771
Views
75
CrossRef citations to date
0
Altmetric
Review Article

Polysaccharides based nanomaterials for targeted anti-cancer drug delivery

, , , &
Pages 1-16 | Received 07 Jan 2016, Accepted 27 Mar 2016, Published online: 19 Apr 2016

References

  • Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014;64:9–29.
  • Ferlay J, Shin H-R, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127:2893–917.
  • Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin 2011;61:69–90.
  • Chen Z. Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol Med 2010;16:594–602.
  • Jin S-E, Jin H-E, Hong S-S. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. Biomed Res Int 2014;2014:1–23.
  • Singh T, Kaur V, Kumar M, et al. The critical role of bisphosphonates to target bone cancer metastasis: an overview. J Drug Target 2014;23:1–15.
  • Shankar R, Samykutty A, Riggin C, et al. Cathepsin B degradable star-shaped peptidic macromolecules for delivery of 2-methoxyestradiol. Mol Pharma 2013;10:3776–88.
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2:751–60.
  • Flenniken ML, Willits DA, Harmsen AL, et al. Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. Chem Biol 2006;13:161–70.
  • Manchester M, Singh P. Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv Drug Deliv Rev 2006;58:1505–22.
  • Svenson S, Tomalia DA. Dendrimers in biomedical applications-reflections on the field. Adv Drug Deliv Rev 2005;57:2106–29.
  • Malik N, Evagorou EG, Duncan R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 1999;10:767–76.
  • Nakanishi T, Fukushima S, Okamoto K, et al. Development of the polymer micelle carrier system for doxorubicin. J Control Release 2001;74:295–302.
  • Kim T-Y, Kim D-W, Chung J-Y, et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 2004;10:3708–16.
  • Gradishar WJ, Tjulandin S, Davidson N, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 2005;23:7794–803.
  • Desai N, Trieu V, Yao Z, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 2006;12:1317–24.
  • Sabbatini P, Aghajanian C, Dizon D, et al. Phase II study of CT-2103 in patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma. J Clin Oncol 2004;22:4523–31.
  • Bhatt R, de Vries P, Tulinsky J, et al. Synthesis and in vivo antitumor activity of poly(l-glutamic acid) conjugates of 20S-camptothecin. J Med Chem 2003;46:190–3.
  • Vasey PA, Kaye SB, Morrison R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug polymer conjugates. Clin Cancer Res 1999;5:83–94.
  • Seymour LW, Ferry DR, Anderson D, et al. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol 2002;20:1668–76.
  • Schluep T, Hwang J, Cheng J, et al. Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin Cancer Res 2006;12:1606–14.
  • Markman M. Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary. Expert Opin Pharmacother 2006;7:1469–74.
  • Rivera E. Current status of liposomal anthracycline therapy in metastatic breast cancer. Clin Breast Cancer 2003;4:S76–S83.
  • Rosenthal E, Poizot-Martin I, Saint-Marc T, et al. Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma. Am J Clin Oncol 2002;25:57–9.
  • Liu Z, Jiao Y, Wang Y, et al. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008;60:1650–62.
  • Zheng Y, Monty J, Linhardt RJ. Polysaccharide-based nanocomposites and their applications. Carbohydr Res 2015;405:23–32.
  • Kajiware K, Miyamoto T. Progress in structural characterization of functional polysaccharides. In: Dekker M, ed. Polysaccharides: structural diversity and functional versatility. New York: CRC press; 2004:1--40.
  • Yong SK, Shrivastava M, Srivastava P, et al. Environmental applications of chitosan and its derivatives. Rev Environ Contam Toxicol 2015;233:1–43.
  • Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 2001;47:83–97.
  • Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 2010;62:3–11.
  • Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 2010;62:83–99.
  • Guo Y, Chu M, Tan S, et al. Chitosan-g-TPGS nanoparticles for anticancer drug delivery and overcoming multidrug resistance. Mol Pharm 2013;11:59–70.
  • Lim E-K, Sajomsang W, Choi Y, et al. Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. Nanoscale Res Lett 2013;8:1–12.
  • Termsarasab U, Cho H-J, Kim DH, et al. Chitosan oligosaccharide-arachidic acid-based nanoparticles for anti-cancer drug delivery. Int J Pharm 2013;441:373–80.
  • Lee JY, Choi YS, Suh JS, et al. Cell-penetrating chitosan/doxorubicin/TAT conjugates for efficient cancer therapy. Int J Cancer 2011;128:2470–80.
  • Han HD, Song CK, Park YS, et al. A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. Int J Pharm 2008;350:27–34.
