schilder‐Tol E., Borst J., Pals S. Signalling through CD44 is mediated by tyrosine kinases. J Biol Chem 1996; 271: 2863–2867
  • Weber G., Ashkar S., Glimcher M., Cantor H. Receptor‐ligand interaction between CD44 and osteopontin (Eta‐1). Science 1996; 271: 509–512
  • Jalkanen S., Jalkanin M. Lymphocyte CD44 binds the COOH‐terminal heparin‐binding domain of fibronectin. J Cell Biol 1992; 116: 817–825
  • Faassen A., Schrager J., Klein D., Oegema T., Couchman J., McCarthy J. A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in Type I collagen‐mediated melanoma cell motility and invasion. J Cell Biol 1992; 116: 521–531
  • Wayner E., Carter W. Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique alpha and common beta subunits. J Cell Biol 1987; 105: 1873–1884
  • Toyama‐Sorimachi N., Sorimachi H., Tobita Y., Kitamura E., Yagita H., Suzuki K., Miyasaka M. A novel ligand for CD44 is serglycin, a hematopoietic cell lineag‐especific proteoglycan. J. Biol Chem 1995; 270: 7437–7444
  • Naujokas M., Morin M., Anderson M., Peterson M., Miller J. The chondroitin sulfate form of invariant chain can enhance stimulation of T cell responses through interaction with CD44. Cell 1993; 74: 257–268
  • Droll A., Dougherty S., Chiu R., Dirks J., McBride W., Cooper D., Dougherty G. Adhesive interactions between alternatively spliced CD44 isoforms. J Biol Chem 1995; 270: 11567–11573
  • Aruffo A., Stamenkovic I., Melnick M., Underhill C., Seed B. CD44 is the principle cell surface receptor for hyaluronate. Cell 1990; 61: 1303–1313
  • Lesley J., Hyman R. CD44 can be activated to function as an hyaluronic acid receptor in normal murine T lymphocytes. Eur J Immunol 1992; 22: 2719–2723
  • Murakami S., Shimabukuro Y., Miki Y., Saho T., Hino E., Kasai D., Nozaki T., Kusumoto Y., Okada H. Inducible binding of human lymphocytes to hyaluronate via CD44 does not require cytoskeletal association but does require new protein synthesis. J Immunol 1994; 152: 467–477
  • Murakami S., Miyake K., June C., Kincade P., Modes R. IL‐5 induces a Pgp‐1 (CD44) bright B cell subpopulation that is highly enriched in proliferative and Ig secretory activity and binds to hualuronate. J Immunol 1990; 145: 3618–3627
  • Morimoto K., Robin E., Le Bousse‐Kerdilés M., Li Y., Clay D., Jasmin C., Smadja‐Joffe F. CD44 mediates hyaluronan binding by human myeloid KGla and KG1 cells. Blood 1994; 83: 657–662
  • Bendall L., Kirkness J., Hutchinson A., Bianchi A., Makrynikola V., Bradstock K., Gottlieb D. Antibodies to CD44 enhance adhesion of normal CD34+ cells and acute myeloblastic but not lymphoblastic leukaemia cells to bone marrow stroma. Brit. J. Haematol. 1997; 98: 828–837
  • Smadja‐Joffe R., Legras S., Girard N., Li Y., Delpech B., Bloget R., Morimoto K., Le Bousse‐Kerdilés C., Clay D., Jasmin C., Lévesque J. ‐P. CD44 and hyaluronan binding by human myeloid cells. Leuk., & Lymph. 1996; 21: 407–420
  • Legras S., Lévesque J. ‐P., Charrad R., Morimoto K., Le Bousse C., Clay D., Jasmin C., Smadja‐Joffe F. CD44‐mediated adhesiveness of human hematopoietic progenitors to hyaluronan is modulated by cytokines. Blood 1997; 89: 1905–1914
  • Gunji Y., Nakamura M., Hagiwara T. Expression and function of adhesion molecules on human haematopoietic stem cells: CD34+ LFA‐1‐cells are more primative than CD34+ LFA‐1 + cells. Blood 1992; 80: 429–436
  • Webb D., Shimizu Y., Van Seventer G., Shaw S., Gerrard T. LFA‐3, CD44 and CD45: Physiologic triggers of human monocyte TNF and IL‐1 release. Science 1990; 249: 1295–1297
