326
Views
5
CrossRef citations to date
0
Altmetric
Review Article

CNS drug targeting: have we travelled in right path?

&
Pages 787-800 | Received 07 May 2013, Accepted 04 Jul 2013, Published online: 08 Aug 2013

References

  • World Health Organization (WHO). Neurological disorders: public health challenges. 2006. Available from: http://www.who.int/mental_health/neurology/neurological_disorders_report_web.pdf [last accessed 8 Apr 2013]
  • Pardridge WM. William Pardridge discusses the lack of BBB research. Interviewed by Rebecca N. Lawrence. Drug Discov Today 2002;7:223–6
  • Pardridge WM. Crossing the blood-brain barrier: are we getting it right? Drug Discov Today 2001;6:1–2
  • Ribatti D, Nico B, Crivellato E, Artico M. Development of the blood-brain barrier: a historical point of view. Anat Rec (Part B: New Anat.) 2006;289b:3–8
  • Bradbury MWB. The blood-brain barrier. Exp Physiol 1993;78:453–72
  • Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 1969;40:648–77
  • Reese TS, Karnovsky MJ. Structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 1967;34:207--17
  • Pardridge WM, Oldendorf WH, Cancilla P, Frank HJ. Blood-brain barrier: interface between internal medicine and the brain. Ann Intern Med 1986;105:82–95
  • Pardridge WM. Drug targeting to the brain. Pharm Res 2007;24:1733–44
  • Terasaki T, Hosoya K. The blood-brain barrier efflux transporters as a detoxifying system for the brain. Adv Drug Deliv Rev 1999;36:195–209
  • Levitan H, Ziylan Z, Smith QR, et al. Brain uptake of a food dye, erythrosin B, prevented by plasma protein binding. Brain Res 1984;322:131–4
  • Hirohashi T, Terasaki T, Shigetoshi M, Sugiyama Y. In vivo and in vitro evidence for non-restricted transport of 2′,7′-bis(2-carboxy-ethyl)-5(6)-carboxyfluorescein tetraacetoxymethyl ester at the blood-brain barrier. J Pharmacol Exp Ther 1997;280:813–19
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1997;23:3–25
  • Seelig A, Gottschlich R, Devant RM. A method to determine the ability of drugs to diffuse through the blood-brain barrier. Proc Natl Acad Sci USA 1994;91:68–72
  • Tsuji A, Tamai I. Carrier-mediated or specialized transport of drugs across the blood-brain barrier. Adv Drug Deliv Rev 1999;36:277–90
  • Griffiths NM, Hirst BH, Simmons NC. Active intestinal secretion of the fluoroquinolone antibacterial ciplofloxacin, norfloxacin and pefloxacin, a common secretory pathway? J Pharmacol Exp Ther 1994;269:496–502
  • Polt R, Dhanasekaran M, Keyari CM. Glycosylated neuropeptides: a new vista for neuropsychopharmacology? Med Res Rev 2005;25:557–85
  • Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 2007;24:1745–58
  • Celia C, Cosco D, Paolino D, Fresta M. Nanoparticulate devices for brain drug delivery. Med Res Rev 2010;31:716–56
  • Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008;127:97–109
  • Lewis DFV, Dickins M. Substrate SARs in human P450s. Drug Discov Today 2002;7:918–25
  • Kelder J, Grootenhuis PDJ, Bayada DM, et al. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res 1999;16:1514–19
  • Doran A, Obach RS, Smith BJ, et al. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/B knockout mouse model. Drug Metab Dispos 2005;33:165–74
  • Jeffrey P, Summerfield S. Assessment of the blood-brain barrier in CNS drug discovery. Neurobiol Dis 2010;37:33–7
  • Begley DJ. Understanding and circumventing the blood-brain barrier. Acta Paediatr Suppl 2003;443:83–91
  • Chang G. Multidrug resistance ABC transporters. FEBS Lett 2003;555:102–5
  • Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2003;55:3–29
  • Dean M, Rzhetsky A, Allikmets R. The human ATP binding cassette (ABC) transporter superfamily. Genome Res 2001;11:1156–66
