194
Views
3
CrossRef citations to date
0
Altmetric
Research Article

In vitro and in vivo investigation of low molecular weight heparin–alginate beads for oral administration

, , &
Pages 389-406 | Received 06 Jul 2012, Accepted 28 Dec 2012, Published online: 25 Jan 2013

References

  • Lamprecht A, Ubrich N, Maincent P. Oral low molecular weight heparin delivery by microparticles from complex coacervation. Europ J Pharm Biopharm 2007;67:632–8
  • Rivera TM, Leone-Bay A, Paton DR, et al. Oral delivery of heparin in combination with sodium n-[8-2-hydroxybenzoylamino] caprylate: pharmacological considerations. Pharm Res 1997;14:1830–4
  • Hoffart V, Lamprecht A, Maincent P, et al. Oral bioavailability of low molecular weight heparin using a polymeric delivery system. J Control Rel 2006;113:38–42
  • Bick RL. Proficient and cost effective approaches for the prevention and treatment of venous thrombosis and thromboembolism. Drugs 2000;60:575–95
  • Majerus PW, Broze GJ, Miletich JP, Tollefsen DM. Anticoagulant, thrombolytic and antiplatelet drugs. In: Gilman AG, Rall TW, Nies AS, Taylor P, eds. Goodman and Gilman’s the pharmacological basis of therapeutics. 8th ed. New York: Pergamon Press; 1990:1311–31
  • Verstraete M, Wessler S. Heparins and anticoagulants. In: Fuster V, Verstraete M, eds. Thrombosis in cardiovascular disorders. 9th ed. Philedelphia, PA: WB Saunders Company; 1992:121–40
  • Goth A. Medical pharmacology. 8th ed. St. Louis, MI: The CV Mosby Company, 1976
  • Hirsh J, Anand SS, Halperin JL, Fuster V. Guide to anticoagulant therapy: heparin. A statement for healthcare professionals from the American Heart Association. Circulation 2001;103:2994–3018
  • Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. Recent advances in search of oral heparin therapeutics. Med Chem Rev 2011;32:388–409
  • Pinel CC, Wice SM, Hiebert LM. Orally administered heparins prevent arterial thrombosis in a rat model. Thromb Haemost 2004;91:919–26
  • Mousa SA, Zhang F, Aljada A, et al. Pharmacokinetics and pharmacodynamics of oral heparin solid dosage form in healthy human subjects. J Clin Pharmacol 2007;47:1508–20
  • Ito Y, Kusawake T, Prasad YV, et al. Preparation and evaluation of oral solid heparin using emulsifier and adsorbent for in vitro and in vivo studies. Int J Pharm 2006;317:114–19
  • Motlekar NA, Srivenugopal KS, Wachtel MS, Youan BC. Oral delivery of low-molecular-weight heparin using sodium caprate as absorption enhancer reaches therapeutic levels. J Drug Target 2005;13:573–83
  • Kast CE, Guggi D, Langoth N, Bernkop-Schnürch A. Development and in vivo evaluation of an oral delivery system for low molecular weight heparin based on thiolated polycarbophil. Pharm Res 2003;20:931–6
  • Thanou M, Henderson S, Kydonieus A, Elson C. N-sulfonato-N,O-carboxymethylchitosan: a novel polymeric absorption enhancer for the oral delivery of macromolecules. J Control Rel 2007;117:171–8
  • Hayes PY, Ross BP, Thomas BG, Toth I. Polycationic lipophilic-core dendrons as penetration enhancers for the oral administration of low molecular weight heparin. Bioorg Med Chem 2006;14:143–52
  • Grabovac V, Bernkop-Schnürch A. Improvement of the intestinal membrane permeability of low molecular weight heparin by complexation with stem bromelain. Int J Pharm 2006;326:153–9
  • Lee Y, Nam JH, Shin HC, Byun Y. Conjugation of low-molecular-weight heparin and deoxycholic acid for the development of a new oral anticoagulant agent. Circulation 2001;104:3116–20