  • Zhang H, Mardyani S, Chan WCW, Kumacheva E. Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. Biomacromolecules 2006;7:1568–72.
  • Mourya VK, Inamdar NN, Tiwari A. Carboxymethyl chitosan and its applications. Adv Mat Lett 2010;1:11–33.
  • de Abreu FR, Campana-Filho SP. Characteristics and properties of carboxymethylchitosan. Carbohydr Polym 2009;75:214–21.
  • Anitha A, Maya S, Deepa N, et al. Curcumin-loaded N,O-carboxymethyl chitosan nanoparticles for cancer drug delivery. J Biomater Sci Polym Ed 2012;23:1381–400.
  • Sahu SK, Maiti S, Maiti TK, et al. Hydrophobically modified carboxymethyl chitosan nanoparticles targeted delivery of paclitaxel. J Drug Target 2011;19:104–13.
  • Madhusudhan A, Reddy GB, Venkatesham M, et al. Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Int J Mol Sci 2014;15:8216–34.
  • Bhattacharya D, Das M, Mishra D, et al. Folate receptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: a novel ultradispersed nanoconjugates for bimodal imaging. Nanoscale 2011;3:1653–62.
  • Anitha A, Chennazhi KP, Nair SV, Jayakumar R. 5-flourouracil loaded N,O-carboxymethyl chitosan nanoparticles as an anticancer nanomedicine for breast cancer. J Biomed Nanotechnol 2012;8:29–42.
  • Ji J, Wu D, Zhang J, et al. Preparation of folate conjugated O-carboxymethyl chitosan nanoparticles. Adv Mat Res 2011;152:1797–800.
  • Laudenslager MJ, Schiffman JD, Schauer CL. Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles. Biomacromolecules 2008;9:2682–5.
  • Li H, Li Z, Zhao J, et al. Carboxymethyl chitosan-folic acid-conjugated Fe3O4@SiO2 as a safe and targeting antitumor nanovehicle in vitro. Nanoscale Res Lett 2014;9:146. doi:10.1186/1556-276X-9-146.
  • Mathew ME, Mohan JC, Manzoor K, et al. Folate conjugated carboxymethyl chitosan-manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydrate Poly 2010;80:442–8.
  • Shi X, Du Y, Yang J, et al. Effect of degree of substitution and molecular weight of carboxymethyl chitosan nanoparticles on doxorubicin delivery. J Appli Pol Sci 2006;100:4689–96.
  • Toole BP. Hyaluronan-CD44 interactions in cancer: paradoxes and possibilities. Clin Cancer Res 2009;15:7462–8.
  • Oh EJ, Park K, Kim KS, et al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release 2010;141:2–12.
  • Hoffmann S, Vystrcilova L, Ulbrich K, et al. Dual fluorescent HPMA copolymers for passive tumor targeting with pH-sensitive drug release: synthesis and characterization of distribution and tumor accumulation in mice by noninvasive multispectral optical imaging. Biomacromolecules 2012;13:652–63.
  • Goodarzi N, Ghahremani MH, Dinarvand R. Targeting CD44 by hyaluronic acid-based nano drug delivery systems may eradicate cancer stem cells in human breast cancer. J Med Hypotheses Ideas 2011;5:26–30.
  • Vercruysse KP, Prestwich GD. Hyaluronate derivatives in drug delivery. Crit Rev Ther Drug Carrier Syst 1998;15:513–56.
  • Xu C, He W, Lv Y, et al. Self-assembled nanoparticles from hyaluronic acid-paclitaxel prodrugs for direct cytosolic delivery and enhanced antitumor activity. Int J Pharm 2015;493:172–81.
  • Yin S, Huai J, Chen X, et al. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid. Acta Biomater 2015;26:274–85.
  • Zhong Y, Zhang J, Cheng R, et al. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. J Control Release 2015;205:144–54.
  • Vyas D, Lopez-Hisijos N, Gandhi S, et al. Doxorubicin-Hyaluronan conjugated super-paramagnetic iron oxide nanoparticles (DOX-HA-SPION) enhanced cytoplasmic uptake of doxorubicin and modulated apoptosis, IL-6 release and NF-kappaB activity in human MDA-MB-231 breast cancer cells. J Nanosci Nanotechnol 2015;15:6413–22.
  • Hyung W, Ko H, Park J, et al. Novel hyaluronic acid (HA) coated drug carriers (HCDCs) for human breast cancer treatment. Biotechnol Bioeng 2008;99:442–54.
