726
Views
29
CrossRef citations to date
0
Altmetric
Review Article

Adenosine-associated delivery systems

, , , , &
Pages 580-596 | Received 17 Feb 2015, Accepted 02 Jun 2015, Published online: 09 Oct 2015

References

  • Hasko G, Cronstein BN. Adenosine: an endogenous regulator of innate immunity. Trends Immunol 2004;25:33–9
  • Sawynok J, Liu XJ. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 2003;69:313–40
  • Agteresch HJ, Dagnelie PC, van den Berg JWO, Wilson JHP. Adenosine triphosphate – established and potential clinical applications. Drugs 1999;58:211–32
  • Faulds D, Chrisp P, Buckley MMT. Adenosine. An evaluation of its use in cardiac diagnostic procedures, and in the treatment of paroxysmal supraventricular tachycardia. Drugs 1991;41:596–624
  • Mendonça Ad, Sebastião AM, Ribeiro JA. Adenosine: does it have a neuroprotective role after all? Brain Res Rev 2000;33:258–74
  • Wojcik WJ, Neff NH. Adenosine measurement by a rapid HPLC-fluorometric method: induced changes of adenosine content in regions of rat brain. J Neurochem 1982;39:280–2
  • Bjorklund A. Cell replacement strategies for neurodegenerative disorders. Novartis Found Symp 2000;231:7–15
  • Burnstock G, Knight GE. Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 2004;240:31–304
  • Hoebertz A, Arnett TR, Burnstock G. Regulation of bone resorption and formation by purines and pyrimidines. Trends Pharmacol Sci 2003;24:290–7
  • Paidas CN, Dudgeon DL, Haller JA, Clemens MG. Adenosine triphosphate (ATP) treatment of hypoxic pulmonary hypertension (HPH): comparison of dose dependence in pulmonary and renal circulations. J Surg Res 1989;46:374–9
  • Wang ZQ, Haydon PG, Yeung ES. Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Analyt Chem 2000;72:2001–7
  • Fredholm BB, IJzerman AP, Jacobson KA, et al. Nomenclature and classification of adenosine receptors – an update. Pharmacol Rev 2011;63:1–34
  • Fredholm BB. Adenosine – a physiological or pathophysiological agent? J Mol Med 2014;92:201–6
  • Ecke D, Fischer B, Reiser G. Diastereoselectivity of the P2Y11 nucleotide receptor: mutational analysis. Br J Pharmacol 2008;155:1250–5
  • Guo D, von Kügelgen I, Moro S, et al. Evidence for the recognition of non-nucleotide antagonists within the transmembrane domains of the human P2Y1 receptor. Drug Dev Res 2012;57:173–81
  • Tosh DK, Phan K, Deflorian F, et al. Truncated (N)-methanocarba nucleosides as A1 adenosine receptor agonists and partial agonists: overcoming lack of a recognition element. ACS Med Chem Lett 2011;2:626–31
  • Wang Z, Do CW, Avila MY, et al. Nucleoside-derived antagonists to A3 adenosine receptors lower mouse intraocular pressure and act across species. Exp Eye Res 2010;90:146–54
  • Ballesteros JA, Weinstein H. Integrated methods for the construction of three dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 1995;25:366–428
  • Mao Y, Zhang L, Jin J, et al. Mutational analysis of residues important for ligand interaction with the human P2Y12 receptor. Eur J Pharmacol 2010;644:10–16
  • Jacobson KA, Balasubramanian R, Deflorian F, Gao ZG. G protein-coupled adenosine (P1) and P2Y receptors: ligand design and receptor interactions. Purinergic Signal 2012;8:419–36
  • Dawson RMC. Data for biochemical research. 3rd ed. Oxford: Oxford University Press; 1986
  • Gabrielian AG. Solubility of adenosine in concentrated salt solutions. Biofizika 1977;22:789–93
  • Drury AN, Szent-Györgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 1929;68:213–37