  • Zembala M., Siedlar M., Ruggiero I., Wieckiewicz J., Mytar B., Mattei M., Colizzi V. The MHC class‐II and CD44 molecules are involved in the induction of tumour necrosis factor (TNF) gene expression by human monocytes stimulated with tumour cells. Int. J. Cancer 1994; 56: 269–274
  • Gruber M., Webb D., Gerrard T. Stimulation of human monocytes via CD45, CD44 and LFA‐3 triggers macrophage‐colony‐stimulating factor production. Synergism with lipopolysaccharide and IL‐1 beta. J. Immunol 1992; 148: 1113–1118
  • Chong A., Boussy I., Graf L., Scuderi P. Stimulation of IFN‐gamma, TNF‐alpha and TNF‐beta secretion in IL‐2 activated T cells: Costimulatory roles for LFA‐1, LFA‐2, CD44, and CD45 molecules. Cell. Immunol. 1992; 144: 69–79
  • Takada Y., Adams D., Hubscher S., Hirano H., Siebenlist U., Shaw S. T‐cell adhesion induced by proteoglycan‐immobilised cytokine MIP‐1 beta. Nature 1993; 361: 79–82
  • Bennett K., Jackson D., Simon J., Tanczos E., Peach R., Modrell B., Stamenkovic I., Plowman G., Aruffo A. CD44 isoforms containing exon V3 are responsible for the presentation of heparin‐binding growth factor. J. Cell Biol 1995; 128: 687–698
  • Ayroldi E., Cannarile L., Migliorati G., Bartoli A., Nicoletti I., Riccardi C. CD44 (Pgp‐1) inhibits CD3 and dexamethasone‐induced apoptosis. Blood 1995; 86: 2672–2678
  • Hamann K., Dowling T., Neeley S., Grant J., Leff A. Hyaluronic acid enhances cell proliferation during eosinopoiesis through the CD44 surface antigen. J Immunol 1995; 154: 4073–4080
  • Lokeshwar V., Iida N., Bourguignon L. The cell adhesion molecule, GP116, is a new variant of (ex14/v10) involved in hyaluronic acid binding and endothelial cell proliferation. J. Biol. Chem. 1996; 271: 23853–23864
  • Rossbach H. ‐C., Krizanac‐Bengez L., Santos E., Gooley T., Sandmaier B. An antibody to CD44 enhances hematopoiesis in long‐term marrow cultures. Exp Hematol 1996; 24: 221–227
  • Oostendorp A., Spitzer E., Dormer P. Adhesion of human hematopoietic progenitor cells to bone marrow derived stromal cells is enhanced by antibodies to CD44. Acta Haematol 1996; 95: 243–247
  • Oostendorp R., Spitzer E., Reisbach G., Dormer P. Antibodies to the β1‐integrin chain, CD44 or ICAM‐3 stimulate adhesion of blast colony‐forming cells and may inhibit their growth. Exp. Hematol 1997; 25: 345–349
  • Anstee D., Gardner B., Spring R., Holmes C., Simpson K., Parsons S., Mallinson G., Yousaf S., Judson P. New monoclonal antibodies in CD44 and CD58: their use to quantify CD44 and CD58 on normal human erythrocytes and to compare the distribution of CD44 and CD58 in human tissues. Immunology 1991; 74: 197–205
  • Spring F., Gardner B., Judson P., Anstee D. AS 10.9 Epitope mapping of CD44 mAb. Leukocyte Typing V. White cell differentiation antigens, S. Schlossman, L. Boumsell, W. Gilks, J. Harlan, T. Kishimoto, J. Ritz, S. Shaw, R. Siverstein, T. Springer, T. Tedder, R. Todd. Oxford University Press, Oxford 1995; 1738–1740
  • Hale L., Singer H., Haynes B. CD44 antibody against In(Lu)‐related p80, lymphocyte‐homong receptor molecule inhibits the binding of human erythrocytes to T cells. J. Immunol 1989; 143: 3944–3948
  • Shimizu Y., van Seventer G. A., Siraganian R., Wahl L., Shaw S. Dual role of the CD44 molecule in T cell adhesion and activation. J Immunol 1989; 143: 2457–2463
  • Asher R., Bignami A. Hyaluronate binding and CD44 expression in human glioblastoma cells and astrocytes. Exp. Cell Res. 1992; 203: 80–90
