945
Views
80
CrossRef citations to date
0
Altmetric
Review Article

Role of CD44 in tumour progression and strategies for targeting

, , , , &
Pages 561-573 | Received 23 Nov 2011, Accepted 11 Jun 2012, Published online: 04 Jul 2012

References

  • Abney JR, Braun J, Owicki JC. (1987). Lateral interactions among membrane proteins. Implications for the organization of gap junctions. Biophys J, 52, 441–454.
  • Agren UM, Tammi RH, Tammi MI. (1997). Reactive oxygen species contribute to epidermal hyaluronan catabolism in human skin organ culture. Free Radic Biol Med, 23, 996–1001.
  • Akima K, Ito H, Iwata Y, Matsuo K, Watari N, Yanagi M, Hagi H, Oshima K, Yagita A, Atomi Y, Tatekawa I. (1996). Evaluation of antitumor activities of hyaluronate binding antitumor drugs: synthesis, characterization and antitumor activity. J Drug Target, 4, 1–8.
  • Al-Ghananeem AM, Malkawi AH, Muammer YM, Balko JM, Black EP, Mourad W, Romond E. (2009). Intratumoral delivery of Paclitaxel in solid tumor from biodegradable hyaluronan nanoparticle formulations. AAPS PharmSciTech, 10, 410–417.
  • Arch R, Wirth K, Hofmann M, Ponta H, Matzku S, Herrlich P, Zöller M. (1992). Participation in normal immune responses of a metastasis inducing splice variant of CD44. Science, 257, 682–685.
  • Auzenne E, Ghosh SC, Khodadadian M, Rivera B, Farquhar D, Price RE, Ravoori M, Kundra V, Freedman RS, Klostergaard J. (2007). Hyaluronic acid-paclitaxel: antitumor efficacy against CD44(+) human ovarian carcinoma xenografts. Neoplasia, 9, 479–486.
  • Bacso Z, Nagy H, Goda K, Bene L, Fenyvesi F, Matkó J, Szabó G. (2004). Raft and cytoskeleton associations of an ABC transporter: P-glycoprotein. Cytometry A, 61, 105–116.
  • Bajorath J, Greenfield B, Munro SB, Day AJ, Aruffo A. (1998). Identification of CD44 residues important for hyaluronan binding and delineation of the binding site. J Biol Chem, 273, 338–343.
  • Bansal T, Akhtar N, Jaggi M, Khar RK, Talegaonkar S. (2009). Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation. Drug Discov Today, 14, 1067–1074.
  • Banzato A, Bobisse S, Rondina M, Renier D, Bettella F, Esposito G, Quintieri L, Meléndez-Alafort L, Mazzi U, Zanovello P, Rosato A. (2008). A paclitaxel-hyaluronan bioconjugate targeting ovarian cancer affords a potent in vivo therapeutic activity. Clin Cancer Res, 14, 3598–3606.
  • Baumgartner G, Gomar-Höss C, Sakr L, Ulsperger E, Wogritsch C. (1998). The impact of extracellular matrix on the chemoresistance of solid tumors–experimental and clinical results of hyaluronidase as additive to cytostatic chemotherapy. Cancer Lett, 131, 85–99.
  • Baumgartner G. (1987). [Hyaluronidase in the therapy of malignant diseases]. Wien Klin Wochenschr Suppl, 174, 1–22.
  • Bhang SH, Won N, Lee TJ, Jin H, Nam J, Park J, Chung H, Park HS, Sung YE, Hahn SK, Kim BS, Kim S. (2009). Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging. ACS Nano, 3, 1389–1398.
  • Bishop JR, Schuksz M, Esko JD. (2007). Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature, 446, 1030–1037.
  • Bourguignon LY, Spevak CC, Wong G, Xia W, Gilad E. (2009). Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the Production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. J Biol Chem, 284, 26533–26546.
  • Bourguignon LY, Zhu H, Chu A, Iida N, Zhang L, Hung MC. (1997). Interaction between the adhesion receptor, CD44, and the oncogene product, p185HER2, promotes human ovarian tumor cell activation. J Biol Chem, 272, 27913–27918.
  • Bourguignon LY, Peyrollier K, Xia W, Gilad E. (2008). Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem, 283, 17635–17651.
