550
Views
71
CrossRef citations to date
0
Altmetric
Review Article

Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting

, &
Pages 584-599 | Received 10 May 2014, Accepted 17 Jun 2014, Published online: 11 Jul 2014

References

  • Kataoka K, Kwon GS, Yokoyama M, et al. Block copolymer micelles as vehicles for drug delivery. J Control Release 1993;24:119–32
  • Putnam D, Kopeček J. Polymer conjugates with anticancer activity. In: Peppas NA, Langer Robert S, eds. Biopolymers II. Berlin, Heidelberg: Springer; 1995:55–123
  • Coukell AJ, Spencer CM. Polyethylene glycol-liposomal doxorubicin. Drugs 1997;53:520–38
  • Ishida O, Maruyama K, Sasaki K, Iwatsuru M. Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharmaceut 1999;190:49–56
  • Kabanov AV, Alakhov VY. Pluronic® block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug 2002;19:1–72
  • Greenwald RB, Choe YH, McGuire J, Conover CD. Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliver Rev 2003;55:217–50
  • Illum L, Davis S, Müller R, et al. The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a blockcopolymer-poloxamine 908. Life Sci 1987;40:367–74
  • Litzinger DC, Buiting AM, van Rooijen N, Huang L. Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochem Biophys 1994;1190:99–107
  • Takakura Y, Hashida M. Macromolecular carrier systems for targeted drug delivery: pharmacokinetic considerations on biodistribution. Pharma Res 1996;13:820–31
  • Yamamoto Y, Nagasaki Y, Kato Y, et al. Long-circulating poly(ethylene glycol)–poly(d,l-lactide) block copolymer micelles with modulated surface charge. J Control Release 2001;77:27–38
  • Graham ML. Pegaspargase: a review of clinical studies. Adv Drug Deliver Rev 2003;55:1293–302
  • Rowinsky EK, Rizzo J, Ochoa L, et al. A phase I and pharmacokinetic study of pegylated camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies. J Clin Oncol 2003;21:148–57
  • Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 2005;10:1451–8
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387–92
  • Maeda H, Seymour LW, Miyamoto Y. Conjugates of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo. Bioconjugate Chem 1992;3:351–62
  • Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 2007;15:457–64
  • Cabral H, Matsumoto Y, Mizuno K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 2011;6:815–23
  • Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006;6:688–701
  • Duncan R. Polymer therapeutics as nanomedicines: new perspectives. Curr Opin Biotechnol 2011;22:492–501
  • Oh KT, Yin H, Lee ES, Bae YH. Polymeric nanovehicles for anticancer drugs with triggering release mechanisms. J Mater Chem 2007;17:3987–4001
  • Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 2012;64:866–84
  • Na K, Seong Lee E, Bae YH. Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH-dependent cell interaction, internalization and cytotoxicity in vitro. J Control Release 2003;87:3–13
  • Nishiyama N, Bae Y, Miyata K, et al. Smart polymeric micelles for gene and drug delivery. Drug Discov Today 2005;2:21–6
  • Oishi M, Hayashi H, Iijima M, Nagasaki Y. Endosomal release and intracellular delivery of anticancer drugs using pH-sensitive PEGylated nanogels. J Mater Chem 2007;17:3720–5
  • Pechar M, Ulbrich K, Šubr V, et al. Poly(ethylene glycol) multiblock copolymer as a carrier of anti-cancer drug doxorubicin. Bioconjugate Chem 2000;11:131–9
  • Veronese FM, Schiavon O, Pasut G, et al. PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Bioconjugate Chem 2005;16:775–84
  • Kang JH, Asai D, Kim JH, et al. Design of polymeric carriers for cancer-specific gene targeting: utilization of abnormal protein kinase Cα activation in cancer cells. J Am Chem Soc 2008;130:14906–7
  • Tang LY, Wang YC, Li Y, et al. Shell-detachable micelles based on disulfide-linked block copolymer as potential carrier for intracellular drug delivery. Bioconjugate Chem 2009;20:1095–9
  • Zhang Q, Ko NR, Oh JK. Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chem Commun 2012;48:7542–52
  • Chilkoti A, Dreher MR, Meyer DE, Raucher D. Targeted drug delivery by thermally responsive polymers. Adv Drug Deliver Rev 2002;54:613–30
  • Neradovic D, Soga O, Van Nostrum C, Hennink W. The effect of the processing and formulation parameters on the size of nanoparticles based on block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) with and without hydrolytically sensitive groups. Biomaterials 2004;25:2409–18
