267
Views
12
CrossRef citations to date
0
Altmetric
Original Article

A novel drug delivery system of gold nanorods with doxorubicin and study of drug release by single molecule spectroscopy

Pages 52-58 | Received 25 Apr 2014, Accepted 29 Jul 2014, Published online: 22 Aug 2014

References

  • Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2009;2:85–175
  • Thrall JH. Nanotechnology and medicine. Radiology 2004;230:315–18
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001;53:283–318
  • Bala I, Hariharan S, Kumar MN. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst 2004;21:387–422
  • Kim CK, Kalluru RR, Singh JP, et al. Gold-nanoparticle-based miniaturized laser-induced fluorescence probe for specific DNA hybridization detection: studies on size-dependent optical properties. Nanotechnology 2006;17:3085–93
  • Hwu JR, Lin YS, Josephrajan T, et al. Targeted Paclitaxel by conjugation to iron oxide and gold nanoparticles. J Am Chem Soc 2009;131:66–8
  • Dhar S, Reddy EM, Shiras A, et al. Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chem Eur J 2008;14:10244–50
  • Gibson JD, Bshnu PK, Eugene RZ. Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 2007;129:11653–61
  • Mirza AZ, Shamshad H. Preparation and characterization of doxorubicin functionalized gold nanoparticles. Eur J Med Chem 2011;46:1857–60
  • Link S, El-Sayed MA, Mohamed MB. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 2005;109:10531–2
  • Mirza AZ, Siddiqui FA. Nanomedicine and drug delivery: a mini review. Int Nano Lett 2014;4:1–7
  • Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 2003;107:668–77
  • Chenxu Y, Leo V, Irudayaraj J. Surface modification of cetyltrimethylammonium bromide-capped gold nanorods to make molecular probes. Langmuir 2007;23:9114–19
  • Yu CX, Irudayaraj J. Multiplex biosensor using gold nanorods. Anal Chem 2007;79:572–89
  • Wang CG, Irudayaraj J. Gold nanorod probes detects multiple pathogens. Small 2008;4:2204–8
  • Love JC, Estroff LA, Kriebel JK, et al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 2005;105:1103–69–89
  • Eliasson C, Lorén A, Murty KVGK, et al. Multivariate evaluation of doxorubicin surface-enhanced Raman spectra. Spectrochimica Acta Part A 2001;57:1907–15–8
  • Aryal S, Grailer JJ, Pilla S, et al. Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J Mater Chem 2009;19:7879–84
  • Giuseppe D, Robert Y, Chris SR, et al. Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem Biol 2007;14:1152–62
  • Asadishad B, Vossoughi M, Alemzadeh I. Folate-receptor-targeted delivery of doxorubicin using polyethylene glycol-functionalized gold nanoparticles. Ind Eng Chem Res 2010;49:1958–63
  • Lu Y, Low PS. Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol Immunother 2002;51:153–62
  • Goren D, Horowitz AT, Tzemach D, et al. Nuclear delivery of doxorubicin via folate targeted liposomes with bypass of multidrug-resistance efflux. Clin Cancer Res 2000;6:1949–57
  • Weitman SD, Weinberg AG, Coney LR, et al. Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res 1992;52:6708–11
  • Rijnboutt S, Jansen G, Posthuma G, et al. Endocytosis of GPI-linked membrane folate receptor-alpha. J Cell Biol 1996;132:35–47
  • Hiromitsu M, Takahiro N, Katsuya S, et al. α-Lipoic acid-induced inhibition of proliferation and met phosphorylation in human non-small cell lung cancer cells. Cancer Lett 2013;335:472–78
  • Shi-Jie Z, Qiu-Fu G, Dian-Wu G, et al. Synthesis and anticancer evaluation of a-lipoic acid derivatives. Bioorg Med Chem Lett 2010;20:3078–83
  • Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nano Today 2007;2:18–29
  • Mirza AZ, Shamshad H. A versatile approach for the functionalization of gold nanorods and nanoparticles. J Nanoparticle Res 2013;15: art. no. 1404, 1–6
  • Newell BB, Wang Y, Irudayaraj J. Multifunctional gold nanorod theragnostics probed by multi-photon imaging. Eur J Med Chem 2012;48:330–7
  • Reddy JA, Allagadda VM, Leamon CP. Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr Pharm Biotechnol 2005;6:131–50
  • Huo SD, Jin SB, Zheng KY, et al. Preparation and characterization of doxorubicin functionalized tiopronin-capped gold nanorods for cancer therapy. Chin Sci Bull 2013;58:4072–6
  • William EG, Omer A, Thorsten F, Marie CD. Syntheses and characterization of lisinopril-coated gold nanoparticles as highly stable targeted ct contrast agents in cardiovascular diseases. Langmuir 2012;28:10398–408
  • Lin SY, Tsai YT, Chen CC, et al. Two-step functionalization of neutral and positively charged thiols onto citrate-stabilized au nanoparticles. J Phys Chem B 2004;108:2134–9
  • Yonezawa T, Yasui K, Kimizuka N. Controlled formation of smaller gold nanoparticles by the use of four-chained disulfide stabilizer. Langmuir 2001;17:271–3
  • Chanda N, Shukla R, Katti KV, Kannan R. Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging. Nano Lett 2009;9:1798–805
  • Letsinger RL, Elghanian R, Viswanadham G, Mirkin CA. Use of a steroid cyclic disulfide anchor in constructing gold nanoparticle’ oligonucleotide conjugates. Bioconjugate Chem 2000;11:289–91
  • Grabarek Z, Gergely J. Zero-length crosslinking procedure with the use of active esters. Anal Biochem 1990;185:131–5
  • Alireza M, Sajjad P, Ali SZ, et al. The effects of folate-conjugated gold nanorods in combination with plasmonic photothermal therapy on mouth epidermal carcinoma cells. Lasers Med Sci 2014;29:939–48

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.