  • Berne RM. The role of adenosine in the regulation of coronary blood flow. Circ Res 1980;47:807–13
  • Pak K, Zsuga J, Kepes Z, et al The effect of adenosine deaminase inhibition on the A1 adenosinergic and M 2 muscarinergic control of contractility in eu- and hyperthyroid guinea pig atria. Naunyn – Schmiedeberg's Arch Pharmacol 2015. [Epub ahead of print]. doi: 10.1007/s00210-015-1121-6
  • U.S. Food and Drug Administration. FDA warns of rare but serious risk of heart attack and death with cardiac nuclear stress test drugs Lexiscan (regadenoson) and Adenoscan (adenosine). Silver Spring (MD): US FDA; 2013
  • Dunwiddie TV. Adenosine and suppression of seizures. Adv Neurol 1999;79:1001–10
  • Takahama H, Minamino T, Asanuma H, et al. Prolonged targeting of ischemic/reperfused myocardium by liposomal adenosine augments cardioprotection in rats. J Am Coll Cardiol 2009;53:709–17
  • U.S. Food and Drug Administration/Center for Drug Evaluation and Research. Adenosine. Silver Spring (MD): US FDA; 2015
  • U.S. Food and Drug Administration. Adenocard IV (adenosine injection) for rapid bolus intravenous use. Silver Spring, MD: US FDA; 2005
  • U.S. Food and Drug Administration. Adenoscan® (adenosine injection) for intravenous infusion only. Silver Spring, MD: US FDA; 2009
  • Adenosine-FDA prescribing information. Available from: http://www.drugs.com/pro/adenosine.html [last accessed June 2015]
  • Melemedjian OK, Asiedu MN, Tillu DV, et al. Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain. Mol Pain 2011;7:70
  • Tsutsui S, Schnermann J, Noorbakhsh F, et al. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 2004;24:1521–9
  • Pelner L, Waldman S. The use of adenosine-5-monophosphate in the treatment of acute subdeltoid bursitis. N Y State J Med 1952;52:1774–6
  • Rottino A. Adenosine-5-monophosphate in the treatment of tendinitis. J Lancet 1951;71:237–8
  • Zylka MJ. Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol Med 2011;17:188–96
  • Raffetto JD, Yu P, Reslan OM, et al. Endothelium-dependent nitric oxide and hyperpolarization-mediated venous relaxation pathways in rat inferior vena cava. J Vasc Surg 2012;55:1716–25
  • Schmidt C, Gavoille R, Perez P, Schmitt J. Double-blind plethysmographic study of venous effects of heptaminol adenosine phosphate in patients with primary varicose veins. Eur J Clin Pharmacol 1989;37:37–40
  • Lynch ME, Clark AJ, Sawynok J. Intravenous adenosine alleviates neuropathic pain: a double blind placebo controlled crossover trial using an enriched enrolment design. Pain 2003;103:111–17
  • Sklar SH, Buimoviciklein E. Adenosine in the treatment of recurrent herpes labialis. Oral Surg Oral Med Oral Pathol Oral Radiol Endodont 1979;48:416–17
  • Ma Y, He B. Recognition of herpes simplex viruses: toll-like receptors and beyond. J Mol Biol 2014;426:1133–47
  • Sklar SH, Blue WT, Alexander EJ, Bodian CA. Herpes zoster. The treatment and prevention of neuralgia with adenosine monophosphate. JAMA 1985;253:1427–30
  • Handler CE, Fray R, Perkin GD, Woinarski J. Radiculomyelopathy associated with herpes simplex genitalis treated with adenosine arabinoside. Postgrad Med J 1983;59:388–9
  • Hofmann F, Beavo JA, Bechtel PJ, Krebs EG. Comparison of adenosine 3':5'-monophosphate-dependent protein kinases from rabbit skeletal and bovine heart muscle. J Biol Chem 1975;250:7795–801
  • Gajdos A. Letter: A.M.P. in porphyria cutanea tarda. Lancet 1974;1:163
  • Ghofrani HA, Wiedemann R, Rose F, et al. Combination therapy with oral sildenafil and inhaled iloprost for severe pulmonary hypertension. Ann Intern Med 2002;136:515–22
