304
Views
11
CrossRef citations to date
0
Altmetric
Review Article

Nanocarrier-based interventions for the management of MDR/XDR-TB

, , &
Pages 287-304 | Received 27 Nov 2014, Accepted 14 Jan 2015, Published online: 13 Mar 2015

References

  • WHO, Global Tuberculosis Report 2013: Gains in TB fight are at huge risk. Available from http://www.who.int/mediacentre/news/releases/tuberculosis-report.pdf 2013 (on 29 November 2013)
  • WHO, Multidrug and extensively drug resistant TB (M/XDRTB): global report on surveillance and response. Available from http://www.who.int/tb/publications/global_report/gtbr14_supplement_web.pdf 2014 (on 20 October 2014)
  • WHO. Global tuberculosis control: short update to 2009 report. Geneva, Switzerland: World Health Organization; 2009
  • Grimaldo R, Tupasi E, Rivera B, et al. Increased resistance to ciprofloxacin and ofloxacin in multidrug-resistant Mycobacterium tuberculosis isolates from patients seen at a tertiary hospital in the Philippines. Int J Tuberc Lung Dis 2001;54:6–50
  • WHO Prequalification of Guidance Document Medicines Programme 08 January 2014 Comparators-TB2014- Comparators-TB2014-08January
  • David L. Probability distribution of drug-resistant mutants in unselected populations of Mycobacterium tuberculosis. Appl Microbiol 1970;20:810–14
  • Zhang Y, Heym B, Allen B. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 1992;358:591–3
  • Caminero Luna JA. Guía de la tuberculosis para Médicos Especialistas. Paris: Union Internacional Contra la Tuberculosis Enfermedades Respiratorias; 2003
  • Dalcolmo P, Andrade N, Picon D. Tuberculose multirresistente no Brasil: histórico e medidas de controle. Rev Saude Publica 2007;41:34–42
  • Zhang Y. Genetic basis of isoniazid resistance of Mycobacterium tuberculosis. Res Microbiol 1993;144:143–9
  • Heym B, Alzari M, Honore N. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol 1995;15:235–45
  • Ahmad S, Mokaddas E. Contribution of AGC to ACC and other mutations at codon 315 of the katG gene in isoniazid-resistant Mycobacterium tuberculosis isolates from the Middle East. Int J Antimicrob Agents 2004;23:473–9
  • Ferrazoli L, Palaci M, Telles M. Catalase expression, katG, and MIC of isoniazid for Mycobacterium tuberculosis isolates from Sao Paulo. Brazil J Infect Dis 1995;171:237–40
  • Goto M, Oka S, Tachikawa N. KatG sequence deletion is not the major cause of isoniazid resistance in Japanese and Yemeni Mycobacterium tuberculosis isolates. Mol Cell Probes 1995;9:433–9
  • Silva S, Senna G, Ribeiro O. Mutations in KatG, inhA and ahpC genes of Brazilian isoniazid resistant isolates of Mycobacterium tuberculosis. J Clin Microbiol 2003;41:4471–4
  • Hofling C, Pavan M, Giampaglia M. Prevalence of katG Ser315 Mycobacterium tuberculosis isolates from Brazil. Int J Tuberc Lung Dis 2005;9:87–93
  • Jaber M, Rattan A, Kumar R. Presence of katG gene in resistant Mycobacterium tuberculosis. J Clin Pathol 1996;49:945–7
  • Telenti A. Genetics of drug resistance in tuberculosis. Clin Chest Med 1997;18:55–64
  • Zhang Y, Young D. Molecular genetics of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 1994;34:313–19
  • Bayer R, Dubler N. Nosocomial transmission of multidrug-resistant tuberculosis among HIV-infected persons – Florida and New York, 1988–1991. JAMA 1991;266:1483–5
  • Frieden T, Sterling T, Mendez A. The emergence of drug-resistant tuberculosis in New York City. N Engl J Med 1993;328:521–6
  • Ritacco V, Lonardo M, Reniero A. Nosocomial spread of human immunodeficiency virus-related multidrug-resistant tuberculosis in Buenos Aires. J Infect Dis 1997;176:637–42
