2
Views
3
CrossRef citations to date
0
Altmetric
Original Article

HIV-1 Reverse Transcriptase Variants: Molecular Modeling of Y181C, V106A, L100I, and K103N Mutations with Nonnucleoside Inhibitors Using Monte Carlo Simulations in Combination with a Linear Response Method

, , , , , , , , , , , & show all
Pages 151-163 | Published online: 04 Dec 2011

References

  • Larder, B. A., and Kemp, S. D. (1989). Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to Zidovudine (AZT). Science, 246, 1155–1158.
  • St. Clair, M. H., Martin, J. L., Tudor-Williams, G., Bach, M. C., Vavro, C. L., King, D. M., Kellam, P., Kemp, S. D., and Larder, B. A. (1991). Resistance to ddI and sensitivity to AZT induced by a mutation in HIV-1 reverse transcriptase. Science, 253, 1557–1559.
  • Richman, D. D. (1994). Nevirapine resistance mutations of human immunodeficiency virus type 1 selected during therapy. J. Virol., 68, 1660–1666.
  • Zhang, D., Caliendo, A. M., Eron, J. J, DeVore, K. M., Kaplan, J. C., Hirsch, M. S., and D'auuila, R. T. (1994). Resistance to 2',3'-dideoxycytidine conferred by a mutation in codon 65 of the human immunodeficiency virus type 1 reverse transcriptase. Antimicrob. Agents Chemother., 38, 282–287.
  • Boyer, P. L., Ding, J., Arnold, E., and Hughes, S. H. (1994). Subunit specificity of mutations that confer resistance to nonucleoside inhibitors in human immunodeficiency virus type 1 reverse transcriptase. Antimicrob. Agents Chemother., 38, 1909–1914.
  • Boyer, P. L., Tantillo, C., Jacobo-Molina, A., Nanni, R. G., Ding, J., Arnold, E., and Hughes, S. H. (1994). Sensitivity of wild-type human immunodeficiency virus type 1 reverse transcriptase to dideoxynucleotides depends on template length; the sensitivity of drug-resistant mutants does not. Proc. Natl. Acad. Sci., USA, 91, 4882–4886.
  • Moermans, M., De Raeymaeker, M., Boeckx, I., Van den Broeck, R., Stoffels, P., De Brabander, M., De Cree, J., Hertogs, K., Pauwels. R., Staszewski, S., and Andries, K. (1995). Viro-logical analysis of HIV-1 isolates in patients treated with the non-nucleoside reverse transcriptase inhibitor R091767 (8-Cl TIBO). Abstracts of the Fourth International Workshop on HIV-1 Drug Resistance, Sardinia, Italy.
  • Metropolis, N., and Ulam, S. (1949). The Monte Carlo method. J. Am. Stat. Assoc., 44, 335–341.
  • Jorgensen, W. L. (1998). MCPRO, Version 1.6. New Haven, CT: Yale University.
  • Aqvist, J., Medina, C., and Samuelsson, J.-E. (1994). A new method for predicting binding affinity in computer-aided drug design. Prot. Eng., 7, 385–391.
  • Carlson, H. A., and Jorgensen, W. L. (1995). An extended linear response method for determining free energies of hydration. J. Phys. Chem., 99, 10667–10673.
  • McDonald, N. A., Carlson, H. A., and Jorgensen, W. L. (1997). Free energies of solvation in choroform and water from a linear response approach. J. Phys. Org. Chem., 10, 563–576.
  • Hertzog-Jones, D. K., and Jorgensen W. L. (1997). Binding affinities for sulfoamide inhibitors with human thrombin using Monte Carlo simulations with a linear response method. J. Med. Chem., 40, 1539–1549.
  • Lamb, M. L., and Jorgensen, W. L. (1999). Investigations of neurotropic inhibitors of FK506 binding protein via Monte Carlo simulations. J. Med. Chem., 41, 3928–3939.
  • Lamb, M. L., Tirado-Rives, J., and Jorgensen, W. L. (1999). Estimation of the binding affinities of FKBP12 inhibitors using a linear response method. Bioorg. Med. Chem., 7, 851–860.
  • Pierce, A. C., and Jorgensen, W. L. (1997). Computational binding affinities for trypsin benzamidine complexes via free energy perturbations. J. Phys. Chem. B, 36, 1466–1469.