  • Sollevi A, Lagerkranser M, Irestedt L, et al. Controlled hypotension with adenosine in cerebral aneurysm surgery. Anesthesiology 1984;61:400–5
  • Agteresch HJ, Dagnelie PC, van der Gaast A, et al. Randomized clinical trial of adenosine 5′-triphosphate in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 2000;92:321–8
  • Arthur E. Baue EF, Donald E. Fry. Multiple organ failure: pathophysiology, prevention, and therapy. New York: Springer;2000;88:712
  • Khal J, Hine AV, Fearon KCH, et al. Increased expression of proteasome subunits in skeletal muscle of cancer patients with weight loss. Int J Biochem Cell Biol 2005;37:2196–206
  • Bonventre JV, Zuk A. Ischemic acute renal failure: an inflammatory disease? Kidney Int 2004;66:480–5
  • Hyde SC, Emsley P, Hartshorn MJ, et al. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 1990;346:362–5
  • Feigl EO. Berne's adenosine hypothesis of coronary blood flow control. Am J Physiol Heart Circ Physiol 2004;287:1891–4
  • Padykula HA, Herman E. The specificity of the histochemical method for adenosine triphosphatase. J Histochem Cytochem 1955;3:170–95
  • Wang J, Zhang Q, Wan R, et al. Intracellular adenosine triphosphate delivery enhanced skin wound healing in rabbits. Ann Plast Surg 2009;62:180–6
  • Lehr C-M, Bouwstra JA, Schacht EH, Junginger HE. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm 1992;78:43–8
  • Belardinelli L. Adenosine system in the heart. Drug Dev Res 2004;28:263–7
  • Boison D. Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci 2006;27:652–8
  • Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 2007;14:1315–23
  • Boison D. Cell and gene therapies for refractory epilepsy. Curr Neuropharmacol 2007;5:115–25
  • Boison D, Stewart KA. Therapeutic epilepsy research: from pharmacological rationale to focal adenosine augmentation. Biochem Pharmacol 2009;78:1428–37
  • McNamara JO. Emerging insights into the genesis of epilepsy. Nature 1999;399:A15–22
  • Vajda FJE. Pharmacotherapy of epilepsy: new armamentarium, new issues. J Clin Neurosci 2007;14:813–23
  • Boison D, Huber A, Padrun V, et al. Seizure suppression by adenosine-releasing cells is independent of seizure frequency. Epilepsia 2002;43:788–96
  • Fredholm BB, Chen JF, Cunha RA, et al. Adenosine and brain function. Int Rev Neurobiol 2005;63:191–270
  • Olsson RA, Pearson JD. Cardiovascular purinoceptors. Physiol Rev 1990;70:761–845
  • Johnston-Cox HA, Ravid K. Adenosine and blood platelets. Purinergic Signal 2011;7:357–65
  • Forman MB, Stone GW, Jackson EK. Role of adenosine as adjunctive therapy in acute myocardial infarction. Cardiovasc Drug Rev 2006;24:116–47
  • Pagonopoulou O, Efthimiadou A, Asimakopoulos B, Nikolettos NK. Modulatory role of adenosine and its receptors in epilepsy: possible therapeutic approaches. Neurosci Res 2006;56:14–20
  • Cieslak M, Komoszyński M, Wojtczak A. Adenosine A2A receptors in Parkinson’s disease treatment. Purinergic Signal 2008;4:305–12
  • Hasko G, Linden J, Cronstein B, Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 2008;7:759–70
  • Sachdeva S, Gupta M. Adenosine and its receptors as therapeutic targets: an overview. Saudi Pharm J 2013;21:245–53
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004;303:1818–22
  • Dash AK, Cudworth GC. Therapeutic applications of implantable drug delivery systems. J Pharmacol Toxicol Methods 1998;40:1–12
  • Langer R. Drug delivery and targeting. Nature 1998;392:5–10
  • Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 2006;18:1345–60
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5:161–71
  • Naahidi S, Jafari M, Edalat F, et al. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 2013;166:182–94
  • Strebhardt K, Ullrich A. Paul Ehrlich's magic bullet concept: 100 years of progress. Nat Rev Cancer 2008;8:473–80
  • Kazemzadeh-Narbat M, Kindrachuk J, Duan K, et al. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 2010;31:9519–26
  • Kazemzadeh-Narbat M, Noordin S, Masri BA, et al. Drug release and bone growth studies of antimicrobial peptide – loaded calcium phosphate coating on titanium. J Biomed Mater Res B Appl Biomater 2012;100:1344–52
  • Kazemzadeh-Narbat M, Lai BFL, Ding C, et al. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 2013;34:5969–77
  • Kazemzadeh-Narbat M, Wang Q, Duan K, et al. Antimicrobial peptide delivery from trabecular bone grafts. J Biomater Tissue Eng 2014;4:967–72
  • Kazemzadeh-Narbat M, Annabi N, Khademhosseini A. Surgical sealants and high strength adhesives. Mater Today 2015;18:176–7
  • Ma M, Kazemzadeh-Narbat M, Hui Y, et al. Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri – implant infections. J Biomed Mater Res A 2012;100:278–85
  • Lian T, Ho RJY. Trends and developments in liposome drug delivery systems. J Pharm Sci 2001;90:667–80
  • Xu GX, Xie XH, Liu FY, et al. Adenosine triphosphate liposomes: encapsulation and distribution studies. Pharm Res 1990;7:553–7
  • Gomes I, Sharma SK. Uptake of liposomally entrapped adenosine-3′-5′-cyclic monophosphate in mouse brain. Neurochem Res 2004;29:441–6
  • Chiang B, Essick E, Ehringer W, et al. Enhancing skin wound healing by direct delivery of intracellular adenosine triphosphate. Am J Surg 2007;193:213–18
  • Chien S. Intracellular ATP delivery using highly fusogenic liposomes. Methods Mol Biol 2010;605:377–91
  • Ware JA, Smith M, Salzman EW. Synergism of platelet-aggregating agents. Role of elevation of cytoplasmic calcium. J Clin Invest 1987;80:267–71
  • Okamura Y, Katsuno S, Suzuki H, et al. Release abilities of adenosine diphosphate from phospholipid vesicles with different membrane properties and their hemostatic effects as a platelet substitute. J Control Release 2010;148:373–9
  • Orive G, Anitua E, Pedraz JL, Emerich DF. Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 2009;10:682–92
  • Lainka E, Hershfield MS, Santisteban I, et al. Polyethylene glycol-conjugated adenosine deaminase (ADA) therapy provides temporary immune reconstitution to a child with delayed-onset ADA deficiency. Clin Diagn Lab Immunol 2005;12:861–6
  • Hooftman G, Herman S, Schacht E. Poly(ethylene glycol)s with reactive endgroups. 2. Practical consideration for the preparation of protein-PEG conjugates. J Bioact Compat Polym 1996;11:135–59
  • Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew ChemInt Ed 2010;49:6288–308
  • Davis S, Abuchowski A, Park YK, Davis FF. Alteration of the circulating life and antigenic properties of bovine adenosine deaminase in mice by attachment of polyethylene glycol. Clin Exp Immunol 1981;46:649–52
  • Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 2005;10:1451–8
  • Hershfield MS, Mitchell BS. Immunodeficiency diseases caused by adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency. In: Sriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic and molecular bases of inherited disease. 7th ed. New York (NY): McGraw-Hill; 1995
  • Booth C, Gaspar HB. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID). Biologics 2009;3:349–58