  • Rullan J, Herrera D, Cano R. Nosocomial transmission of multidrug-resistant Mycobacterium tuberculosis in Spain. Emerg Infect Dis 1996;2:125–9
  • World Health Organization. Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 global report on surveillance and response. Geneva: World Health Organization; 2010
  • Gandhi R, Moll A, Sturm W. Extensively drug resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Emerg Infect Dis 2006;368:1575–80
  • Ginsburg S, Grosset H, Bishai R. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis 2003;3:432–42
  • Matrat S, Veziris N, Mayer C. Functional analysis of DNA gyrase mutant enzymes carrying mutations at position 88 in the A subunit found in clinical strains of Mycobacterium tuberculosis resistant to fluoroquinolones. Antimicrob Agents Chemother 2006;50:4170–3
  • Ginsburg S, Grosset H, Bishai R. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis 2003;3:432–42
  • Matrat S, Veziris N, Mayer C. Functional analysis of DNA gyrase mutant enzymes carrying mutations at position 88 in the A subunit found in clinical strains of Mycobacterium tuberculosis resistant to fluoroquinolones. Antimicrob Agents Chemother 2006;50:4170–3
  • Pletz W, Deroux A, Roth A, et al. Early bactericidal activity of moxifloxacin in treatment of pulmonary tuberculosis: a prospective, randomized study. Antimicrob Agents Chemother 2004;48:780–2
  • Pasca R, Guglierame P, Aresi F, et al. Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2004;48:3175–8
  • Shi R, Zhang J, Li C, et al. Emergence of ofloxacin resistance in Mycobacterium tuberculosis clinical isolates from China as determined by gyrA mutation analysis using denaturing high-pressure liquid chromatography and DNA sequencing. J Clin Microb 2006;44:4566–8
  • Huang S, Kunin M, Lee J, et al. Trends in fluoroquinolone resistance of Mycobacterium tuberculosis complex in a Taiwanese medical centre: 1995–2003. J Antimicrob Chemother 2005;56:1058–62
  • Grimaldo R, Tupasi E, Rivera B. Increased resistance to ciprofloxacin and ofloxacin in multidrug-resistant Mycobacterium tuberculosis isolates from patients seen at a tertiary hospital in the Philippines. Int J Tuberc Lung Dis 2001;5:546–50
  • Uhia I, Galan B, Medrano F, Garcia J. Characterization of the KstR-dependent promoter of the gene for the first step of the cholesterol degradative pathway. Microbiology 2011;157:2670–80
  • Zaunbrecher A, Sikes D, Metchock B, et al. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci 2009;106:20004–9
  • Magnet S, Blanchard S. Molecular insights into aminoglycoside action and resistance. Chem Rev 2005;105:477–98
  • Alangaden J, Kreiswirth N, Aouad A, et al. Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 1998;42:1295–7
  • Maus E, Plikaytis B, Shinnick M. Molecular analysis of crossresistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob. Agents Chemother 2005;49:3192–7
  • Suzuki Y, Katsukawa C, Tamaru A, et al. Detection of kanamycin-resistant Mycobacterium tuberculosis by identifying mutations in the 16S rRNA gene. J Clin Microbiol 2009;36:1220–5
  • Taniguchi H, Chang B, Abe C, et al. Molecular analysis of kanamycin and viomycin resistance in Mycobacterium smegmatis by use of the conjugation system. J Bacteriol 1997;179:4795–801
  • Louw E, Warren M, Pittius C, et al. A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob Agents Chemother 2009;53:3181–9
  • Maus CE, Plikaytis BB, Shinnick TM. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2005;49:3192–7