  • Chen YN, Mickley LA, Schwartz AM, et al. Characterization of adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein. J Biol Chem 1990;265:10073–80
  • Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976;455:152–62
  • Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 1989;86:695–8
  • Schinkel AH, Smit JJ, van Tellingen O, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994;77:491–502
  • Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW. The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci USA 1998;95:7024–9
  • Rao VV, Dahlheimer JL, Bardgett ME, et al. Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sci USA 1999;96: 3900–5
  • Sharom FJ. The P-glycoprotein efflux pump: how does it transport drugs? J Membr Biol 1997;160:161–75
  • Garrigues A, Escargueil AE, Orlowski S. The multidrug transporter, P-glycoprotein, actively mediates cholesterol redistribution in the cell membrane. Proc Natl Acad Sci USA 2002;99:10347–52
  • Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 1981;41:1967–72
  • Cole SPC, Bhardway G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992;258:1650–4
  • Reid G, Wielinga P, Zelcer N, et al. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci USA 2003;100:9244–9
  • Kusuhara H, Sugiyama Y. Efflux transport systems for organic anions and cations at the blood-CSF barrier. Adv Drug Deliv Rev 2004;56:1741–63
  • Doan KMM, Humphreys JE, Webster LO, et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther 2002;303:1029–37
  • Boado RJ. RNA interference and nonviral targeted gene therapy of experimental brain cancer. Neuro Rx 2005;2:139–50
  • Coloma MJ, Lee HJ, Kurihara A, et al. Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res 2000;17:266–74
  • Pardridge WM. Drug delivery to the brain. J Cereb Blood Flow Metab 1997;17:713–31
  • Wu D, Pardridge WM. Neuroprotection with noninvasive neurotrophin delivery to the brain. Proc Natl Acad Sci USA 1999;96:254–9
  • Pardridge WM. Drug and gene delivery to the brain: the vascular route. Neuron 2002;36:555–8
  • Beduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials 2007;28:4947–67
  • Xie Y, Ye L, Zhang X, et al. Transport of nerve growth factor encapsulated into liposomes across the blood-brain barrier: in vitro and in vivo studies. J Control Release 2005;105:106–19
  • Shi N, Pardridge WM. Noninvasive gene targeting to the brain. Proc Natl Acad Sci USA 2000;97:7567–72
  • Zhang Y, Thomas TP, Desai A, et al. Targeted dendrimeric anticancer prodrug: a methotrexate-folic acid-poly(amidoamine) conjugate and a novel, rapid, “one pot” synthetic approach. Bioconjug Chem 2010b;21:489–95
  • Majoros IJ, Thomas TP, Mehta CB, Baker Jr JR. Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J Med Chem 2005;48:5892–9
  • Liao GS, Li XB, Zhang CY, et al. Pharmacological actions of nerve growth factor-transferrin conjugate on the central nervous system. J Nat Toxins 2001;10:291–7
  • Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 2002;22:225–50
  • Shin SU, Friden P, Moran M, et al. Transferrin-antibody fusion proteins are effective in brain targeting. Proc Natl Acad Sci USA 1995;92:2820–4
  • Zhang Y, Pardridge WM. Conjugation of brain-derived neurotrophic factor to a blood-brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of neurotrophin. Brain Res 2001;889:49–56
  • Lisziewicz J, Sun D, Metelev V, et al. Long-term treatment of human immunodeficiency virus-infected cells with antisense oligonucleotide phosphorothioates. Proc Natl Acad Sci USA 1993;90:3860–4
