498
Views
31
CrossRef citations to date
0
Altmetric
Review Article

Multifunctional radiolabeled nanoparticles: strategies and novel classification of radiopharmaceuticals for cancer treatment

, , &
Pages 191-201 | Received 29 Aug 2014, Accepted 12 Nov 2014, Published online: 23 Dec 2014

References

  • Grodzinski P, Torchilin V. Cancer nanotechnology. Adv Drug Deliv Rev 2014;66:1
  • Safary J, Zarnegar Z. Advanced drug delivery systems: nanotechnology of health design: a review. J Saudi Chem Soc 2014;18:85–99
  • Calderora-Mora M, Peppas NA. Micro- and nanotechnologies for intelligent and responsive biomaterial-based medical systems. Adv Drug Deliv Rev 2009;61:1391–401
  • Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014;66:2–25
  • Adams FC, Barbante C. Nanoscience, nanotechnology and spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2013;86:3–13
  • ASTM E 2456-06: Standard Terminology related to Nanotechnology. West Conshohocken (PA): ASTM International; 2006. Available from: https://doi.org/http://www.astm.org/Standards/E2456.htm
  • Ferro-Flores G, Ocampo-García BE, Santos-Cuevas CL, et al. Multifunctional radiolabeled nanoparticles for targeted therapy. Curr Med Chem 2014;21:124–38
  • Morales-Avila E, Ferro-Flores G, Ocampo-García BE, et al. Radiolabeled nanoparticles for molecular imaging. Molecular Imaging 2012; Ed. InTech. 15–38. ISBN 978-953-51-0359-2
  • Balis FM. The goal of cancer treatment. Oncologist 1998;3:V
  • Lee DY, Li KC. Molecular theranostics: a primer for the imaging professional. AJR Am J Roentgenol 2011;197:318–24
  • Velikyan I. Molecular imaging and radiotherapy: therabostics for personalized patien management. Theranostics 2012;2:424–6
  • Fasting C, Shalley CA, Weber M, et al. Multyvalency as a chemical organization and action principle. Angew Chem Int Ed 2012;51:10472–98
  • Jennings LE, Long NJ. Two is better than one—probes for dual-modality molecular imaging. Chem Commun (Camb) 2009;24:3511–24
  • Lee S, Chen X. Dual-modalities probes for in vivo molecular imaging. Mol Imaging 2009;8:87–100
  • Luna-Gutiérrez M, Ferro-Flores G, Ocampo-García BE, et al. A therapeutic system of 177Lu-labeled gold nanoparticles-RGD internalized in breast cancer cells. J Mex Chem Soc 2013;57:212–19
  • Vilchis-Juárez A, Ferro-Flores G, Santos-Cuevas C, et al. Molecular targeting radiotherapy with cyclo-RGDFK(C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice. J Biomed Nanotechnol 2014;10:393–404
  • Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release 2014;185:22–36
  • Zhang L, Gu FX, Chan JM, et al. Nanoparticles in medicine: therapeutic application and development. Clin Pharm Ther 2008;83:761–9
  • Pala K, Serwotka A, Jeleń F, et al. Tumor-specific hyperthermia with aptamer-tagged superparamagnetic nanoparticles. Int J Nanomedicine 2014;9:67–76
  • Raoof M, Corr SJ, Zhu C, et al. Gold nanoparticles and radiofrequency in experimental models for hepatocellular carcinoma. Nanomedicine 2014;10:1121–30
  • Sharma HS, Menon PK, Lafuente JV, et al. The role of functionalized magnetic iron oxide nanoparticles in the central nervous system injury and repair: new potentials for neuroprotection with Cerebrolysin therapy. J Nanosci Nanotechnol 2014;14:577–95
  • Babincová M, Kontrisova K, Durdík S, et al. Radiation enhanced efficiency of combined electromagnetic hyperthermia and chemotherapy of lung carcinoma using cisplatin functionalized magnetic nanoparticles. Pharmazie 2014;69:128–31
  • Schmidt H. Nanoparticle by chemical Synthesis, processing to materials and innovative applications. Appl Organomet Chem 2001;15:331–43
  • Guterres SS, Beck RC, Pohlmann AR. Spray-Drying technique to prepare innovative nanoparticles formulations for drug administration: a brief overview. Braz J Phys 2009;39:205–9
  • Price EW, Orving C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev 2014;43:260–90