  • Hershfield MS. Adenosine deaminase deficiency: clinical expression, molecular basis, and therapy. Sem Hematol 1998;35:291–8
  • Levy Y, Hershfield MS, Fernandezmejia C, et al. Adenosine deaminase deficiency with late onset of recurrent infections: response to treatment with polyethylene glycol-modified adenosine deaminase. J Pediatr 1988;113:312–17
  • U.S. Food and Drug Adminstration. ADAGEN® (pegademase bovine) Injection. Silver Spring, MD: US FDA; 1990
  • Hershfield MS, Buckley RH, Buckley RH, et al. Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase. N Engl J Med 1987;316:589–96
  • Bory C, Boulieu R, Souillet G, Hershfield MS. Polyethylene glycol adenosine deaminase a new adenosine deaminase deficiency therapy interest of deoxy ATP determination for therapeutic monitoring. Therapie 1991;46:323–6
  • Bax BE, Bain Md Fau, Fairbanks LD, et al. In vitro and in vivo studies with human carrier erythrocytes loaded with polyethylene glycol-conjugated and native adenosine deaminase. Br J Haematol 2000;109:549–54
  • Zoghbi WA, Cheirif J, Kleiman NS, et al. Diagnosis of ischemic heart disease with adenosine echocardiography. J Am Coll Cardiol 1991;18:1271–9
  • Horwitz LD, Kaufman D, Keller MW, Kong YO. Time course of coronary endothelial healing after injury due to ischemia and reperfusion. Circulation 1994;90:2439–47
  • Papahadjopoulos D, Allen TM, Gabizon A, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 1991;88:11460–4
  • Tissier R, Cohen MV, Downey JM. Protecting the acutely ischemic myocardium beyond reperfusion therapies: are we any closer to realizing the dream of infarct size elimination? Arch Mal Coeur Vaiss 2007;100:794–802
  • Lee KY, Ha WS, Park WH. Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials 1995;16:1211–16
  • Nishimura K, Ishihara C, Ukei S, et al. Stimulation of cytokine production in mice using deacetylated chitin. Vaccine 1986;4:151–6
  • Xiu Liang Z, Yong Zhong D, Ri Sheng Y, et al. Galactosylated chitosan oligosaccharide nanoparticles for hepatocellular carcinoma cell-targeted delivery of adenosine triphosphate. Int J Mol Sci 2013;14:15755–66
  • Chung TW, Yang J, Akaike T, et al. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials 2002;23:2827–34
  • Kang Y, Wang C, Liu K, et al. Enzyme-responsive polymeric supra-amphiphiles formed by the complexation of chitosan and ATP. Langmuir 2012;28:14562–6
  • Kazemzadeh-Narbat M, Reid M, Brooks MS, Ghanem A. Chitosan nanoparticles as adenosine carriers. J Microencapsul 2015. [Epub ahead of print]. doi: 10.3109/02652048.2015.1046517
  • Bala I, Hariharan S, Kumar M. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst 2004;21:387–422
  • Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems – a review. Int J Pharm 2011;415:34–52
  • Muller CE. Adenosine receptor ligands-recent developments part I. Agonists. Curr Med Chem 2000;7:1269–88
  • Simpson RE, O'Regan Mh, Perkins LM, Phillis JW. Excitatory transmitter amino acid release from the ischemic rat cerebral cortex: effects of adenosine receptor agonists and antagonists. J Neurochem 1992;58:1683–90
  • Dalpiaz A, Scatturin A, Pavan B, et al. Poly(lactic acid) microspheres for the sustained release of a selective A1 receptor agonist. J Control Release 2001;73:303–13
  • Dalpiaz A, Leo E, Vitali F, et al. Development and characterization of biodegradable nanospheres as delivery systems of anti-ischemic adenosine derivatives. Biomaterials 2005;26:1299–306