  • Kono K, Ozawa T, Yoshida T, et al. Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy. Biomaterials 2010;31:7096–105
  • Nakayama M, Okano T. Multi-targeting cancer chemotherapy using temperature-responsive drug carrier systems. React Funct Polym 2011;71:235–44
  • Peterson CM, Lu JM, Sun Y, et al. Combination chemotherapy and photodynamic therapy with N-(2-hydroxypropyl)methacrylamide copolymer-bound anticancer drugs inhibit human ovarian carcinoma heterotransplanted in nude mice. Cancer Res 1996;56:3980–5
  • Hirsch LR, Stafford R, Bankson J, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003;100:13549–54
  • Nishiyama N, Nakagishi Y, Morimoto Y, et al. Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine. J Control Release 2009;133:245–51
  • Gao ZG, Fain HD, Rapoport N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J Control Release 2005;102:203–22
  • Zhang H, Xia H, Wang J, Li Y. High intensity focused ultrasound-responsive release behavior of PLA-b-PEG copolymer micelles. J Control Release 2009;139:31–9
  • Tuzar Z, Kratochvil P. Block and graft copolymer micelles in solution. Adv Colloid Interface Sci 1976;6:201–32
  • La SB, Okano T, Kataoka K. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)–poly(β-benzyl l-aspartate) block copolymer micelles. J Pharm Sci 1996;85:85–90
  • Yamamoto Y, Yasugi K, Harada A, et al. Temperature-related change in the properties relevant to drug delivery of poly(ethylene glycol)–poly(d, l-lactide) block copolymer micelles in aqueous milieu. J Control Release 2002;82:359–71
  • Scholz C, Iijima M, Nagasaki Y, Kataoka K. A novel reactive polymeric micelle with aldehyde groups on its surface. Macromolecules 1995;28:7295–7
  • Shiraishi K, Kawano K, Minowa T, et al. Preparation and in vivo imaging of PEG-poly(L-lysine)-based polymeric micelle MRI contrast agents. J Control Release 2009;136:14–20
  • Nasongkla N, Shuai X, Ai H, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem 2004;116:6483–7
  • Bae Y, Jang WD, Nishiyama N, et al. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol BioSyst 2005;1:242–50
  • Oerlemans C, Bult W, Bos M, et al. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharma Res 2010;27:2569–89
  • Yokoyama M, Okano T, Sakurai Y, et al. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res 1991;51:3229–36
  • Jia Z, Wong L, Davis TP, Bulmus V. One-pot conversion of RAFT-generated multifunctional block copolymers of HPMA to doxorubicin conjugated acid-and reductant-sensitive crosslinked micelles. Biomacromolecules 2008;9:3106–13
  • Herth MM, Barz M, Moderegger D, et al. Radioactive labeling of defined HPMA-based polymeric structures using [18F] FETos for in vivo imaging by positron emission tomography. Biomacromolecules 2009;10:1697–703
  • Yusa S, Fukuda K, Yamamoto T, et al. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Biomacromolecules 2005;6:663–70
  • Licciardi M, Craparo EF, Giammona G, et al. In vitro biological evaluation of folate-functionalized block copolymer micelles for selective anti-cancer drug delivery. Macromol Biosci 2008;8:615–26
  • Chung TW, Cho KY, Lee HC, et al. Novel micelle-forming block copolymer composed of poly(ε-caprolactone) and poly(vinyl pyrrolidone). Polymer 2004;45:1591–7
  • Le Garrec D, Gori S, Luo L, et al. Poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J Control Release 2004;99:83–101
  • Li W, Nakayama M, Akimoto J, Okano T. Effect of block compositions of amphiphilic block copolymers on the physicochemical properties of polymeric micelles. Polymer 2011;52:3783–90
  • Wei H, Zhang XZ, Zhou Y, et al. Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials 2006;27:2028–34
  • Yasugi K, Nagasaki Y, Kato M, Kataoka K. Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(d,l-lactide) block copolymers as potential drug carrier. J Control Release 1999;62:89–100
  • Noh T, Kook YH, Park C, et al. Block copolymer micelles conjugated with anti-EGFR antibody for targeted delivery of anticancer drug. J Polym Sci A Polym Chem 2008;46:7321–31
  • Suriano F, Pratt R, Tan JP, et al. Synthesis of a family of amphiphilic glycopolymers via controlled ring-opening polymerization of functionalized cyclic carbonates and their application in drug delivery. Biomaterials 2010;31:2637–45