  • Maus E, Plikaytis B, Shinnick M. Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2005;49:571–7
  • Algeorge G, Petre A. Some experimental aspects of cross-resistance between capreomycin and viomycin. Antibiot Chemother 1970;160:32–5
  • World Health Organization. Guidelines for the programmatic management of drug-resistant tuberculosis – emergency update. Geneva: World Health Organization, Stop TB Department; 2008
  • Pottathil S, Anroop N, Varsha S. Evaluation of rapid techniques for the detection of mycobacteria in sputum with scanty bacilli or clinically evident, smear negative cases of pulmonary and extra-pulmonary tuberculosis. Mem Inst Oswaldo Cruz 2011;106:620–4
  • WHO. Tuberculosis diagnostics automated DNA test. WHO endorsement and recommendations. Geneva, Switzerland: World Health Organization; 2010
  • Skenders K, Holtz H, Riekstina V. Implementation of the INNO-LiPA Rif.TB® line-probe assay in rapid detection of multidrug-resistant tuberculosis in Latvia. Int J Tuberc Lung Dis 2012;15:1546–52
  • World Health Organization. Pathways to better diagnostics for tuberculosis. By the New Diagnostics Working Group of the Stop TB Partnership. Geneva: World Health Organization; 2009
  • World Health Organization. Rapid implementation of the Xpert MTB/RIF diagnostic test. Technical and operational ‘How-to’. Practical considerations. Geneva: World Health Organization; 2011
  • Nathanson E, Gupta R, Huamani P. Adverse events in the treatment of multidrug-resistant tuberculosis: results from the DOTS-Plus initiative. Int J Tuberc Lung Dis 2004;8:1382–4
  • Yee D, Valiquette C, Pelletier M, et al. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am J Respir Crit Care Med 2003;167:1472–7
  • Munsiff S, Ahuja D, Li J. Public-private collaboration for multidrug-resistant tuberculosis control in New York City. Int J Tuberc Lung Dis 2006;10:639–48
  • Shin SS, Pasechnikov D, Gelmanova Y. Adverse reactions among patients being treated for MDR-TB in Tomsk. Russia Int J Tuberc Lung Dis 2007;11:1314–20
  • Resch C, Salomon A, Murray M, Weinstein MC. Cost-effectiveness of treating multidrug-resistant tuberculosis. PLoS Med 2006;3:e241
  • Orenstein W, Basu S, Shah S. Treatment outcomes among patients with multidrug-resistant tuberculosis: systematic review and meta-analysis. Lancet Infect Dis 2009;9:153–61
  • Carlos A, Lemos M, Matos E. Multidrug-resistant tuberculosis. Braz J Infet Dis 2013;17:239–46
  • Conde B, Melo F, Marques C. Diretrizes para Tuberculose da Sociedade Brasileira de Pneumologia e Tisiologia. J Bras Pneumol 2009;35:1018–48
  • Conde B, Efron A, Loredo C. Moxifloxacin versus ethambutol in the initial treatment of tuberculosis: a double-blind, randomised, controlled phase II trial. Lancet 2009;373:1183–9
  • Migliori B, Besozzi G, Girardi E. Clinical and operational value of the extensively drug-resistant tuberculosis definition. Eur Respir J 2007;30:623–6
  • Sotgiu G, Ferrara G, Matteelli A. Epidemiology and clinical management of XDR-TB: a systematic review by TBNET. Eur Respir J 2009;33:871–81
  • Leite P, Costa L, Andrade N, Galvão T. Tratamento cirúrgico adjuvante de tuberculose pulmonary multirresistente. J Pneumol 1997;23:11–14
  • Dewan R, Pratap H. Surgical interventions in multidrug-resistant tuberculosis: retrospective analysis of 74 patients treated at a tertiary level care center. Ind J Thorac Cardiovasc Surg 2006; 22:15–28
  • Somocurcio G, Sotomayor A, Shin S. Surgery for patients with drug-resistant tuberculosis: report of 121 cases receiving community-based treatment in Lima. Peru Thorax 2007;62:416–21