  • Lee YK, Kim SK, Lee DY, et al. Efficacy of orally active chemical conjugate of low molecular weight heparin and deoxycholic acid in rats, mice and monkeys. J Control Rel 2006;111:290–8
  • Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. Biomimetic solid lipid nanoparticles for oral bioavailability enhancement of low molecular weight heparin and its lipid conjugates: in vitro and in vivo evaluation. Mol Pharm 2011;8:1314–21
  • Scala-Bertola J, Rabiskova M, Lecompte T, et al. Granules in the improvement of oral heparin bioavailability. Int J Pharm 2009;374:12–16
  • Hoffart V, Ubrich N, Lamprecht A, et al. Microencapsulation of low molecular weight heparin into polymeric particles designed with biodegradable and nonbiodegradable polycationic polymers. Drug Deliv 2003;10:1–7
  • Yıldız A, Okyar A, Baktır G, et al. Nasal administration of heparin-loaded microspheres based on poly(lactic acid). Il Farmaco 2005;60:919–24
  • Javot L, Lecompte T, Rabiskova M, Maincent P. Encapsulation of low molecular weight heparins: influence on the anti-Xa/anti-IIa ratio. J Control Rel 2009;139:8–14
  • Oliveira SSM, Oliveira FS, Gaitani CM, Marchetti JM. Microparticles as a strategy for low-molecular-weight heparin delivery. J Pharm Sci 2011;100:1783–92
  • Hoffart V, Ubrich N, Simonin C, et al. Low molecular weight heparin-loaded polymeric nanoparticles: formulation, characterization, and release characteristics. Drug Dev Ind Pharm 2002;28:1091–9
  • Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. Chitosan nanoconstructs for improved oral delivery of low molecular weight heparin: in vitro and in vivo evaluation. Int J Pharm 2012;17:179–84
  • Chandy T, Rao GH, Wilson RF, Das GS. Delivery of LMW heparin via surface coated chitosan/peg-alginate microspheres prevents thrombosis. Drug Deliv 2002;9:87–96
  • Morishita M, Lowman AM, Takayama K, et al. Elucidation of the mechanism of incorporation of insulin incontrolled release systems based on complexation polymers. J Control Rel 2002;81:25–32
  • Lin YH, Liang HF, Chung CK, et al. Physical crosslinked alginate/N, O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials 2005;26:2105–13
  • Tuğcu-Demiroz F, Acartürk F, Takka S, Konus-Boyunağa O. Evaluation of alginate based mesalazine tablets for intestinal drug delivery. Europ J Pharm Biopharm 2007;67:491–7
  • Gombotz WR, Wee SF. Protein release from alginate matrices. Adv Drug Del Rev 1998;31:267–85
  • Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Develop Ind Pharm 2002;28:621–30
  • Mørch YA, Donati I, Strand BL, Skjak-Braek G. Effect of Ca2+, Ba2+ and Sr2+ on alginate microbeads. Biomacromolecules 2006;7:1471–80
  • Rastogi R, Sultana Y, Aqil M, et al. Alginate microspheres of isoniazid for oral sustained drug delivery. Int J Pharm 2007;334:71–7
  • Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB. Reversed chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase: optimization and physicochemical characterization. Europ J Pharm Biopharm 2007;65:215–32
  • Karewicz A, Zasada K, Szczubiałka K, et al. Smart alginate–hydroxypropylcellulose microbeads for controlled release of heparin. Int J Pharm 2010;385:163–9
  • Acartürk F, Takka S. Calcium alginate microparticles for oral administration: II effect of formulation factors on drug release and drug entrapment efficiency. J Microencap 1999;16:291–301