  • Zhan C, Gu B, Xie C, et al. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J Control Release 2010;143:136–42
  • Chang L, Deng L, Wang W, et al. Poly(ethyleneglycol)-b-poly(ε-caprolactone-co-γ-hydroxyl-ε-caprolactone) bearing pendant hydroxyl groups as nanocarriers for doxorubicin delivery. Biomacromolecules 2012;13:3301–10
  • Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliver Rev 1995;16:295–309
  • Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Therapeut 2006;112:630–48
  • Matsumura Y, Hamaguchi T, Ura T, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 2004;91:1775–81
  • Hamaguchi T, Matsumura Y, Suzuki M, et al. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 2005;92:1240–6
  • Plummer R, Wilson R, Calvert H, et al. A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 2011;104:593–8
  • Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 1989;49:4373–84
  • van Sluis R, Bhujwalla ZM, Raghunand N, et al. In vivo imaging of extracellular pH using 1H MRSI. Magn Reson Med 1999;41:743–50
  • Stubbs M, McSheehy PM, Griffiths JR, Bashford CL. Causes and consequences of tumour acidity and implications for treatment. Mol Med 2000;6:15–19
  • Engin K, Leeper D, Cater J, et al. Extracellular pH distribution in human tumours. Int J Hyperther 1995;11:211–16
  • Ojugo AS, McSheehy PM, McIntyre DJ, et al. Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: a comparison of exogenous 19F and 31P probes. NMR Biomed 1999;12:495–504
  • Manchun S, Dass CR, Sriamornsak P. Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sci 2012;90:381–7
  • Liu Y, Wang W, Yang J, et al. pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. Asian J Pharm Sci 2013;8:159–67
  • Yatvin M, Kreutz W, Horwitz B, Shinitzky M. pH-sensitive liposomes: possible clinical implications. Science 1980;210:1253–5
  • Licciardi M, Giammona G, Du J, et al. New folate-functionalized biocompatible block copolymer micelles as potential anti-cancer drug delivery systems. Polymer 2006;47:2946–55
  • Felber AE, Dufresne MH, Leroux JC. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliver Rev 2012;64:979–92
  • Asayama S, Kawakami H, Nagaoka S. Design of a poly(l-histidine)-carbohydrate conjugate for a new pH-sensitive drug carrier. Polym Advan Technol 2004;15:439–44
  • Yang SR, Lee HJ, Kim JD. Histidine-conjugated poly(amino acid) derivatives for the novel endosomolytic delivery carrier of doxorubicin. J Control Release 2006;114:60–8
  • Lee ES, Shin HJ, Na K, Bae YH. Poly(l-histidine)–PEG block copolymer micelles and pH-induced destabilization. J Control Release 2003;90:363–74
  • Gao Z, Lee D, Kim D, Bae Y. Doxorubicin loaded pH-sensitive micelle targeting acidic extracellular pH of human ovarian A2780 tumor in mice. J Drug Target 2005;13:391–7
  • Kim GM, Bae YH, Jo WH. pH-Induced micelle formation of poly(histidine-co-phenylalanine)-block-poly(ethylene glycol) in aqueous media. Macromol Biosci 2005;5:1118–24
  • Kim D, Lee ES, Oh KT, et al. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small 2008;4:2043–50
  • Taillefer J, Jones MC, Brasseur N, et al. Preparation and characterization of pH-responsive polymeric micelles for the delivery of photosensitizing anticancer drugs. J Pharm Sci 2000;89:52–62
  • Leroux JC, Roux E, Le Garrec D, et al. N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles. J Control Release 2001;72:71–84
  • Akimoto J, Nakayama M, Sakai K, Okano T. Molecular design of outermost surface functionalized thermoresponsive polymeric micelles with biodegradable cores. J Polym Sci A Polym Chem 2008;46:7127–37
  • Heller J, Barr J, Ng SY, et al. Poly(ortho esters): Synthesis, characterization, properties and uses. Adv Drug Deliver Rev 2002;54:1015–39
  • Fife TH, Jao L. Substituent effects in acetal hydrolysis. J Org Chem 1965;30:1492–5
  • Gillies ER, Goodwin AP, Fréchet JM. Acetals as pH-sensitive linkages for drug delivery. Bioconjugate Chem 2004;15:1254–63
  • Greenfield RS, Kaneko T, Daues A, et al. Evaluation in vitro of adriamycin immunoconjugates synthesized using an acid-sensitive hydrazone linker. Cancer Res 1990;50:6600–7
  • Kaneko T, Willner D, Monkovic I, et al. New hydrazone derivatives of adriamycin and their immunoconjugates – a correlation between acid stability and cytotoxicity. Bioconjugate Chem 1991;2:133–41