  • Maquet V, Martin D, Scholtes F, et al. Poly(d,l-lactide) foams modified by poly(ethylene oxide)–block–poly(d,l-lactide) copolymers and a-FGF: in vitro and in vivo evaluation for spinal cord regeneration. Biomaterials 2001;22:1137–46
  • Rooney GE, Knight Am, Madigan NN, et al. Sustained delivery of dibutyryl cyclic adenosine monophosphate to the transected spinal cord via oligo [(polyethylene glycol) fumarate] hydrogels. Tissue Eng Part A 2011;17:1287–302
  • De Boer R, Knight AM, Spinner RJ, et al. In vitro and in vivo release of nerve growth factor from biodegradable poly-lactic-co-glycolic-acid microspheres. J Biomed Mater Res A 2010;95:1067–73
  • Boison D, Scheurer L, Tseng JL, et al. Seizure suppression in kindled rats by intraventricular grafting of an adenosine releasing synthetic polymer. Exp Neurol 1999;160:164–74
  • McNamara JO, Bonhaus DW, Shin C, et al. The kindling model of epilepsy: a critical review. CRC Crit Rev Clin Neurobiol 1985;1:341–91
  • Horan RL, Antle K, Collette AL, et al. In vitro degradation of silk fibroin. Biomaterials 2005;26:3385–93
  • Wenk E, Merkle HP, Meinel L. Silk fibroin as a vehicle for drug delivery applications. J Control Release 2011;150:128–41
  • Szybala C, Pritchard EM, Lusardi TA, et al. Antiepileptic effects of silk-polymer based adenosine release in kindled rats. Exp Neurol 2009;219:126–35
  • Wilz A, Pritchard EM, Li T, et al. Silk polymer-based adenosine release: therapeutic potential for epilepsy. Biomaterials 2008;29:3609–16
  • Wang X, Wenk E, Hu X, et al. Silk coatings on PLGA and alginate microspheres for protein delivery. Biomaterials 2007;28:4161–9
  • Kim UJ, Park J, Kim HJ, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 2005;26:2775–85
  • Hofmann S, Foo C, Rossetti F, et al. Silk fibroin as an organic polymer for controlled drug delivery. J Control Release 2006;111:219–27
  • Wang XQ, Wenk E, Matsumoto A, et al. Silk microspheres for encapsulation and controlled release. J Control Release 2007;117:360–70
  • Ren G, Li T, Lan JQ, et al. Lentiviral RNAi-induced downregulation of adenosine kinase in human mesenchymal stem cell grafts: a novel perspective for seizure control. Exp Neurol 2007;208:26–37
  • Pritchard EM, Kaplan DL. Silk fibroin biomaterials for controlled release drug delivery. Expert Opin Drug Deliv 2011;8:797–811
  • Pritchard EM, Szybala C, Boison D, Kaplan DL. Silk fibroin encapsulated powder reservoirs for sustained release of adenosine. J Control Release 2010;144:159–67
  • Masino S, Boison D. Adenosine, a key link between metabolism and brain activity. Berlin: Springer; 2013
  • Wang Y, Rudym DD, Walsh A, et al. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 2008;29:3415–28
  • Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 1997;277:1232–7
  • Riva ER, Desii A, Sartini S, et al. PMMA/polysaccharides nanofilm loaded with adenosine deaminase inhibitor for targeted anti-inflammatory drug delivery. Langmuir 2013;29:13190–7
  • Ye JH, Rajendran VM. Adenosine: an immune modulator of inflammatory bowel diseases. World J Gastroenterol 2009;15:4491–8
  • Sayari A, Hamoudi S. Periodic mesoporous silica-based organic – inorganic nanocomposite materials. Chem Mater 2001;13:3151–68
  • Stein A, Melde BJ, Schroden RC. Hybrid inorganic-organic mesoporous silicates – nanoscopic reactors coming of age. Adv Mater 2000;12:1403–19
  • Gruenhagen JA, Lai CY, Radu DR, et al. Real-time imaging of tunable adenosine 5-triphosphate release from an MCM-41-type mesoporous silica nanosphere-based delivery system. Appl Spectrosc 2005;59:424–31