  • Wang H, Lin H, Jiang G. Pulmonary resection in the treatment of multidrug-resistant tuberculosis: a retrospective study of 56 cases. Ann Thorac Surg 2008;86:1640–5
  • Mitnick D, Shin S, Seung K. Comprehensive treatment of extensively drug-resistant tuberculosis. N Engl J Med 2008;359:563–74
  • Gegia M, Kalandadze I, Kempker R. Adjunctive surgery improves treatment outcomes among patients with multidrug-resistant and extensively drug-resistant tuberculosis. Int J Infect Dis 2012;16:391–6
  • Shiraishi Y, Katsuragi N, Kita H. Aggressive surgical treatment of multidrug-resistant tuberculosis. J Thorac Cardiovasc Surg 2009;138:1180–4
  • Dravniece G, Cain P, Holtz H. Adjunctive resectional lung surgery for extensively drug-resistant tuberculosis. Eur Respir J 2009;34:180–3
  • Walker R, Duggin G. Drug nephrotoxicity. Annu Rev Pharmacol Toxicol 1988;28:331–45
  • Hutchin T, Cortopassi G. Proposed molecular and cellular mechanism for aminoglycoside ototoxicity. Antimicrob Agents Chemother 1994;38:2517–20
  • Ali Z, Goetz M. BA meta-analysis of the relative efficacy and toxicity of single daily dosing versus multiple daily dosing of aminoglycosides. Clin Infect Dis 1997;24:796–809
  • Maller R, Isaksson B, Nilsson L, Soren L. A study of amikacin given once versus twice daily in serious infections. J Antimicrob Chemother 1988;22:75–9
  • Hatala R, Dinh T, Cook J. Single daily dosing of aminoglycosides in immunocompromised adults: a systematic review. Clin Infect Dis 1997;245:810–15
  • Meyer D. Risk factors and comparisons of clinical nephrotoxicity of aminoglycosides. Am J Med 1986;80:119–25
  • Munckhof J, Grayson L, Turnidge D. A meta-analysis of studies on the safety and efficacy of aminoglycosides given either once daily or as divided doses. J Antimicrob Chemother 1996;37:645–63
  • Alemquer D. Studies on the treatment of pulmonary tuberculosis with cycloserine: toxic effects. J Med Oporto. 1960;42:509–12
  • Walt M, Lancaster J, Odendaal R, et al. Serious treatment related adverse drug reactions amongst anti-retroviral naïve MDR-TB patients. PLoS One 2013;8:58817–26
  • Baghaei P, Tabarsi P, Dorriz D, Marjani M. Adverse effects of multidrug resistant tuberculosis treatment with a standardized regimen: a report from Iran. Am J Ther 2011;18:29–34
  • Rose PC, Hallbauer M, Seddon A, et al. Linezolid-containing regimens for the treatment of drug-resistant tuberculosis in South African children. Int J Tuberc Lung Dis 2012;16:1588–93
  • Hwang J, Wares F, Jafarov A, et al. Safety of cycloserine and terizidone for the treatment of drug-resistant tuberculosis: a meta-analysis. Int J Tuberc Lung Dis 2013;17:1257–66
  • Groves J. Pharmaceutical characterization of Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine used for the treatment of superficial bladder cancer. J Pharm Sci 1993;82:555–62
  • Toit L, Pillay B, Danckwerts M. Tuberculosis chemotherapy: current drug delivery approaches. Respir Res 2006;7:118
  • Beloqui A, Solinıs A, Gascon R, et al. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal 957 barrier. J Control Release 2013;166:115–23
  • Clemens D, Lee L, Xue M, Thomas C. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother 2012;56:2535–45
  • Langer R. Drug delivery and targeting. Nature Suppl 1998;392:5–10
  • Singh G, Pai RS. Recent advances of resveratrol in nanostructured based delivery systems and in the management of HIV/AIDS. J Control Release 2014;124:178–88
  • Rieux A, Fievez V, Garinot M, et al. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 2006;116:1–27