  • Takka S, Ocak ÖH, Acartürk F. Formulation and investigation of nicardipine HCl-alginate gel beads with factorial design-based studies. Europ J Pharm Sci 1998;6:241–6
  • Smith PK, Mallia AK, Hermanson GT. Colorimetric method for the assay of heparin content in immobilized heparin preparations. Anal Biochem 1980;109:466–73
  • Bourne DWA. Boomer Multiforte Manual Nonlinear, 2006
  • Vasir JK, Tambwekar K, Garg S. Bioadhesive microspheres as a controlled drug delivery systems. Int J Pharm 2003;255:13–32
  • George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan – a review. J Control Rel 2006;114:1–14
  • Takka S, Acarturk F. Calcium alginate microparticles for oral administration: I: effect of sodium alginate type on drug release and drug entrapment efficiency. J Microencap 1999;16:275–90
  • Arıca B, Çalış S, Atilla P, et al. In vitro and in vivo studies of ibuprofen-loaded biodegredable alginate beads. J Microencap 2005;22:153–65
  • Azarnia S, Lee BH, Robert N, Champagne CP. Microencapsulation of a recombinant aminopeptidase (PepN) from Lactobacillus Rhamnosus S93 in chitosan-coated alginate beads. J Microencap 2008;25:46–58
  • Takka S, Acarturk F. Calcium alginate microparticles for oral administration: III. The effect of crosslink agents and various additive polymers on drug release and drug entrapment efficiency. Pharmazie 1999;54:137–9
  • Takka S, Gürel A. Evaluation of chitosan/alginate beads using an experimental design. Formulation and in vitro characterization. AAPS PharmSciTech 2010;11:460–6
  • Kim C, Lee E. The controlled release of blue dextran from alginate beads. Int J Pharm 1992;79:11–19
  • Halder A, Maiti S, Sa B. Entrapment effciency and release characteristics of polyethyleneimine-treated or untreated calcium alginate beads loaded with propanolol-resin complex. Int J Pharm 2005;302:84–94
  • Jiao Y, Ubrich N, Marchand-Arvier M, et al. In Vitro and in vivo evaluation of oral heparin-loaded polymeric nanoparticles in rabbits. Circulation 2002;105:230–5
  • Jiao Y, Ubrich N, Hoffart V, et al. Anticoagulant activity of heparin following oral administration of heparin-loaded microparticles in rabbits. J Pharm Sci 2002;91:760–8
  • Arnold J, Ahsan F, Meezan E, Pillion DJ. Nasal administration of low molecular weight heparin. J Pharm Sci 2002;91:1707–14
  • Yang T, Mustafa F, Bai S, Ahsan F. Pulmonary delivery of low molecular weight heparin. Pharm Res 2004;21:2009–16
  • Spinler SA, Wittkowsky AK, Nutescu EA, Smythe MA. Anticoagulation monitoring part 2: unfractionated heparin and low – molecular – weight heparin. Ann Pharmacother 2005;39:1275–85
  • Ross BP, Toth I. Gastrointestinal absorption of heparin by lipidization or coadministration with penetration enhancers. Curr Drug Del 2005;2:277–87
  • Lanke SS, Gayakwad SG, Strom JG, D'souza MJ. Oral delivery of low molecular weight heparin microspheres prepared using biodegradable polymer matrix system. J Microencapsul 2009;26:493–500
  • Andriuoli G, Caramazza I, Galimberti G, et al. Intraduodenal absorption in the rabbit of a novel heparin salt. Haemost 1992;22:113–16
  • Jandik KA, Kruep D, Cartier M, Linhardt RJ. Accelerated stability studies of heparin. J Pharm Sci 1996;85:45–51
  • Gonze MD, Salartash K, Sternberg C, et al. Orally administered unfractionated heparin with carrier agent is therapeutic for deep venous thrombosis. Circulation 2000;101:2658–61
  • Malkov D, Wang H, Dinh S, Gomez-Orellana I. Pathway of oral absorption of heparin with sodium n-[8-2-hydroxybenzoylamino] caprylate. Pharm Res 2002;19:1180–4