  • Brecht M, Mayer U, Schlosser E, Prehm P. (1986). Increased hyaluronate synthesis is required for fibroblast detachment and mitosis. Biochem J, 239, 445–450.
  • Cho HJ, Yoon HY, Koo H, Ko SH, Shim JS, Lee JH, Kim K, Kwon IC, Kim DD. (2011). Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. Biomaterials, 32, 7181–7190.
  • Coradini D, Zorzet S, Rossin R, Scarlata I, Pellizzaro C, Turrin C, Bello M, Cantoni S, Speranza A, Sava G, Mazzi U, Perbellini A. (2004). Inhibition of hepatocellular carcinomas in vitro and hepatic metastases in vivo in mice by the histone deacetylase inhibitor HA-But. Clin Cancer Res, 10, 4822–4830.
  • Dean M, Allikmets R. (2001). Complete characterization of the human ABC gene family. J Bioenerg Biomembr, 33, 475–479.
  • DeGrendele HC, Kosfiszer M, Estess P, Siegelman MH. (1997). CD44 activation and associated primary adhesion is inducible via T cell receptor stimulation. J Immunol, 159, 2549–2553.
  • Eliaz RE, Szoka FC Jr. (2001). Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res, 61, 2592–2601.
  • Estess P, DeGrendele HC, Pascual V, Siegelman MH. (1998). Functional activation of lymphocyte CD44 in peripheral blood is a marker of autoimmune disease activity. J Clin Invest, 102, 1173–1182.
  • Faassen AE, Schrager JA, Klein DJ, Oegema TR, Couchman JR, McCarthy JB. (1992). A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion. J Cell Biol, 116, 521–531.
  • Fjeldstad K, Kolset SO. (2005). Decreasing the metastatic potential in cancers–targeting the heparan sulfate proteoglycans. Curr Drug Targets, 6, 665–682.
  • Goodfellow PN, Banting G, Wiles MV, Tunnacliffe A, Parkar M, Solomon E, Dalchau R, Fabre JW. (1982). The gene, MIC4, which controls expression of the antigen defined by monoclonal antibody F10.44.2, is on human chromosome 11. Eur J Immunol, 12, 659–663.
  • Goodison S, Tarin D. (1998). Clinical implications of anomalous CD44 gene expression in neoplasia. Front Biosci, 3, e89–109.
  • Green SJ, Tarone G, Underhill CB. (1988). Aggregation of macrophages and fibroblasts is inhibited by a monoclonal antibody to the hyaluronate receptor. Exp Cell Res, 178, 224–232.
  • Hajime M, Shuichi Y, Makoto N, Masanori Y, Ikuko K, Atsushi K, Mutsuo S, Keiichi T. (2007). Inhibitory effect of 4-methylesculetin on hyaluronan synthesis slows the development of human pancreatic cancer in vitro and in nude mice. Int J Cancer, 120, 2704–2709.
  • Hamilton SR, Fard SF, Paiwand FF, Tolg C, Veiseh M, Wang C, McCarthy JB, Bissell MJ, Koropatnick J, Turley EA. (2007). The hyaluronan receptors CD44 and Rhamm (CD168) form complexes with ERK1,2 that sustain high basal motility in breast cancer cells. J Biol Chem, 282, 16667–16680.
  • He M, Zhao Z, Yin L, Tang C, Yin C. (2009). Hyaluronic acid coated poly(butyl cyanoacrylate) nanoparticles as anticancer drug carriers. Int J Pharm, 373, 165–173.
  • Hyung W, Ko H, Park J, Lim E, Park SB, Park YJ, Yoon HG, Suh JS, Haam S, Huh YM. (2008). Novel hyaluronic acid (HA) coated drug carriers (HCDCs) for human breast cancer treatment. Biotechnol Bioeng, 99, 442–454.
  • Itano N, Zhuo L, Kimata K. (2008). Impact of the hyaluronan-rich tumor microenvironment on cancer initiation and progression. Cancer Sci, 99, 1720–1725.
  • Jain A, Jain SK, Ganesh N, Barve J, Beg AM. (2010). Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomedicine, 6, 179–190.
  • Jain A, Jain SK. (2008). In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors. Eur J Pharm Sci, 35, 404–416.
  • Jalkanen S, Jalkanen M. (1992). Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J Cell Biol, 116, 817–825.
  • Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. (2006). Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med, 12, 1167–1174.