  • Bhandari R, Kaur I. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm 2013;441:202–12
  • Singh R, Lillard J. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009;86:215–23
  • Olivier R, Inventor. Liposomes containing multiple branch peptide 1151 constructions for use against human immunodeficiency virus. World patent WO 1999034777 A1. 1999 Jul 15
  • Wichert VB, Gonzalez-Rothi JR, Straub EL, et al. Amikacin liposomes: characterization, aerosolization, and in vitro activity against Mycobacterium aviurn-intracellulare in alveolar macrophages. Int J Pharm 1992;78:227–35
  • Scheuch G, Kohlhaeufl MJ, Brand P, Siekmeier R. Clinical perspectives on pulmonary systemic and macromolecular delivery. Adv Drug Deliv Rev 2006;56:996–1008
  • Ahmad Z, Pandey R, Sharma S, Khuller G. Novel chemotherapy for tuberculosis: chemotherapeutic potential of econazole and moxifloxacin-loaded PLG nanoparticles. Int J Antimicrob Agents 2008;31:142–6
  • Schinazi R, Brettreich M, Hirsch A, inventor. Water-soluble dendrimeric fullerene as anti-1154 HIV therapeutic. United States patent US 20030036562 A1. 2003 Feb 20
  • Matthews R, Holan G, inventor. Antiviral dendrimers. Canada patent CA 2192446 C. 2004 Aug 31
  • Klemens S, Cynamon M, Swenson C, Ginsberg R. Liposome-encapsulated gentamicin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother 1990;34:967–70
  • Duzgunes N, Flasher D, Reddy M, et al. Treatment of intracellular Mycobacterium avium complex infection by free and liposome encapsulated sparfloxacin. Antimicrob Agents Chemother 1996;40:2618–21
  • Leitzke S, Bucke W, Borner K, et al. Rationale for and efficacy of prolonged-interval treatment using liposome-encapsulated amikacin in experimental Mycobacterium avium infection. Antimicrob Agents Chemother 1998;42:459–61
  • Sosnik A, Carcaboso A, Glisoni R, et al. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv Drug Deliv 2010;62:547–59
  • Deol P, Khuller G. Lung specific liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice. Biochem Biophys Acta 1997;1334:161–72
  • Bucke W, Leitzke S, Diederichs E. Surface-modified amikacin-liposomes: organ distribution and interaction with plasma proteins. J Drug Target 1998;5:99–108
  • El-Ridy MS, Mostafa DM, Shehab A, et al. Biological evaluation of pyrazinamide liposomes for treatment of Mycobacterium tuberculosis. Int J Pharm 2007;330:82–8
  • Smola M, Vandamme T, Sokolowski A. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int J Nanomedicine 2008;3:1–9
  • Mitchison DA, Fourie PB. The near future: improving the activity of rifamycins and pyrazinamide. Tuberculosis 2010;90:177–81
  • El-Ridy MS, Yehia SA, Kassem M, et al. Niosomal encapsulation of ethambutol hydrochloride for increasing its efficacy and safety. Drug Deliv 2015;22:21–36
  • El-Ridy MS, Abdelbary A, Nasr EA, et al. Niosomal encapsulation of the antitubercular drug, pyrazinamide. Drug Dev Ind Pharm 2011;37:1110–18
  • Plapied L, Duhem N, Des Rieux A, Preat V. Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci 2011;16:228–37
  • Vyas T, Shah L, Amiji M. Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin Drug Deliv 2006;3:613–28
  • Reis C, Neufeld R, Ribeiro A, Veiga F. Nanoencapsulation biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine 2006;2:53–65
  • Neves A, Luucio M, Martins S, et al. Novel resveratrol nano delivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomedicine 2013;8:177–87
  • Kim S, Dong Y, Das S, Tan R. Preparation and physicochemical characterization of trans-resveratrol nanoparticles by temperature-controlled antisolvent precipitation. J Food Eng 2012;108:37–42