  • Lai CY, Trewyn BG, Jeftinija DM, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 2003;125:4451–9
  • Chan WCW, Nie SM. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998;281:2016–18
  • Dorey E. Cell based delivery. Nat Biotechnol 2001;19:BE11
  • Boison D. Adenosine-based cell therapy approaches for pharmacoresistant epilepsies. Neurodegen Dis 2007;4:28–33
  • Loscher W, Gernert M, Heinemann U. Cell and gene therapies in epilepsy – promising avenues or blind alleys? Trends Neurosci 2008;31:62–73
  • Raedt R, Van Dycke A, Vonck K, Boon P. Cell therapy in models for temporal lobe epilepsy. Seizure 2007;16:565–78
  • Shetty AK, Hattiangady B. Concise review: prospects of stem cell therapy for temporal lobe epilepsy. Stem Cells 2007;25:2396–407
  • Vezzani A. The promise of gene therapy for the treatment of epilepsy. Expert Rev Neurother 2007;7:1685–92
  • Huber A, Padrun V, Deglon N, et al. Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Natl Acad Sci USA 2001;98:7611–16
  • Li T, Steinbeck JA, Lusardi T, et al. Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain 2007;130:1276–88
  • Li T, Ren G, Lusardi T, et al. Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. JClin Invest 2008;118:571–82
  • Boison D, Scheurer L, Zumsteg V, et al. Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc Natl Acad Sci USA 2002;99:6985–90
  • Guttinger M, Fedele D, Koch P, et al. Suppression of kindled seizures by paracrine adenosine release from stem cell-derived brain implants. Epilepsia 2005;46:1162–9
  • Guttinger M, Padrun V, Pralong WF, Boison D. Seizure suppression and lack of adenosine A(1) receptor desensitization after focal long-term delivery of adenosine by encapsulated myoblasts. Exp Neurol 2005;193:53–64
  • Hughes M, Vassilakos A, Andrews DW, et al. Delivery of a secretable adenosine deaminase through microcapsules – a novel approach to somatic gene therapy. Hum Gene Ther 1994;5:1445–55
  • Fedele DE, Koch P, Scheurer L, et al. Engineering embryonic stem cell derived glia for adenosine delivery. Neurosci Lett 2004;370:160–5
  • Wu C, Chang A, Smith MC, et al. Beta 4 tubulin identifies a primitive cell source for oligodendrocytes in the mammalian brain. J Neurosci 2009;29:7649–57
  • Boison D. Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies. Epilepsy Res 2009;85:131–41
  • Ruschenschmidt T, Koch PG, Brustle O, Beck H. Functional properties of ES cell-derived neurons engrafted into the hippocampus of adult normal and chronically epileptic rats. Epilepsia 2005;46:174–83
  • Studer FE, Fedele De, Marowsky A, et al. Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 2006;142:125–37
  • Van Dycke A, Verstraete A, Pil K, et al. Quantitative analysis of adenosine using liquid chromatography/atmospheric pressure chemical ionization-tandem mass spectrometry (LC/APCI-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci 2010;878:1493–8
  • Rebola N, Coelho JE, Costenla AR, et al. Decrease of adenosine A(1) receptor density and of adenosine neuromodulation in the hippocampus of kindled rats. Eur J Neurosci 2003;18:820–8
  • Van Dycke A, Raedt R, Dauwe I, et al. Continuous local intrahippocampal delivery of adenosine reduces seizure frequency in rats with spontaneous seizures. Epilepsia 2010;51:1721–8
  • Uebersax L, Fedele DE, Schumacher C, et al. The support of adenosine release from adenosine kinase deficient ES cells by silk substrates. Biomaterials 2006;27:4599–607
  • Boison D. Engineered adenosine-releasing cells for epilepsy therapy: human mesenchymal stem cells and human embryonic stem cells. Neurotherapeutics 2009;6:278–83