  • Salartash K, Gonze MD, Leona-Bay A, et al. Oral low-molecular weight heparin and delivery agent prevents jugular venous thrombosis in the rat. J Vasc Surg 1999;30:526–32
  • Schmitz T, Litner VM, Bernkop-Schnürch A. Oral heparin delivery: design and in vivo evaluation of a stomach-targeted mucoadhesive delivery system. J Pharm Sci 2005;94:966–73
  • Prasad YVR, Minamimoto T, Yoshikava YM, et al. In situ intestinal absorption studies on low molecular weight heparin in rats using Labrasol as absorption enhancer. Int J Pharm 2004;271:225–32
  • Doutremépuich C, Toulemonde F, Lormeau JC. Oral administration of low molecular weight heparin fraction in rabbits. Semin Thromb Hem 1985;11:323–5
  • Hiebert LM, Ping T, Wice SM. Antithrombotic activity of orally administered low molecular weight heparin (Logiparin) in a rat model. Haemost 2000;30:196–203
  • Hiebert LM, Wice SM, Ping T, et al. Antithrombotic efficacy in a rat model of the low molecular weight heparin, reviparin sodium, administrated by the oral route. Throm Haemost 2001;85:114–18
  • Hiebert LM, Wice SM, Ping T. Tissue distribution of the low molecular weight heparin, tinzaparin, following administration to rats by the oral route. Biomed Pharmacother 2004;58:372–80
  • Thanou M, Nihot MT, Jansen M, et al. Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J Pharm Sci 2001;90:38–46
  • Thanou M, Verhoef JC, Nihot MT, et al. Enhancement of the intestinal absorption of low molecular weight heparin (LMWH) in rats and pigs using Carbopol® 934P. Pharm Res 2001;18:1638–41
  • Winsdor E, Cronheim GE. Gastro-intestinal absorption of heparin and synthetic heparinoids. Nature 1961;190:263–4
  • Lee Y, Kim SH, Byun Y. Orally delivery of new heparin derivates in rats. Pharm Res 2000;17:1259–64
  • Baughman RA, Kapoor SC, Agarwal RK, et al. Oral delivery of anticoagulant doses of heparin a randomized, double blind, controlled study in humans. Circulation 1998;98:1610–15
  • Valle EMM. Cyclodextrins and their uses: a review. Proc Biochem 2004;39:1033–46
  • Irie T, Uekama K. Cyclodextrins in peptide and protein delivery. Adv Drug Del Rev 1999;36:101–23
  • Uekama K, Otagiri M. Cyclodextrins in drug carrier systems. CRC Crit Rev Ther Drug Carr Syst 1987;3:1–40
  • Marttin E, Verhoef JC, Spies F, et al. The effect of methylated β-cyclodextrins on the tight junctions of the rat nasal respiratory epithelium: electron microscopic and confocal laser scanning microscopic visualization studies. J Control Rel 1999;57:205–13
  • Yang T, Hussain A, Paulson J, et al. Cyclodextrins in nasal delivery of low-molecular-weight heparin in vivo and in vitro studies. Pharm Res 2004;21:1127–36
  • Lemoine D, Wauters F, Bouchend’homme S, Préat V. Preparation and characterization of alginate microspheres containing a model antigen. Int J Pharm 1998;176:9–19
  • Kim SK, Lee EH, Vaishali B, et al. Tricaprylin microemulsion for oral delivery of low molecular weight heparin conjugates. J Control Rel 2005;105:32–42
  • Bianchini P, Bergonzini GL, Parma B, Osima B. Relationship between plasma antifactor Xa activity and the antithrombotic activity of heparins of different molecular mass. Haemostasis 1995;25:288–98
  • Kim SK, Vaishali B, Lee E, et al. Oral delivery of chemical conjugates of heparin and deoxycholic acid in aqueous formulation. Thromb Res 2006;117:419–27

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.