109
Views
22
CrossRef citations to date
0
Altmetric
Original Article

Differential Substrate Recognition Capabilities of Janus Family Protein Tyrosine Kinases Within the Interleukin 2 Receptor (I12R) System: Jak3 as a Potential Molecular Target for Treatment of Leukemias with a Hyperactive Jak-Stat Signaling Machinery

, , &
Pages 289-297 | Received 10 Apr 1998, Published online: 05 Aug 2009

References

  • Ihle JN, Kerr IM. Jaks and STATs in signaling by the cytokine receptor superfamily. Trends Genet. 1995; 11: 69–74
  • Darnell JE, Jr., Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264: 1415–1421
  • Briscoe J, Rogers NC, Witthuhn BA, Watling D, Harpur AG, Wilks AF, Stark GR, Ihle JN, Kerr IM. Kinase-negative mutants of Jak1 can sustain interferon-gamma-inducible gene expression but not an antiviral state. EMBO J 1996; 15: 799–809
  • Nosaka T, van Deursen JM, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP, Doherty PC, Grosveld GC, Ihle JN. Defective lymphoid development in mice lacking Jak3 [published erratum appears in. Science 1995; 271: 17, Science 270:800–802
  • Zhuang H, Patel SV, He TC, Sonsteby SK, Niu Z, Wojchowski DM. Inhibition of erythropoietin-induced mitogenesis by a kinase-deficient form of Jak2. J. Biol. Chem. 1994; 269: 21411–21414
  • Thomis DC, Gurniak CB, Tivol E, Sharpe AH, Berg LJ. Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 1995; 270: 794–797
  • Park SY, Saijo K, Takahashi T, Osawa M, Arase H, Hirayama N, Miyake K, Nakauchi H, Shirasawa T, Saito T. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. J. Biol. Chem. 1995; 270: 30829–30836
  • Greenlund AC, Morales MO, Viviano BL, Yan H, Krolewski J, Schreiber RD. STAT recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process. Immunity 1995; 2: 677–687
  • Stahl N, Farruggella TJ, Boulton TG, Zhong Z, Darnell JE, Jr., Yancopoulos GD. Choice of STATs and other substrates specified by modular tyrosine- based motifs in cytokine receptors. Science 1995; 267: 1349–1353
  • Yamanaka Y, Nakajima K, Fukada T, Hibi M, Hirano T. Differentiation and growth arrest signals are generated through the cytoplasmic region of gp130 that is essential for STAT3 activation. EMBO J 1996; 15: 1557–1565
  • Hou J, Schindler U, Henzel WJ, Ho TC, Brasseur M, McKnight SL. An interleukin-4-induced transcription factor: IL-4 STAT. Science 1994; 265: 1701–1706
  • Friedmann MC, Migone TS, Russell SM, Leonard WJ. Different interleukin 2 receptor beta-chain tyrosines couple to at least two signaling pathways and synergistically mediate interleukin 2- induced proliferation. Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 2077–2082
  • Fujii H, Nakagawa Y, Schindler U, Kawahara A, Mori H, Gouilleux F, Groner B, Ihle JN, Minami Y, Miyazaki T, et al. Activation of STATS by interleukin 2 requires a carboxyl-terminal region of the interleukin 2 receptor beta chain but is not essential for the proliferative signal transmission. Proc. Natl. Acad. Sci. U.S.A. 1995; 92: 5482–5486
  • Quelle FW, Wang D, Nosaka T, Thierfelder WE, Stravopodis D, Weinstein Y, Ihle JN. Erythropoietin induces activation of STATS through association with specific tyrosines on the receptor that are not required for a mitogenic response. Mol. Cell. Biol. 1996; 16: 1622–1631
  • Gobert S, Chretien S, Gouilleux F, Muller O, Pallard C, Dusanter-Fourt I, Groner B, Lacombe C, Gisselbrecht S, Mayeux P. Identification of tyrosine residues within the intracellular domain of the erythropoietin receptor crucial for STATS activation. EMBO J 1996; 15: 2434–2441
  • Behrmann I, Janzen C, Gerhartz C, Schmitz-Van de Leur H, Hermanns H, Heesel B, Graeve L, Horn F, Tavernier J, Heinrich PC. A single STAT recruitment module in a chimeric cytokine receptor complex is sufficient for STAT activation. J. Biol. Chem. 1997; 272: 5269–5274