  • Shen WC, Ryser HJP. cis-Aconityl spacer between daunomycin and macromolecular carriers: a model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate. Biochem Biophys Res Commun 1981;102:1048–54
  • Hudecz F, Ross H, Price MR, Baldwin RW. Immunoconjugate design: a predictive approach for coupling of daunomycin to monoclonal antibodies. Bioconjugate Chem 1990;1:197–204
  • Jin Y, Song L, Su Y, et al. Oxime linkage: a robust tool for the design of pH-sensitive polymeric drug carriers. Biomacromolecules 2011;12:3460–8
  • Yoo HS, Lee EA, Park TG. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Control Release 2002;82:17–27
  • Gillies ER, Fréchet JM. A new approach towards acid sensitive copolymer micelles for drug delivery. Chem Commun 2003;14:1640–1
  • Gillies ER, Jonsson TB, Fréchet JM. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc 2004;126:11936–43
  • Gillies ER, Fréchet JM. pH-Responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate Chem 2005;16:361–8
  • Chen W, Meng F, Li F, et al. pH-Responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: synthesis and triggered drug release. Biomacromolecules 2009;10:1727–35
  • Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed 2003;42:4640–3
  • Bae Y, Nishiyama N, Fukushima S, et al. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem 2005;16:122–30
  • Takahashi A, Yamamoto Y, Yasunaga M, et al. NC-6300, an epirubicin-incorporating micelle, extends the antitumor effect and reduces the cardiotoxicity of epirubicin. Cancer Sci 2013;104:920–5
  • Saltiel J, Sun Y, Durr H, et al. Photochromism, molecules and systems. Amsterdam: Elsevier; 1990
  • Ercole F, Davis TP, Evans RA. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 2010;1:37–54
  • Orihara Y, Matsumura A, Saito Y, et al. Reversible release control of an oily substance using photoresponsive micelles. Langmuir 2001;17:6072–6
  • Lee HI, Pietrasik J, Matyjaszewski K. Phototunable temperature-responsive molecular brushes prepared by ATRP. Macromolecules 2006;39:3914–20
  • Wang G, Tong X, Zhao Y. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 2004;37:8911–17
  • Berkovic G, Krongauz V, Weiss V. Spiropyrans and spirooxazines for memories and switches. Chem Rev 2000;100:1741–54
  • Sanchez C, Lebeau B, Chaput F, Boilot JP. Optical properties of functional hybrid organic–inorganic nanocomposites. Adv Mater 2003;15:1969–94
  • Lee HI, Wu W, Oh JK, et al. Light-induced reversible formation of polymeric micelles. Angew Chem 2007;119:2505–9
  • Zhao Y. Rational design of light-controllable polymer micelles. Chem Rec 2007;7:286–94
  • Yan B, Boyer JC, Branda NR, Zhao Y. Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J Am Chem Soc 2011;133:19714–17
  • Jiang J, Tong X, Zhao Y. A new design for light-breakable polymer micelles. J Am Chem Soc 2005;127:8290–1
  • Jiang J, Tong X, Morris D, Zhao Y. Toward photocontrolled release using light-dissociable block copolymer micelles. Macromolecules 2006;39:4633–40
  • Babin J, Pelletier M, Lepage M, et al. A new two-photon-sensitive block copolymer nanocarrier. Angew Chem Int Ed 2009;48:3329–32
  • Ponce AM, Vuujaskovic Z, Yuan F, et al. Hyperthermia mediated liposomal drug delivery. Int J Hyperthermia 2006;22:205–13
  • Jain RK. Transport of molecules across tumor vasculature. Cancer Metast Rev 1987;6:559–93
  • Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science 1978;202:1290–3
  • Weinstein J, Magin R, Yatvin M, Zaharko D. Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors. Science 1979;204:188–91
  • Katono H, Maruyama A, Sanui K, et al. Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butyl methacrylate) and poly(acrylic acid). J Control Release 1991;16:215–27
  • Shimada N, Ino H, Maie K, et al. Ureido-derivatized polymers based on both poly(allylurea) and poly(l-citrulline) exhibit UCST-type phase transition behavior under physiologically relevant conditions. Biomacromolecules 2011;12:3418–22
  • Fujishige S, Kubota K, Ando I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J Phys Chem 1989;93:3311–13
  • Hoffman AS. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Control Release 1987;6:297–305
  • Kikuchi A, Okano T. Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Prog Polym Sci 2002;27:1165–93
  • Nagase K, Kobayashi J, Okano T. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering. J R Soc Interface 2009;6:S293–309