  • Smith, R. H., Jr., Jorgensen, W. L., Tirado-Rives, J., Lamb, M. L., Janssen, P. A. J., Michejda, C. J., and Kroeger Smith, M. B. (1998). Prediction of binding affinities for TIBO inhibitors of HIV-1 reverse transcriptase using Monte Carlo simulations in a linear response method. J. Med. Chem., 41, 5272- 5286.
  • Rizzo, R. C., Tirado-Rives, J., and Jorgensen, W. L. (2001). Estimation of binding affinities for HEPT and nevirapine analogs with HIV-1 reverse transcriptase via Monte Carlo simulations. J. Med. Chem., 44, 145–154.
  • Rizzo, R. C., Blagovic, M. U., Wang, D.-P., Watkins, E. K., Smith, M. B. K. K., Smith, R. H ., Jr., Tirado-Rives, J., and Jorgensen, W. L. (2002). Prediction of activity for nonnucleoside inhibitors with HIV reverse transcriptase based on Monte Carlo simulations. J. Med. Chem., 45, 2970–2987.
  • Kroeger Smith, M., Hose, B. M., Hawkins, A., Lipchock, J., Farnsworth, D. W., Rizzo, R. C., Tirado-Rives, Arnold, E., Zhang, W., Hughes, S. H., Jorgensen, W. L., Farnsworth, D. W., Michejda, C. J., and Smith, R. H., Jr. (2003). Molecular modeling calculations of HIV-1 reverse transcriptase nonnucleoside inhibitors: correlation of binding energy with biological activity for novel 2-aryl-substituted benzimidazole analogs, J. Med. Chem., 46, 1940–1947.
  • Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W., Jr., and Michejda, C. J. (1997). Synthesis and biological activity of novel nonnucleoside inhibitors of HIV-1 reverse transcriptase. 2-Aryl-substituted benzimidazoles. J. Med. Chem., 40, 4199–4207.
  • Morningstar, M. L., Roth, T., Smith, M. Kroeger, Zajac, M., Watson, K., Buckheit, R. W., Jr., and Michejda, C. J. (2004). Synthesis and biological activity of potent non-nucleoside inhibitors of HIV-1 reverse transcriptase that retain activity against mutant forms of the enzyme. J. Med. Chem., to appear.
  • Ding, J., Das, K., Moereels, H., Koymans, L., Andries, K., Janssen, P. A. J., Hughes, S. H., and Arnold, E. (1995). Structure of HIV-1 RT/TIBO R86183 complex reveals remarkable similarity in the binding of diverse nonnucleoside inhibitors. Nature Struct. Biol., 2, 407–415.
  • Kroeger Smith, M. B., Lamb, M. L., Tirado-Rives, J., Jorgensen, W. L., Michejda, C. J., Ruby, S. K., and Smith, R. H., Jr. (2000). Monte Carlo calculations on HIV-1 reverse transcriptase complexed with the nonnucleoside inhibitor 8-Cl TIBO: Contribution of the L100I and Y181C variants to protein stability and biological activity. Prot. Eng., 13, 413- 421.
  • Das, K., Ding, J., Hsiou, Y., Clark, A. D., Jr., Moereels, H., Koymans, L., Andries, K., Pauwels, R., Janssen, P. A. J., Boyer, P. D., Clark, P., Smith, R. H., Jr., Kroeger Smith, M. B., Michejda, C. J., Hughes, S. H., and Arnold, E. (1996). Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIVRT and 8-Cl TIBO complexed with the tyr181cys HIV-1 RT drug resistant mutant. J. Mol. Biol., 264, 1085–1100.
  • Kroeger Smith, et al., unpublished data.
  • Jorgensen, W. L. (2003). Biochemical and Organic Model Builder (BOMB), Version 2.3, New Haven, CT: Yale University Press.
  • Jorgensen, W. L., unpublished data.
  • E. Arnold, Rutgers University, New Branswick, NJ, unpublished data.
  • R. W. Buckheit, Jr., personal communication.
  • Cheng, Y., and Prusoff, W. H. (1973). Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 percent inhibition (IC50) of an enzymatic reaction. Biochem. Pharmacol., 22, 3099–3108.
  • JMP-Jn, Version 4 (2001). SAS Institute Inc., Cary, NC.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.