  • Nelson BH, Lord JD, Greenberg PD. A membrane-proximal region of the interleukin-2 receptor gamma c chain sufficient for Jak kinase activation and induction of proliferation in T cells. Mol. Cell. Biol. 1996; 16: 369–375
  • Nelson BH, McIntosh BC, Rosencrans LL, Greenberg PD. Requirement for an initial signal from the membrane-proximal region of the interleukin 2 receptor gamma(c) chain for Janus kinase activation leading to T cell proliferation. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 1878–1883
  • Chen M, Cheng A, Chen YQ, Hymel A, Hanson EP, Kimmel L, Minami Y, Taniguchi T, Changelian PS, O'Shea JJ. The amino terminus of Jak3 is necessary and sufficient for binding to the common gamma chain and confers the ability to transmit interleukin 2-mediated signals. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 6910–6915
  • Quelle FW, Thierfelder W, Witthuhn BA, Tang B, Cohen S, Ihle JN. Phosphorylation and activation of the DNA binding activity of purified STAT1 by the Janus protein-tyrosine kinases and the epidermal growth factor receptor. J. Biol. Chem. 1995; 270: 20775–20780
  • Park OK, Schaefer TS, Nathans D. In vitro activation of STAT3 by epidermal growth factor receptor kinase. Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 13704–13708
  • Fujitani Y, Hibi M, Fukada T, Takahashi-Tezuka M, Yoshida H, Yamaguchi T, Sugiyama K, Yamanaka Y, Nakajima K, Hirano T. An alternative pathway for STAT activation that is mediated by the direct interaction between Jak and STAT. Oncogene. 1997; 14: 751–761
  • Takeshita T, Arita T, Higuchi M, Asao H, Endo K, Kuroda H, Tanaka N, Murata K, Ishii N, Sugamura K. STAM, signal transducing adaptor molecule, is associated with Janus kinases and involved in signaling for cell growth and c-myc induction. Immunity 1997; 6: 449–457
  • Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H, Miyazaki T, Leonor N, Taniguchi T, Fujita T, Kanakura Y, Komiya S, Yoshimura A. A new protein containing an SH2 domain that inhibits Jak kinases. Nature 1997; 387: 921–924
  • Witthuhn BA, Silvennoinen O, Miura O, Lai KS, Cwik C, Liu ET, Ihle JN. Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature 1994; 370: 153–157
  • Feng J, Witthuhn BA, Matsuda T, Kohlhuber F, Kerr IM, Ihle JN. Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol. Cell. Biol. 1997; 17: 2497–2501
  • Hubbard SR, Wei L, Ellis L, Hendrickson WA. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 1994; 372: 746–754
  • Kotenko SV, Izotova LS, Pollack BP, Mariano TM, Donnelly RJ, Mutukumaran G, Cook JR, Garotta G, Silvennoinen O, Ihle JN, Pestka S. Interaction between the components of the interferon gamma receptor complex. J. Biol. Chem. 1995; 270: 20915–20921
  • Sakatsume M, Igarashi K, Winestock KD, Garotta G, Larner AC, Finbloom DS. The Jak kinases differentially associate with the alpha and beta (accessory factor) chains of the interferon gamma receptor to form a functional receptor unit capable of activating STAT transcription factors. J Biol. Chem. 1995; 270: 17528–17534
  • Kaplan DH, Greenlund AC, Tanner JW, Shaw AS, Schreiber RD. Identification of an interferon-gamma receptor alpha chain sequence required for Jak-1 binding. J Biol. Chem. 1996; 271: 9–12
  • Blank U, Ra C, Miller L, White K, Metzger H, Kinet J. Complete structure and expression in transfected cells of high affinity IgE receptor. Nature 1989; 336: 187–189
  • Clevers H, Alarcon B, Willeman T, Terhorst C. The T cell receptor/CD3 complex: a dynamic protein ensemble. Ann. Rev. Immunol. 1988; 6: 629–662
  • Taniguchi T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 1995; 268: 251–255