  • Pardridge WM, Boado RJ, Kang YS. Vector-mediated delivery of a polyamide (“peptide”) nucleic acid analogue through the blood-brain barrier in vivo. Proc Natl Acad Sci USA 1995;92:5592–6
  • Jain A, Chasoo G, Singh SK, et al. Transferrin-appended PEGylated nanoparticles for temozolomide delivery to brain: in vitro characterisation. J Microencapsul 2011;28:21–8
  • Prabhakar K, Afzal SM, Kumar PU, et al. Brain delivery of transferrin coupled indinavir submicron lipid emulsions-pharmacokinetics and tissue distribution. Colloids Surf B Biointerfaces 2011;86:305–13
  • Weitman SD, Lark RH, Coney LR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992;52:3396–401
  • Jeanneret LJ, Schmitt F. Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the grail. Med Res Rev 2007;27:574–90
  • Saul JM, Annapragada A, Natarajan JV, Bellamkonda RV. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J Control Release 2003;92:49–67
  • Gynther M, Ropponen J, Laine K, et al. Glucose promoiety enables glucose transporter mediated brain uptake of ketoprofen and indomethacin prodrugs in rats. J Med Chem 2009;52:3348–53
  • Bonina F, Puglia C, Rimoli MG, et al. Glycosyl derivatives of dopamine and L-dopa as anti-Parkinson prodrugs: synthesis, pharmacological activity, and in vitro stability studies. J Drug Target 2003;11:25–36
  • Battaglia G, La Russa M, Bruno V, et al. Systemically administered D-glucose conjugates of 7-chlorokynurenic acid are centrally available and exert anticonvulsant activity in rodents. Brain Res 2000;860:149–56
  • Peura L, Malmioja K, Laine K, et al. Large amino acid transporter 1 (LAT1) prodrugs of valproic acid: new prodrug design ideas for central nervous system delivery. Mol Pharmaceutics 2011;8:1857–66
  • Gynther M, Laine K, Ropponen J, et al. Large neutral amino acid transporter enables brain drug delivery via prodrugs. J Med Chem 2008;51:932–6
  • Gonzalez AM, Leadbeater W, Podvin S, et al. Epidermal growth factor targeting of bacteriophage to the choroid plexus for gene delivery to the central nervous system via cerebrospinal fluid. Brain Res 2010;1359:1–13
  • Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, et al. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009;17:564–74
  • Ambruosi A, Khalansky AS, Yamamoto H, et al. Biodistribution of polysorbate 80-coated doxorubicin-loaded [14C]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. J Drug Target 2006;14:97–105
  • Steiniger SC, Kreuter J, Khalansky AS, et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 2004;109:759–67
  • Friese A, Seiller E, Quack G, et al. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm 2000;49:103–9
  • Ding H, Inoue S, Ljubimov AV, et al. Inhibition of brain tumor growth by intravenous poly(β-L-malic acid) nanobioconjugate with pH-dependent drug release. Proc Natl Acad Sci USA 2010;107:18143–8
  • Xiang Y, Liang L, Wang X, et al. Chloride channel-mediated brain glioma targeting of chlorotoxin-modified doxorubicine-loaded liposomes. J Control Release 2011;152:402–10
  • Halmos T, Santarromana M, Antonakis K, Scherman D. Synthesis of glucose-chlorambucil derivatives and their recognition by the human GLUT1 glucose transporter. Eur J Pharmacol 1996;318:477–84
  • Hokari M, Wu HQ, Schwarcz R, Smith QR. Facilitated brain uptake of 4 chlorokynurenine and conversion to 7-chlorokynurenic acid. Neuroreport 1996;20:15–18
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001;47:65–81
  • Michaelis K, Hoffmann MM, Dreis S, et al. Covalent linkage of apolipoprotein E to albumin-nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther 2006;317:1246–53
  • Kreuter J, Hekmatara T, Dreis S, et al. Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J Control Release 2007;118:54–8