  • Li T, Ren G, Kaplan DL, Boison D. Human mesenchymal stem cell grafts engineered to release adenosine reduce chronic seizures in a mouse model of CA3-selective epileptogenesis. Epilepsy Res 2009;84:238–41
  • LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol 2003;21:1184–91
  • Van Dycke A, Raedt R, Verstraete A, et al. Astrocytes derived from fetal neural progenitor cells as a novel source for therapeutic adenosine delivery. Seizure 2010;19:390–6
  • Lexmond AJ, Hagedoorn P, van der Wiel E, et al. Adenosine dry powder inhalation for bronchial challenge testing, part 1: inhaler and formulation development and in vitro performance testing. Eur J Pharm Biopharm 2014;86:105–14
  • Gutman RL, Peacock G, Lu DR. Targeted drug delivery for brain cancer treatment. J Control Release 2000;65:31–41
  • Maysinger D, Morinville A. Drug delivery to the nervous system. Trends Biotechnol 1997;15:410–18
  • Menei P, Daniel V, Monteromenei C, et al. Biodegradation and brain tissue reaction to poly(d,l-lactide-co-glycolide) microspheres. Biomaterials 1993;14:470–8
  • Lothman EW, Williamson JM. Closely spaced recurrent hippocampal seizures elicit two types of heightened epileptogenesis: a rapidly developing, transient kindling and a slowly developing, enduring kindling. Brain Res 1994;649:71–84
  • Raedt R, Van Dycke A, Waeytens A, et al. Unconditioned adult-derived neurosphere cells mainly differentiate towards astrocytes upon transplantation in sclerotic rat hippocampus. Epilepsy Res 2009;87:148–59
  • Turner DA, Shetty AK. Clinical prospects for neural grafting therapy for hippocampal lesions and epilepsy. Neurosurgery 2003;52:632–41
  • Zaman V, Turner DA, Shetty AK. Prolonged postlesion transplantation delay adversely influences survival of both homotopic and heterotopic fetal hippocampal cell grafts in kainate-lesioned CA3 region of adult hippocampus. Cell Transpl 2001;10:41–52
  • Galiano RD, Michaels J, Dobryansky M, et al. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen 2004;12:485–92
  • Barcia JA, Gallego JM. Intraventricular and intracerebral delivery of anti-epileptic drugs in the kindling model. Neurotherapeutics 2009;6:337–43
  • Wang PP, Frazier J, Brem H. Local drug delivery to the brain. Adv Drug Deliv Rev 2002;54:987–1013
  • Elger CE, Lehnertz K. Seizure prediction by non-linear time series analysis of brain electrical activity. Eur J Neurosci 1998;10:786–9
  • Ghaemmaghami AM, Hancock MJ, Harrington H, et al. Biomimetic tissues on a chip for drug discovery. Drug Discov Today 2012;17:173–81
  • Kang L, Chung BG, Langer R, Khademhosseini A. Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov Today 2008;13:1–13
  • Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 2006;103:2480–7
  • Khademhosseini A, Langer R. Drug delivery and tissue engineering. Chem Eng Prog 2006;102:38–42
  • Ling Y, Rubin J, Deng Y, et al. A cell-laden microfluidic hydrogel. Lab Chip 2007;7:756–62
  • Nguyen N-T, Shaegh SAM, Kashaninejad N, Phan D-T. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv Drug Deliv Rev 2013;65:1403–19
  • Riahi R, Tamayol A, Mousavi Shaegh SA, et al. Microfluidics for advanced drug delivery systems. Curr Opin Chem Eng 2015;7:101–12
  • Suh KY, Seong J, Khademhosseini A, et al. A simple soft lithographic route to fabrication of poly (ethylene glycol) microstructures for protein and cell patterning. Biomaterials 2004;25:557–63

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.