  • Asao H, Takeshita T, Nakamura M, Nagata K, Sugamura K. Interleukin 2 (IL-2)-induced tyrosine phosphorylation of IL-2 receptor p75. J. Exp. Med. 1990; 171: 2183
  • Asao H, Kumaki S, Takeshita T, Nakamura M, Sugamura K. IL-2-dependent in vivoand in vitro tyrosine phosphorylation of IL-2 receptor gamma chain. FEBS Lett. 1992; 304: 141–145
  • Miyazaki T, Taniguchi T. Coupling of the IL2 receptor complex with non-receptor protein tyrosine kinases. Cancer Surveys 1996; 27: 139–163
  • Taniguchi T, Minami Y. The IL2/IL2 receptor system: A current overview. Cell 1993; 73: 5–8
  • Evans GA, Goldsmith MA, Johnston JA, Xu W, Weiler SR, Erwin R, Howard OM, Abraham RT, O'Shea JJ, Greene WC, Farrar WL. Analysis of interleukin-2-dependent signal transduction through the Shc/Grb2 adapter pathway. Interleukin-2-dependent mitogenesis does not require Shc phosphorylation or receptor association. J. Biol. Chem. 1995; 270: 28858–28863
  • Gaffen SL, Lai SY, Ha M, Liu X, Hennighausen L, Greene WC, Goldsmith MA. Distinct tyrosine residues within the interleukin-2 receptor beta chain drive signal transduction specificity, redundancy, and diversity. J. Biol. Chem. 1996; 271: 21381–21390
  • Russell SM, Johnston JA, Noguchi M, Kawamura M, Bacon CM, Friedmann M, Berg M, McVicar DW, Witthuhn BA, Silvennoinen O, et al. Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science 1994; 266: 1042–1045
  • Miyazaki T, Kawahara A, Fujii H, Nakagawa Y, Minami Y, Liu ZJ, Oishi I, Silvennoinen O, Witthuhn BA, Ihle JN, et al. Functional activation of Jak1 and Jak3 by selective association with IL- 2 receptor subunits. Science 1994; 266: 1045–1047
  • Johnston JA, Kawamura M, Kirken RA, Chen YQ, Blake TB, Shibuya K, Qrtaldo JR, McVicar DW, O'Shea JJ. Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature 1994; 370: 151–153
  • Fujiwara H, Hanissian Sh, Tsytsykova A, Geha Rs. Homodimerization of the human interleukin 4 receptor alpha chain induces C-epsilon germline transcripts in B cells in the absence of the interleukin 2 receptor gamma chain. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 5866–5871
  • Chen XH, Patel BK, Wang LM, Frankel M, Ellmore N, Flavell RA, LaRochelle WJ, Pierce JH. Jak1 expression is required for mediating interleukin-4-induced tyrosine phosphorylation of insulin receptor substrate and STAT6 signaling molecules. J. Biol. Chem. 1997; 272: 6556–6560
  • Burfoot MS, Rogers NC, Watling D, Smith JM, Pons S, Paonessaw G, Pellegrini S, White MF, Kerr IM. Janus kinase-dependent activation of insulin receptor substrate 1 in response to interleukin-4, oncostatin M, and the interferons. J. Biol. Chem. 1997; 272: 24183–24190
  • Kawahara A, Minami Y, Miyazaki T, Ihle JN, Taniguchi T. Critical role of the interleukin 2 (IL-2) receptor gamma-chain- associated Jak3 in the IL-2-induced c-fos and c-myc, but not bcl-2, gene induction. Proc. Natl. Acad. Sci. U.S.A. 1995; 92: 8724–8728
  • Harrison DA, Binari R, Nahreini TS, Gilman M, Perrimon N. Activation of a Drosophila Janus kinase (Jak) causes hematopoietic neoplasia and developmental defects. EMBO J 1995; 14: 2857–2865
  • Luo H, Rose P, Barber D, Hanratty WP, Lee S, Roberts TM, D'Andrea AD, Dearolf CR. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-STAT pathways. Mol. Cell. Biol. 1997; 17: 1562–1571
  • Luo H, Hanratty WP, Dearolf CR. An amino acid substitution in the Drosophila hopTum-1 Jak kinase causes leukemia-like hematopoietic defects. EMBO J. 1995; 14: 1412–1420
  • Shuai K, Halpern J, Tenhoeve J, Rao XP, Sawyers CL. Constitutive activation of STATS by the Bcr-Abl oncogene in chronic myelogenous leukemia. Oncogene 1996; 13: 247–254

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.