  • Spencer BJ, Verma IM. Targeted delivery of proteins across the blood–brain barrier. PNAS 2007;104:7594–9
  • Emerich DF, Dean RL, Marsh J, et al. Intravenous cereport (RMP-7) enhances delivery of hydrophilic chemotherapeutics and increases survival in rats with metastatic tumors in the brain. Pharm Res 2000;17:1212–19
  • Niebergall-Roth E, Singer MV. Central and peripheral neural control of pancreatic exocrine secretion. J Physiol Pharmacol 2001;52:523–8
  • Cuyper MD, Lievens S, Flo G, et al. Receptor-mediated biological responses are prolonged using hydrophobized ligands. Biosens Bioelectron 2004;20:1157–64
  • Kulkarni AA, Weiss AA, Iyer SS. Glycan-based high-affinity ligands fortoxins and pathogen receptors. Med Res Rev 2010;30:327–93
  • Zhang H, Ma Y, Sun XL. Recent developments in carbohydrate-decorated targeted drug/gene delivery. Med Res Rev 2010;30:270–89
  • Katrlik J, Svitel J, Gemeiner P, et al. Glycan and lectin microarrays for glycomics and medicinal applications. Med Res Rev 2010;30:394–418
  • Yan J, Fang H, Wang B. Boronolectins and fluorescent boronolectins: an examination of the detailed chemistry issues important for the design. Med Res Rev 2005;25:490–520
  • Park BS, El-Deeb IM, Yoo KH, et al. Design, synthesis and biological evaluation of new potent and highly selective ROS-tyrosine kinase inhibitor. Bioorg Med Chem Lett 2009;19:4720–3
  • El-Deeb IM, Yoo KH, Lee SH. ROS receptor tyrosine kinase: a new potential target for anticancer drugs. Med Res Rev 2011;31:794–818
  • Chang ZY, Chiang CH, Lu DW, Yeh MK. Erythropoiesis-stimulating protein delivery in providing erythropoiesis and neuroprotection. Expert Opin Drug Deliv 2008;5:1313–21
  • Murua A, Orive G, Hernandez RM, Pedraz JL. Emerging technologies in the delivery of erythropoietin for therapeutics. Med Res Rev 2011;31:284–309
  • Rupprecht R, Rammes G, Eser D, et al. Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. Science 2009;325:490–3
  • Rupprecht R, Papadopoulos V, Rammes G, et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 2010;9:971–88
  • Caccamo A, Maldonado MA, Bokov AF, et al. CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 2010;107:22687–92
  • Muir KW. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol 2006;6:53–60
  • Bunch L, Krogsgaard-Larsen P. Subtype selective kainic acid receptor agonists: discovery and approaches to rational design. Med Res Rev 2009;29:3–28
  • Song S, Liu D, Peng J, et al. Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo. Int J Pharm 2008;363:155–61
  • Holder JR, Haskell-Luevano C. Melanocortin ligands: 30 years of structure activity relationship (SAR) studies. Med Res Rev 2004;24:325–56
  • Sandoval DA, Obici S, Seeley RJ. Targeting the CNS to treat type 2 diabetes. Nat Rev Drug Discov 2009;8:386–98
  • Kramer R, Cohen D. Functional genomics to new drug targets. Nat Rev Drug Discov 2004;3:965–72
  • Bollag G, Hirth P, Tsai J, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 2010;467:596–9
  • Hall J, Dennler P, Haller S, et al. Genomics drugs in clinical trials. Nat Rev Drug Discov 2010;9:988
  • Sugano K, Kansy M, Artursson P, et al. Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov 2010;9:597–614
  • Levental I, Lingwood D, Grzybek M, et al. Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc Natl Acad Sci USA 2010;107:22050–4
  • Bunnage ME. Getting pharmaceutical R&D back on target. Nat Chem Biol 2011;7:335–9
  • Saul JM, Annapragada AV, Bellamkonda RV. A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Control Release 2006;114:277–87

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.