703
Views
87
CrossRef citations to date
0
Altmetric
Original Article

Size selectivity of intestinal mucus to diffusing particulates is dependent on surface chemistry and exposure to lipids

, , &
Pages 768-774 | Received 24 Jun 2015, Accepted 20 Aug 2015, Published online: 09 Oct 2015

References

  • Cone RA. Mucus. In: Ogra PL, Lamm ME, Strober W, et al eds. Mucosal immunology. 3rd ed. San Diego: Academic; 1999:43–64
  • Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev 2009;61:75–85
  • Lai SK, O'Hanlon DE, Harrold S, et al Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA 2007;104:1482–7
  • Roger E, Lagarce F, Benoit JP. Development and characterization of a novel lipid nanocapsule formulation of Sn38 for oral administration. Eur J Pharm Biopharm 2011;79:181–8
  • Sun J, Miller JM, Beig A, et al Mechanistic enhancement of the intestinal absorption of drugs containing the polar guanidino functionality. Expert Opin Drug Metab Toxicol 2011;7:313–23
  • Jin Y, Song Y, Zhu XY, et al Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials 2012;33:1573–82
  • Bakhru SH, Furtado S, Morello AP, Mathiowitz E. Oral delivery of proteins by biodegradable nanoparticles. Adv Drug Deliv Rev 2013;65:811–21
  • Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 1996;13:1838–45
  • Dawson M, Wirtz D, Hanes J. Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J Biol Chem 2003;12:50393–401
  • Wang YY, Lai SK, Suk JS, et al Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that ‘‘slip’’ through the human mucus barrier. Angew Chem Int Ed Engl 2008;47:9726–9
  • Cu Y, Saltzman WM. Controlled surface modification with poly(ethylene)glycol enhances diffusion of PLGA nanoparticles in human cervical mucus. Mol Pharm 2009;6:173–81
  • Bajka BH, Rigby NM, Cross KL, Macierzanka A, Mackie AR. The influence of small intestinal mucus structure on particle transport ex vivo. Colloids Surf B 2015;135:73–80
  • Hills BA. Gastric surfactant and the hydrophobic mucosal barrier. Gut 1996;39:621–4
  • Lichtenberger LM. The hydrophobic barrier properties of gastrointestinal mucus. Annu Rev Physiol 1995;57:565–83
  • Larhed AW, Artursson P, Björk E. The influence of intestinal mucus components on the diffusion of drugs. Pharm Res 1998;15:66–71
  • Larhed AW, Artursson P, Gråsjö J, Björk E. Diffusion of drugs in native and purified gastrointestinal mucus. J Pharm Sci 1997;86: 660–5
  • Murty VL, Sarosiek J, Slomiany A, Slomiany BL. Effect of lipids and proteins on the viscosity of gastric mucus glycoprotein. Biochem Biophys Res Commun 1984;15:521–9
  • Yildiz HM, Speciner L, Ozdemir C, et al Food-associated stimuli enhance barrier properties of gastrointestinal mucus. Biomaterials 2015;54:1–8
  • Wiedmann TS, Kamel L. Examination of the solubilization of drugs by bile salt micelles. J Pharm Sci 2002;91:1743–64
  • Gordon GS, Moses AC, Silver RD, et al Nasal absorption of insulin: enhancement by hydrophobic bile salts. Proc Natl Acad Sci USA 1985;82:7419–23
  • Macierzanka A, Böttger F, Rigby NM, et al Enzymatically structured emulsions in simulated gastrointestinal environment: impact on interfacial proteolysis and diffusion in intestinal mucus. Langmuir 2012;28:17349–62
  • Macierzanka A, Rigby NM, Corfield AP, et al Adsorption of bile salts to particles allows penetration of intestinal mucus. Soft Matter 2011;7:8077–84
  • Norris DA, Sinko PJ. Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. J Appl Polym Sci 1997;63:1481–92
  • Suh J, Wirtz D, Hanes J. Real-time intracellular transport of gene nanocarries studied by multiple particle tracking. Biotechnol Prog 2004;20:598–602
  • Ensign LM, Henning A, Schneider CS, et al Ex vivo characterization of particle transport in mucus secretions coating freshly excised mucosal tissues. Mol Pharm 2013;10:2176–82
  • Maisel K, Ensign L, Reddy M, et al Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. J Control Release 2015;197:48–57
  • Olmsted SS, Padgett JL, Yudin AI, et al Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J 2001;81:1930–7
  • Crater JS, Carrier RL. Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol Biosci 2010;10:1473–83
  • Buyukozturk F, Di Maio S, Budil DE, Carrier RL. Effect of ingested lipids on drug dissolution and release with concurrent digestion: a modeling approach. Pharm Res 2013;30:3131–44
  • Sbalzarini IF, Koumoutsakos P. Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 2005;151:182–95
  • Tang BC, Dawson M, Lai SK, et al Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci USA 2009;106:19268–73
  • Jönsson P, Jonsson MP, Tegenfeldt JO, Höök F. A method improving the accuracy of fluorescence recovery after photobleaching analysis. Biophys J 2008;95:5334–48
  • Saxton MJ, Jacobson K. Single particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 1997;26:373–99
  • Lai SK, Wang Y-Y, Hida K, Cone R, et al Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc Natl Acad Sci U S A 2010;107:598–603
  • van der Waaij LA, Harmsen HJ, Madjipour M et al Bacterial population analysis of human colon and terminal ileum biopsies with 16S rRNA-based fluorescent probes: commensal bacteria live in suspension and have no direct contact with epithelial cells. Inflamm Bowel Dis 2005;11:865–71
  • Jordan N, Newton J, Pearson J, Allen A. A novel method for the visualization of the in situ mucus layer in rat and man. Clin Sci 1998;95:97–106
  • Lehr CM, Poelma FG, Junginger HE, Tukker JJ. An estimate of turnover time of intestinal mucus gel layer in the rat in situ loop. Int J Pharm 1991;70:235–40
  • Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 2009;61:158–71

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.