  • Journo-Gershfeld G, Kapp D, Shamay Y, Kopecek J, David A. (2012). Hyaluronan oligomers-HPMA copolymer conjugates for targeting paclitaxel to CD44-overexpressing ovarian carcinoma. Pharm Res, 29, 1121–1133.
  • Karihtala P, Soini Y, Auvinen P, Tammi R, Tammi M, Kosma VM. (2007). Hyaluronan in breast cancer: correlations with nitric oxide synthases and tyrosine nitrosylation. J Histochem Cytochem, 55, 1191–1198.
  • Katoh S, McCarthy JB, Kincade PW. (1994). Characterization of soluble CD44 in the circulation of mice. Levels are affected by immune activity and tumor growth. J Immunol, 153, 3440–3449.
  • Kim EJ, Shim G, Kim K, Kwon IC, Oh YK, Shim CK. (2009). Hyaluronic acid complexed to biodegradable poly L-arginine for targeted delivery of siRNAs. J Gene Med, 11, 791–803.
  • Kim J, Kim KS, Jiang G, Kang H, Kim S, Kim BS, Park MH, Hahn SK. (2008). In vivo real-time bioimaging of hyaluronic acid derivatives using quantum dots. Biopolymers, 89, 1144–1153.
  • Knudson W. (1996). Tumor-associated hyaluronan. Providing an extracellular matrix that facilitates invasion. Am J Pathol, 148, 1721–1726.
  • Knutson JR, Iida J, Fields GB, McCarthy JB. (1996). CD44/chondroitin sulfate proteoglycan and α 2 β 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes. Mol Biol Cell, 7, 383–396.
  • Koyama H, Hibi T, Isogai Z, Yoneda M, Fujimori M, Amano J, Kawakubo M, Kannagi R, Kimata K, Taniguchi S, Itano N. (2007). Hyperproduction of hyaluronan in neu-induced mammary tumor accelerates angiogenesis through stromal cell recruitment: possible involvement of versican/PG-M. Am J Pathol, 170, 1086–1099.
  • Lee H, Ahn CH, Park TG. (2009). Poly[lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin. Macromol Biosci, 9, 336–342.
  • Lee Y, Lee H, Kim YB, Kim J, Hyeon T, Park H, Messersmith PB, Park TG. (2008). Bioinspired Surface Immobilization of Hyaluronic Acid on Monodisperse Magnetite Nanocrystals for Targeted Cancer Imaging. Adv Mater Weinheim, 20, 4154–4157.
  • Lees VC, Fan TP, West DC. (1995). Angiogenesis in a delayed revascularization model is accelerated by angiogenic oligosaccharides of hyaluronan. Lab Invest, 73, 259–266.
  • Li SD, Howell SB. (2010). CD44-targeted microparticles for delivery of cisplatin to peritoneal metastases. Mol Pharm, 7, 280–290.
  • Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res, 66, 11238–11246.
  • Luo Y, Prestwich GD. (1999). Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjug Chem, 10, 755–763.
  • Matsumura Y, Hanbury D, Smith J, Tarin D. (1994). Non-invasive detection of malignancy by identification of unusual CD44 gene activity in exfoliated cancer cells. BMJ, 308, 619–624.
  • McKee CM, Penno MB, Cowman M, Burdick MD, Strieter RM, Bao C, Noble PW. (1996). Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J Clin Invest, 98, 2403–2413.
  • Meo CD, Panza L, Capitani D, Mannina L, Banzato A, Rondina M, Renier D, Rosato A, Crescenzi V. (2007). Hyaluronan as carrier of carboranes for tumor targeting in boron neutron capture therapy. Biomacromolecules, 8, 552–559.
  • Miletti-González KE, Chen S, Muthukumaran N, Saglimbeni GN, Wu X, Yang J, Apolito K, Shih WJ, Hait WN, Rodríguez-Rodríguez L. (2005). The CD44 receptor interacts with P-glycoprotein to promote cell migration and invasion in cancer. Cancer Res, 65, 6660–6667.
  • Mohamadzadeh M, DeGrendele H, Arizpe H, Estess P, Siegelman M. (1998). Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA-dependent primary adhesion. J Clin Invest, 101, 97–108.
  • Monz K, Maas-Kück K, Schumacher U, Schulz T, Hallmann R, Schnäker EM, Schneider SW, Prehm P. (2008). Inhibition of hyaluronan export attenuates cell migration and metastasis of human melanoma. J Cell Biochem, 105, 1260–1266.