  • Giblin MF, Veerendra B, Smith CJ. Radiometallation of receptor-specific peptides for diagnosis and treatment of human cancer. In Vivo 2005;19:9–29
  • Kulkarni HR, Baum RP. Patient selection for personalized peptide receptor radionuclide therapy using Ga-68 somatostatin receptor PET/CT. PET Clin 2014;9:83–90
  • Palm S, Enmon RM Jr, Matei C, et al. Pharmacokinetics and Biodistribution of (86)Y-Trastuzumab for (90)Y dosimetry in an ovarian carcinoma model: correlative MicroPET and MRI. J Nucl Med 2003;44:1148–55
  • Anderson CJ, Dehdashti F, Cutler PD, et al. 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med 2001;42:213–21
  • Bailey GA, Price EW, Zeglis BM, et al. H(2)azapa: a versatile acyclic multifunctional chelator for (67)Ga, (64)Cu, (111)In, and (177)Lu. Inorg Chem 2012;51:12575–89
  • Biddlecombe GB, Rogers BE, de Visser M, et al. Molecular imaging of gastrin-releasing peptide receptor-positive tumors in mice using 64Cu- and 86Y-DOTA-(Pro1,Tyr4)-bombesin(1-14). Bioconjugate Chem 2007;18:724–30
  • Boros E, Cawthray JF, Ferreira CL, et al. Evaluation of the H2)dedpa scaffold and its cRGDyK conjugates for labeling with 64Cu. Inorg Chem 2012;51:6279–84
  • Boros E, Ferreira CL, Cawthray JF, et al. Acyclic chelate with ideal properties for (68)Ga PET imaging agent elaboration. J Am Chem Soc 2010;132:15726–33
  • Chong H-S, Milenic DE, Garmestani K, et al. In vitro and in vivo evaluation of novel ligands for radioimmunotherapy. Nucl Med Biol 2006;33:459–67
  • Clarke ET, Martell AE. Stabilities of 1,2-dimethyl-3-hydroxy-4-pyridinone chelates of divalent and trivalent metal ions. Inorg Chim Acta 1992;191:57–63
  • Cooper MS, Ma MT, Sunassee K, et al. Comparison of (64)Cu-complexing bifunctional chelators for radioimmunoconjugation: labeling efficiency, specific activity, and in vitro/in vivo stability. Bioconjugate Chem 2012;23:1029–39
  • Eder M, Krivoshein AV, Backer M, et al. ScVEGF-PEG-HBED-CC and scVEGF-PEG-NOTA conjugates: comparison of easy-to-label recombinant proteins for [68Ga]PET imaging of VEGF receptors in angiogenic vasculature. Nucl Med Biol 2010;37:405–12
  • Eder M, Wängler B, Knackmuss S, et al. Tetrafluorophenolate of HBED-CC: a versatile conjugation agent for 68Ga-labeled small recombinant antibodies. Eur J Nucl Med Mol Imaging 2008;35:1878–86
  • Ferreira CL, Yapp DT, Lamsa E, et al. Evaluation of novel bifunctional chelates for the development of Cu-64-based radiopharmaceuticals. Nucl Med Biol 2008;35:875–82
  • Hausner SH, Kukis DL, Gagnon MKJ, et al. Evaluation of [64Cu]Cu-DOTA and [64Cu]Cu-CB-TE2A chelates for targeted positron emission tomography with an alphavbeta6-specific peptide. Mol Imaging 2009;8:111–21
  • Kang CS, Sun X, Jia F, et al. Synthesis and preclinical evaluation of bifunctional ligands for improved chelation chemistry of 90Y and 177Lu for targeted radioimmunotherapy. Bioconjugate Chem 2012;23:1775–82
  • Koppe MJ, Bleichrodt RP, Soede AC, et al. Biodistribution and therapeutic efficacy of (125/131)I-, (186)Re-, (88/90)Y-, or (177)Lu-labeled monoclonal antibody MN-14 to carcinoembryonic antigen in mice with small peritoneal metastases of colorectal origin. J Nucl Med 2004;45:1224–32
  • Majkowska-Pilip A, Bilewicz A. Macrocyclic complexes of scandium radionuclides as precursors for diagnostic and therapeutic radiopharmaceuticals. J Inorg Biochem 2011;105:313–20
  • Schneider DW, Heitner T, Alicke B, et al. In vivo biodistribution, PET imaging, and tumor accumulation of 86Y- and 111In-antimindin/RG-1, engineered antibody fragments in LNCaP tumor-bearing nude mice. J Nucl Med 2009;50:435–43
  • Ocampo-Garcia BE, Ferro-Flores G, Morales-Avila E. et al. Kit for preparation of multimeric receptor-specific 99mTc radiopharmaceuticals based on gold nanoparticles. Nucl Med Commun 2011;32:1095–104
  • Morales-Avila E, Ferro-Flores G, Ocampo-Garcia BE, et al. Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumour α(v)β(3) expression. Bioconjug Chem 2011;22:913–22