  • Jong D, Borm P. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 2008;3:133–49
  • Lienhardt C, Raviglione M, Spigelman M, et al. New drugs for the treatment of tuberculosis: needs, challenges, promise, and prospects for the future. J Infect Dis 2012;205:241–9
  • Kisich O, Gelperina S, Higgins M, et al. Encapsulation of moxifloxacin within poly (butylcyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int J Pharm 2007;345:154–62
  • Muller R, Shegokar R, Keck M. 20 years of lipid nanoparticles (SLN and NLC): present 1018 state of development and industrial applications. Curr Drug Discov Technol 2011;8:1019–27
  • Muller R, Keck C. Challenges and solutions for the delivery of biotech drugs a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 2004;113:151–70
  • Bummer P. Physical chemical considerations of lipid-based oral drug delivery solid lipid nanoparticles. Crit Rev Ther Drug Carrier Syst 2004;21:1–20
  • Kaur I, Bhandari R. Solid lipid nanoparticles entrapping hydrophilic/amphiphilic drug and a process for preparing the same. PCT/IN2012/000154. Dated 5/03/2012
  • Kaur I, Singh H. Preparation of solid lipid nanoparticles of rifampicin to improve bioavailability and limiting drug interaction with isoniazid, India Patent, 17/01/2013, 2013
  • Singh H, Bhandari R, Kaur I. Encapsulation of rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with isoniazid. Int J Pharm 2013;446:106–11
  • Kaur I, Verma M. Oral nanocolloidal aqueous dispersion (NCD) of streptomycin sulfate, India Patent, 3/10/2012
  • Varshosaz J, Ghaffari S, Mirshojaei S. Biodistribution of amikacin solid lipid nanoparticles after pulmonary delivery. BioMed Res Int 2013;8:13–24
  • Nuermberger E, Spigelman M, Yew Y. Current development and future prospects in chemotherapy of tuberculosis. Respirology 2010;15:764–78
  • Barry C, Duncan K. Tuberculosis-strategies towards anti-infectives for a chronic disease. Drug Discov Today 2004;13:491–6
  • Ginsburg A, Grosset J, Bishai W. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis 2003;3:432–42
  • Lalloo U, Ambaram A. New antituberculous drugs in development. Curr HIV/AIDS Rep 2010;7:143–51
  • Lopes E, Pohlman A, Bassani V, Guterres S. Polymeric colloidal systems containing ethionamide: preparation and physicochemical characterization. Pharmazie 2000;55:527–30
  • Kumar G, Sharma S, Shafiq N, Pandhi P. Pharmacokinetics and tissue distribution studies of orally administered nanoparticles encapsulated ethionamide used as potential drug delivery system in management of multi-drug resistant tuberculosis. Drug Deliv 2011;18:65–73
  • Ahmad Z, Sharma S, Khuller G. Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosis. Nanomedicine 2007;3:239–43
  • Ahmad Z, Sharma S, Khuller GK. In vitro and ex vivo antimycobacterial potential of azole drugs against M. tuberculosis H37Rv. FEMS Microbiol Lett 2005;251:19–22
  • Ahmad Z, Sharma S, Khuller G. The potential of azole antifungals against latent/persistent tuberculosis. FEMS Microbiol Lett 2006;258:200–3
  • Zignol M, van Gemert W, Falzon D. Surveillance of antituberculosis drug resistance in the world: an updated analysis. Bull World Health Organ 2012;90:111–19
  • Wang C, Hickey A. Isoxyl aerosols for tuberculosis treatment: preparation and characterization of particles. AAPS Pharm Sci Tech 2010;11:538–49
  • Kumar A, Patel G, Menon S. Fullerene isoniazid conjugate – a tuberculostat with increased lipophilicity: synthesis and evaluation of antimycobacterial activity. Chem Biol Drug Des 2009;73:553–7