  • Nair HB, Huffman S, Veerapaneni P, Kirma NB, Binkley P, Perla RP, Evans DB, Tekmal RR. (2011). Hyaluronic acid-bound letrozole nanoparticles restore sensitivity to letrozole-resistant xenograft tumors in mice. J Nanosci Nanotechnol, 11, 3789–3799.
  • Naor D, Sionov RV, Ish-Shalom D. (1997). CD44: structure, function, and association with the malignant process. Adv Cancer Res, 71, 241–319.
  • Park W, Kim KS, Bae BC, Kim YH, Na K. (2010). Cancer cell specific targeting of nanogels from acetylated hyaluronic acid with low molecular weight. Eur J Pharm Sci, 40, 367–375.
  • Peck D, Isacke CM. (1996). CD44 phosphorylation regulates melanoma cell and fibroblast migration on, but not attachment to, a hyaluronan substratum. Curr Biol, 6, 884–890.
  • Peer D, Margalit R. (2004a). Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int J Cancer, 108, 780–789.
  • Peer D, Margalit R. (2004b). Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal Doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia, 6, 343–353.
  • Pessac B, Defendi V. (1972). Cell aggregation: role of acid mucopolysaccharides. Science, 175, 898–900.
  • Qhattal HS, Liu X. (2011). Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes. Mol Pharm, 8, 1233–1246.
  • Raguz S, Tamburo De Bella M, Tripuraneni G, Slade MJ, Higgins CF, Coombes RC, Yagüe E. (2004). Activation of the MDR1 upstream promoter in breast carcinoma as a surrogate for metastatic invasion. Clin Cancer Res, 10, 2776–2783.
  • Ricciardelli C, Russell DL, Ween MP, Mayne K, Suwiwat S, Byers S, Marshall VR, Tilley WD, Horsfall DJ. (2007). Formation of hyaluronan- and versican-rich pericellular matrix by prostate cancer cells promotes cell motility. J Biol Chem, 282, 10814–10825.
  • Saravanakumar G, Choi KY, Yoon HY, Kim K, Park JH, Kwon IC, Park K. (2010). Hydrotropic hyaluronic acid conjugates: Synthesis, characterization, and implications as a carrier of paclitaxel. Int J Pharm, 394, 154–161.
  • Sauter A, Kloft C, Gronau S, Bogeschdorfer F, Erhardt T, Golze W, Schroen C, Staab A, Riechelmann H, Hoermann K. (2007). Pharmacokinetics, immunogenicity and safety of bivatuzumab mertansine, a novel CD44v6-targeting immunoconjugate, in patients with squamous cell carcinoma of the head and neck. Int J Oncol, 30, 927–935.
  • Schoppmann SF, Birner P, Stöckl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D. (2002). Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol, 161, 947–956.
  • Shuster S, Frost GI, Csoka AB, Formby B, Stern R. (2002). Hyaluronidase reduces human breast cancer xenografts in SCID mice. Int J Cancer, 102, 192–197.
  • Shi X, Wang S, Meshinchi S, Van Antwerp ME, Bi X, Lee I, Baker JR Jr. (2007). Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small, 3, 1245–1252.
  • Sironen RK, Tammi M, Tammi R, Auvinen PK, Anttila M, Kosma VM. (2011). Hyaluronan in human malignancies. Exp Cell Res, 317, 383–391.
  • Sneath RJ, Mangham DC. (1998). The normal structure and function of CD44 and its role in neoplasia. MP, Mol Pathol, 51, 191–200.
  • Somasunderam A, Thiviyanathan V, Tanaka T, Li X, Neerathilingam M, Lokesh GL, Mann A, Peng Y, Ferrari M, Klostergaard J, Gorenstein DG. (2010). Combinatorial selection of DNA thioaptamers targeted to the HA binding domain of human CD44. Biochemistry, 49, 9106–9112.
  • Stern R. (2005). Hyaluronan metabolism: a major paradox in cancer biology. Pathol Biol, 53, 372–382.
  • Sugiyama M, Woodman A, Sugino T, Crowley S, Ho K, Smith J, Matsumura Y, Tarin D. (1995). Non-invasive detection of bladder cancer by identification of abnormal CD44 proteins in exfoliated cancer cells in urine. Clin Mol Pathol, 48, M142–M147.