  • Jalkanen S., Bargatze R., Herron L., Butcher E. Lymphocyte recognition of high endothelium: antibodies to distinct epitopes of an 85–95‐kD glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, orsynovial endothelial cells. J. Cell Biol 1987; 105: 983–990
  • Pals S., Hogervorst F., Keizer G., Thepen T., Horst E., Figdor C. Identification of a widely distributed 90‐kD glycoprotein that is homologous to the Hermes‐1 human lymphocyte homing receptor. J. Immunol. 1989; 143: 851–857
  • Bruynzeel I., Koopman G., van der Raaij L., Pals S., Willemze R. CD44 antibody stimulates adhesion of peripheral blood T cells to keratinocytes through the leukocyte function‐associated antigen‐1/intercellular adhesion molecule‐1 pathway. J Invest Dermatol 1993; 100: 424–428
  • Toyama‐Sorimachi N., Miyake K., Miyasaka M. Activation of CD44 induces ICAM‐1/LFA‐1‐independent, Ca2+/Mg2+‐independent adhesion pathway in lympho‐cyte‐endothelial cell interaction. Eur J Immunol 1993; 23: 439–446
  • Tan P., Liu Y., Santos E., Sandmaier B. Mechanism of enhancement of natural killer activity by an antibody to CD44: Increase in conjugate formation and release of tumor necrosis factor a. Cell. Immunol. 1995; 164: 255–264
  • Lesley J., Hyman R., Kincade P. CD44 and its interaction with extracellular matrix. Advances in Immunology 1993; 54: 271–335
  • Katoh S., Zheng Z., Oritani K., Shimozato T., Kincade P. Glycosylation of CD44 negatively regulates its recognition of hyaluronan. J Exp Med 1995; 182: 419–4129
  • Liao H. ‐X., Levesque M., Patton K., Bergamo B., Jones D., Moody M., Telen M., Haynes B. Regulation of human CD44H and CD44E isoform binding to hyaluronan by phorbol myristate acetate and anti‐CD44 monoclonal and polyclonal antibodies. J Immunol 1993; 151: 6490–6499
  • Lesley J., He Q., Miyake K., Hamann A., Hyman R., Kincade P. Requirements for hyaluronic acid binding by CD44: a role for the cytoplasmic domain and activation by antibody. J Exp Med 1992; 175: 257–266
  • Takahashi K., Stamenkovic I., Cutler M., Dasgupta A., Tanabe K. Keratan sulfate modification of CD44 modulates adhesion to hyaluronate. J. Biol. Chem. 1996; 271: 9490–9496
  • Verfaillie C., Benis A., Iida J., McGlave P., McCathy J. Adhesion of committed human hematopoietic progenitors to synthetic peptides from the C‐terminal heparin‐binding domain of fibronectin: Cooperation between the integrin α4β1 and the CD44 adhesion receptor. Blood 1994; 84: 1802–1811
  • Cao L., Yoshino T., Kawasaki N., Yanai H., Kawahara K., Kondo E., Omonishi K., Takahashi K., Akagi T. Binding of human leukocytes to fibronectin is augmented by an anti‐CD44 mAb (TL‐1) and blocked by another anti‐CD44 mAb (Hermes‐3) but not by anti‐VLA‐4/VLA‐5 mAbs. Immunobiology 1997; 196: 504–512
  • Schmits R., Films J., Senaldi G., Kiefer F., Kundig T., Wakeham A., Shahinian A., Catzavelos C., Rak J., Furlonger C., Zakarian A., Simard J., Ohashi P., Paige C., Gutierrez‐Ramos J., Mak T. CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood 1997; 90: 2217–2233
  • Sandmaier B., Storb R., Applebaum F., Gallatin W. An antibody that faciliates hematopoietic engraftment recognises CD44. Blood 1990; 76: 630–635
  • Schlossman S., Boumsell L., Gilks W., Harlan J., Kishimoto T., Ritz J., Shaw S., Siverstein R., Springer T., Tedder T., Todd R. Leukocyte Typing V. White cell differentiation antigens. Oxford University Press, Oxford 1995

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.