  • Kaur I, Verma M. A process for preparing solid lipid sustained release nanoparticles for delivery of vitamins. PCT/IB2013/050169 dated 9/1/2013
  • Pandey R, Khuller G. Nanoparticle-based oral drug delivery system for an injectable antibiotic-streptomycin. Evaluation in a murine tuberculosis model. Chemotherapy 2007;53:437–41
  • Toit L, Pillay V, Choonara Y, Iyuke S. Formulation and evaluation of a salted-out isoniazid-loaded nanosystem. AAPS Pharm Sci Tech 2008;9:174–81
  • Conde MB, de Melo FAF, Marques AMC. III Diretrizes para Tuberculose da Sociedade Brasileira de Pneumologiae Tisiologia. J Bras Pneumol 2009;35:1018–48
  • World Health Organization (WHO). MDR/XDR-TB, surveillance and response supplement. Global tuberculosis report 2014
  • Jiang W, Kim B, Rutka J, Chan W. Advances and challenges of nanotechnology-based drug delivery systems. Expert Opin Drug Deliv 2007;4:621–33
  • Khuller G, Nath V, inventor. Oral drug delivery system for azole, moxifloxacin and rifampicin US 20100310662 A1. 2010 Dec 9
  • Alfred D, Walter I, Wyn H, inventor. Particulate composition: summary. US 07018657. 2006 Mar 28
  • Krishan G, Rajesh P, Sadhna S, Nath V, inventor. A process for the preparation of poly dl-lactide-co-glycolide nanoparticles having antitubercular drugs encapsulated therein WO 2006109317 A8. 2007 Jan 25
  • Schwarz J, Weisspapir M, inventor. Colloidal solid lipid vehicle for pharmaceutical use US 20060222716 A1 2006 Oct 5
  • Becker R, Kruss B, Peters K, inventor. Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and rate of solution. US 5858410 A 1999 Jan 12
  • Chandavarkar N, Jindal C, Malayandi R, inventor. Nanodispersion of poorly water soluble drug(s). WO 2013098841 A1 2013 Jul 4
  • Onyuksel H, Popescu C, inventor. Biodegradable nanoparticles comprising an aminoglycoside and a polymer like a polysaccharide WO 2004098564 A2.2004 Nov 18
  • Kaur I, Bhandari R, inventor. Solid lipid nanoparticles entrapping hydrophilic/amphiphilic drug and a process for preparing the same WO 105101 A1. 2013 Jul 18
  • Devarajan P, Jindal A, Kapse S. inventor. Pharmaceutical compositions for colloidal drug delivery WO 2012059936 A1. 2012 May 10
  • Onyuksel H, inventor. Nanoparticules biodegradables integrant des medicaments hautement hydrophiles et positivement charges CA 2524368 A1. 2004 Nov 18
  • Khuller G, inventor. Drug delivery system for econazole, moxifloxacin, and rifampicin WO 2010044089 A1. 2010 Apr 22
  • Gupta R, inventor. Methods of treating pulmonary disorders with liposomal amikacin formulations EP 2349282 A2. 2011 Aug 3
  • Weers J, inventor. Lipid-based compositions of antiinfectives for treating pulmonary infections and methods of use thereof US 8226975 B2. 2012 Jul 24
  • Yuesheng T, Na S, JiaHui L, et al, inventor. One kind of levofloxacin hydrochloride liposome complexes and preparation method. CN 103585318 A. 2014 Feb 19
  • Jonathan PW, Edward GS, Les P, inventor. Nagata, use of liposome encapsulated ciprofloxacin as an immunotherapeutic drug CA2174803 C.2000 Jul 11
  • Wong J, Edward G, Saravolac L, Nagata P, inventor. Use of liposome encapsulated ciprofloxacin as an immunotherapeutic drug CN/2008/101401790 A 2000 Jul 11
  • Jay M, John R, inventor. Microemulsions as precursors to solid nanoparticles WO 2002076441 A1. 2002 Oct 3
  • Popescu P, Onyuksel H, inventor. Aminoglycosides, such as streptomycin; oral dosage form; tuberculosis. US 20040247683 A1. 2004 Dec 9
  • Lemos A, Matos E. Multidrug-resistant tuberculosis. Braz J Infect Dis 2013;17:239–46

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.