  • Ocampo-Garcia BE, Ramirez F, de M, et al. (2011). 99mTc-labeled gold nanoparticles capped with HYNIC peptide/mannose for sentinel lymph node detection. Nucl Med Biol 2011;38:1–11
  • Kucka J, Hruby M, Konak C, et al. (2006). Astatination of nanoparticles containing silver as possible carriers of 211At. Appl Radiat Isotopes 2006;64:201–6
  • Chanda N, Kan P, Watkinson LD, et al. Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomedicine 2010;6:201–9
  • Shukla R, Chanda N, Zambre A, et al. Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc Natl Acad Sci USA 2012;109:12426–31
  • Cao J, Wang Y, Yu J, et al. Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy. J Magn Magn Mater 2004;277:165–74
  • Liang S, Wang Y, Yu J, Zhang C, et al. Surface modified superparamagnetic iron oxide nanoparticles: as a new carrier for bio-magnetically targeted therapy. J Mater Sci Mater Med 2007;18:2297–302
  • Shultz MD, Wilson JD, Fuller CE, et al. Metallofullerene-based nanoplatform for brain tumor brachytherapy and longitudinal imaging in amurine orthotopic xenograft model. Radiology 2011;261:136–43
  • Li Z, Zhang G, Shen H, et al. Synthesis and cell uptake of a novel dualmodality (188)Re-HGRGD (D) F-CdTe QDs probe. Talanta 2011;85:936–42
  • Luna-Gutiérrez M, Ferro-Flores G, Ocampo-García BE, et al. 177Lu-labeled monomeric, dimeric and multimeric RGD peptides for the therapy of tumors expressing αvβ3 integrins. J Labelled Comp Radiopharm 2012;50:140–8
  • Maggioni D, Arosio P, Orsini F, et al. Superparamagnetic iron oxide nanoparticles stabilized by a poly(amidoamine)-rhenium complex as potential theranostic probe. Dalton Trans 2014;21;43:1172–83
  • Radović M, Calatayud MP, Goya GF, et al. 2014. Preparation and in vivo evaluation of multifunctional 90Y-labeled magnetic nanoparticles designed for cancer therapy. J Biomed Mater Res A. [Epub ahead of print]. doi: 10.1002/jbm.a.35160
  • Helbok A, Rangger C, von Guggenberg E, et al. Targeting properties of peptide-modified radiolabeled liposomal nanoparticles. Nanomedicine 2012;8:112–18
  • Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 2004;56:1273–89
  • Weissig V, Whiteman KR, Torchilin VP. Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm Res 1998;15:1552–6
  • Cho YW, Park SA, Han TH, et al. In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: mechanisms, key factors, and their implications. Biomaterials 2007;28:1236–47
  • Unak G, Ozkaya F, Medine EI, et al. Gold nanoparticle probes: design and in vitro applications in cancer cell culture. Colloids Surf B Biointerfaces 2012;90:217–26
  • Sa LTM, Albernaz MdS, Patricio BFdC, et al. Biodistribution of nanoparticles: initial considerations. J Pharm Biomed Anal 2012;70:602–4
  • Tyler French J, Beth Goins, Marcela Saenz, et al. Interventional therapy of head and neck cancer with lipid nanoparticle-carried rhenium-186 radionuclide. J Vasc Interv Radiol 2010;21:1271–9
  • Chang Y-J, Chang C-H, Chang T-J, et al. Biodistribution, pharmacokinetics and microSPECT/CT imaging of 188Re-bMEDA-liposome in a C26 murine colon carcinoma solid tumor animal model. Anticancer Res 2007;27:2217–25
  • Bao A, Goins B, Klipper R, et al. 186Re-liposome labeling using 186Re-SNS/S complexes: in vitro stability, imaging, and biodistribution in rats. J Nucl Med 2003;44:1992–99
  • Xie H, Goins B, Bao A, et al. Effect of intratumoral administration on biodistribution of 64Cu-labeled nanoshells. Int J Nanomed 2012;7:2227–38
  • Li L, Wartchow CA, Danthi SN, et al. A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Int J Radiat Oncol Biol Phys 2004;58:1215–27
  • Liu S. Radiolabeled cyclic peptides as integrin αvβ3-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjugate Chem 2009;20:2199–213
  • Torchilin VP. Targeted pharmaceutials nanocarriers for cancer therapy and imaging. AAPS J 2007;9:E128–47

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.