  • Sugiyama Y, Shimada A, Sayo T, Sakai S, Inoue S. (1998). Putative hyaluronan synthase mRNA are expressed in mouse skin and TGF-β upregulates their expression in cultured human skin cells. J Invest Dermatol, 110, 116–121.
  • Tammi R, Rilla K, Pienimaki JP, MacCallum DK, Hogg M, Luukkonen M, Hascall VC, Tammi M. (2001). Hyaluronan enters keratinocytes by a novel endocytic route for catabolism. J Biol Chem, 276, 35111–35122.
  • Tammi RH, Kultti A, Kosma VM, Pirinen R, Auvinen P, Tammi MI. (2008). Hyaluronan in human tumors: pathobiological and prognostic messages from cell-associated and stromal hyaluronan. Semin Cancer Biol, 18, 288–295.
  • Tijink BM, Buter J, de Bree R, Giaccone G, Lang MS, Staab A, Leemans CR, van Dongen GA. (2006). A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res, 12, 6064–6072.
  • Toole BP. (1997). Hyaluronan in morphogenesis. J Intern Med, 242, 35–40.
  • Toyama-Sorimachi N, Miyasaka M. (1994). A novel ligand for CD44 is sulfated proteoglycan. Int Immunol, 6, 655–660.
  • Trochon V, Mabilat C, Bertrand P, Legrand Y, Smadja-Joffe F, Soria C, Delpech B, Lu H. (1996). Evidence of involvement of CD44 in endothelial cell proliferation, migration and angiogenesis in vitro. Int J Cancer, 66, 664–668.
  • Trowbridge IS, Lesley J, Schulte R, Hyman R, Trotter J. (1982). Biochemical characterization and cellular distribution of a polymorphic, murine cell-surface glycoprotein expressed on lymphoid tissues. Immunogenetics, 15, 299–312.
  • Tsatas D, Kanagasundaram V, Kaye A, Novak U. (2002). EGF receptor modifies cellular responses to hyaluronan in glioblastoma cell lines. J Clin Neurosci, 9, 282–288.
  • Udabage L, Brownlee GR, Waltham M, Blick T, Walker EC, Heldin P, Nilsson SK, Thompson EW, Brown TJ. (2005). Antisense-mediated suppression of hyaluronan synthase 2 inhibits the tumorigenesis and progression of breast cancer. Cancer Res, 65, 6139–6150.
  • Underhill C, Dorfman A. (1978). The role of hyaluronic acid in intercellular adhesion of cultured mouse cells. Exp Cell Res, 117, 155–164.
  • Underhill CB, Toole BP. (1981). Receptors for hyaluronate on the surface of parent and virus-transformed cell lines: binding and aggregation studies. Exp Cell Res, 131, 419–423.
  • Underhil C. 1992. Cd44; the hyaluronan receptor. J Cell Sci,103, 293–298.
  • Weber GF, Ashkar S, Cantor H. (1997). Interaction between CD44 and osteopontin as a potential basis for metastasis formation. Proc Assoc Am Physicians, 109, 1–9.
  • West DC, Kumar S. (1989). The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Exp Cell Res, 183, 179–196.
  • Yadav AK, Mishra P, Mishra AK, Mishra P, Jain S, Agrawal GP. (2007). Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin. Nanomedicine, 3, 246–257.
  • Yokoo M, Miyahayashi Y, Naganuma T, Kimura N, Sasada H, Sato E. (2002). Identification of hyaluronic acid-binding proteins and their expressions in porcine cumulus-oocyte complexes during in vitro maturation. Biol Reprod, 67, 1165–1171.
  • Yu Q, Stamenkovic I. (1999). Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev, 13, 35–48.
  • Yu Q, Stamenkovic I. (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev, 14, 163–176.
  • Yu WH, Woessner JF Jr, McNeish JD, Stamenkovic I. (2002). CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev, 16, 307–323.
  • Yun YH, Goetz DJ, Yellen P, Chen W. (2004). Hyaluronan microspheres for sustained gene delivery and site-specific targeting. Biomaterials, 25, 147–157.
  • Zhang LS, Greyner HJ, Mummert ME, Petroll WM. (2009). Development of a hyaluronan bioconjugate for the topical treatment of melanoma. J Dermatol Sci, 55, 56–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.