  • Heskins M, Guillet JE. Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem 1968;2:1441–55
  • Schild HG. Poly(N-isopropylacrylamide): experimental and application. Prog Polym Sci 1992;17:163–249
  • Park JS, Kataoka K. Precise control of lower critical solution temperature of thermosensitive poly(2-isopropyl-2-oxazoline) via gradient copolymerization with 2-ethyl-2-oxazoline as a hydrophilic comonomer. Macromolecules 2006;39:6622–30
  • Lutz JF. Polymerization of oligo(ethylene glycol)(meth) acrylates: toward new generations of smart biocompatible materials. J Polym Sci A Polym Chem 2008;46:3459–70
  • Urry DW. Free energy transduction in polypeptides and proteins based on inverse temperature transitions. Prog Biophys Mol Biol 1992;57:23–57
  • Aoshima S, Oda H, Kobayashi E. Synthesis of thermally-induced phase separating polymer with well-defined polymer structure by living cationic polymerization. I. Synthesis of poly(vinyl ether)s with oxyethylene units in the pendant and its phase separation behavior in aqueous solution. J Polym Sci A Polym Chem 1992;30:2407–13
  • Suwa K, Morishita K, Kishida A, Akashi M. Synthesis and functionalities of poly(N-vinylalkylamide). V. Control of a lower critical solution temperature of poly(N-vinylalkylamide). J Polym Sci A Polym Chem 1997;35:3087–94
  • Feil H, Bae YH, Feijen J, Kim SW. Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 1993;26:2496–500
  • Takei YG, Aoki T, Sanui K, et al. Temperature-responsive bioconjugates. 2. Molecular design for temperature-modulated bioseparations. Bioconjugate Chem 1993;4:341–6
  • Chung JE, Yokoyama M, Yamato M, et al. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J Control Release 1999;62:115–27
  • Chung JE, Yokoyama M, Okano T. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J Control Release 2000;65:93–103
  • Nakayama M, Okano T. Polymer terminal group effects on properties of thermoresponsive polymeric micelles with controlled outer-shell chain lengths. Biomacromolecules 2005;6:2320–7
  • Chung JE, Yokoyama M, Aoyagi T, et al. Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Control Release 1998;53:119–30
  • Duan Q, Miura Y, Narumi A, et al. Synthesis and thermoresponsive property of end-functionalized poly(N-isopropylacrylamide) with pyrenyl group. J Polym Sci A Polym Chem 2006;44:1117–24
  • Nakayama M, Okano T. Unique thermoresponsive polymeric micelle behavior via cooperative polymer corona phase transitions. Macromolecules 2008;41:504–7
  • Nakayama M, Kawahara Y, Akimoto J, et al. pH-Induced phase transition control of thermoresponsive nano-micelles possessing outermost surface sulfonamide moieties. Colloid Surface B Biointerfaces 2012;99:12–19
  • Kohori F, Sakai K, Aoyagi T, et al. Control of adriamycin cytotoxic activity using thermally responsive polymeric micelles composed of poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide). Colloids Surf B Biointerfaces 1999;16:195–205
  • Liu SQ, Tong YW, Yang YY. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide-co-glycolide) with varying compositions. Biomaterials 2005;26:5064–74
  • Nakayama M, Okano T, Miyazaki T, et al. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Controlled Release 2006;115:46–56
  • Yang M, Ding Y, Zhang L, et al. Novel thermosensitive polymeric micelles for docetaxel delivery. J Biomed Mater Res A 2007;81:847–57
  • Wei H, Chen WQ, Chang C, et al. Synthesis of star block, thermosensitive poly(l-lactide)-star block-poly(N-isopropylacrylamide-co-N-hydroxymethylacrylamide) copolymers and their self-assembled micelles for controlled release. J Phys Chem C 2008;112:2888–94
  • Liu SQ, Wiradharma N, Gao SJ, et al. Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs. Biomaterials 2007;28:1423–33
  • Akimoto J, Nakayama M, Sakai K, Okano T. Temperature-induced intracellular uptake of thermoresponsive polymeric micelles. Biomacromolecules 2009;10:1331–6
  • Akimoto J, Nakayama M, Sakai K, Okano T. Thermally controlled intracellular uptake system of polymeric micelles possessing poly(N-isopropylacrylamide)-based outer coronas. Mol Pharmaceut 2010;7:926–35
  • Rejman J, Bragonzi A, Conese M. Role of clathrin-and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther 2005;12:468–74

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.