  • Song E, Han W, Li C, et al. Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for targeted and pH-responsive anticancer drug delivery. ACS Appl Mater Interfaces 2014;6:11882–90.
  • Datir SR, Das M, Singh RP, Jain S. Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug Chem 2012;23:2201–13.
  • Oommen OP, Garousi J, Sloff M, Varghese OP. Tailored doxorubicin-hyaluronan conjugate as a potent anticancer glyco-drug: an alternative to prodrug approach. Macromol Biosci 2014;14:327–33.
  • Choi KY, Yoon HY, Kim J-H, et al. Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano 2011;5:8591–9.
  • Cho H-J, Yoon I-S, Yoon HY, et al. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials 2012;33:1190–200.
  • Oyarzun-Ampuero FA, Rivera-Rodriguez GR, Alonso MJ, Torres D. Hyaluronan nanocapsules as a new vehicle for intracellular drug delivery. Eur J Pharm Sci 2013;49:483–90.
  • El-Dakdouki MH, Xia J, Zhu DC, et al. Assessing the in vivo efficacy of doxorubicin loaded hyaluronan nanoparticles. ACS Appl Mater Interfaces 2013;6:697–705.
  • Yu M, Jambhrunkar S, Thorn P, et al. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale 2013;5:178–83.
  • Park J-H, Cho H-J, Yoon HY, et al. Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J Control Release 2014;174:98–108.
  • Mukhiddinov ZK, Khalikov DK, Abdusamiev FT, Avloev CC. Isolation and structural characterization of a pectin homo and ramnogalacturonan. Talanta 2000;53:171–6.
  • Chaurasia MK, Jain SK. Polysaccharides for colon targeted drug delivery: a review. Drug Deliv 2004;11:129–48.
  • Morris GA, Kok SM, Harding SE, Adams GG. Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnol Genet Eng Rev 2010;27:257–84.
  • Yan J, Katz A. PectaSol-C modified citrus pectin induces apoptosis and inhibition of proliferation in human and mouse androgen-dependent and-independent prostate cancer cells. Integr Cancer Ther 2010;9:197–203.
  • Nicholas J. Fighting cancer metastasis and heavy metal toxicities with modified citrus pectin. Life Extention 2009;9:40–6.
  • Johnson KD, Glinskii OV, Mossine VV, et al. Galectin-3 as a potential therapeutic target in tumors arising from malignant endothelia. Neoplasia 2007;9:662–70.
  • Niture SK, Refai L. Plant pectin: a potential source for cancer suppression. Am J Pharmaco Toxico 2013;8:9–19.
  • Hossein G, Keshavarz M, Ahmadi S, Naderi N. Synergistic effects of PectaSol-C modified citrus pectin an inhibitor of Galectin-3 and paclitaxel on apoptosis of human SKOV-3 ovarian cancer cells. Asian Pac J Cancer Prev 2013;14:7561–8.
  • Chandran S, Praveen G, Snima KS, et al. Potential use of drug loaded nano composite pectin scaffolds for the treatment of ovarian cancer. Curr Drug Deliv 2013;10:326–35.
  • Paharia A, Yadav AK, Rai G, et al. Eudragit-coated pectin microspheres of 5-fluorouracil for colon targeting. AAPS PharmSciTech 2007;8:E87–93.
  • Leclere L, Van Cutsem P, Michiels C. Anti-cancer activities of pH-or heat-modified pectin. Front Pharmaco 2013;4:1–8.
  • Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. Recent advances in search of oral heparin therapeutics. Med Res Rev 2012;32:388–409.
  • Li Y, Rodrigues J, Tomas H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 2012;41:2193–221.
  • Szczubialka K, Kaminski K, Zasada K, et al. Heparin-a key drug in the treatment of the circulatory degenerative diseases: controlling its action with polymers. Curr Pharm Des 2012;18:2591–606.
  • Sakiyama-Elbert SE. Incorporation of heparin into biomaterials. Acta Biomater 2014;10:1581–7.
  • Liang Y, Kiick KL. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater 2014;10:1588–600.
  • Lazo-Langner A, Goss GD, Spaans JN, Rodger MA. The effect of low-molecular-weight heparin on cancer survival. A systematic review and meta-analysis of randomized trials. J Thromb Haemost 2007;5:729–37.
  • Liu P, Gou M, Yi T, et al. The enhanced antitumor effects of biodegradable cationic heparin-polyethyleneimine nanogels delivering HSulf-1 gene combined with cisplatin on ovarian cancer. Int J Onco 2012;41:1504–12.
  • Peng X-H, Wang Y, Huang D, et al. Targeted delivery of cisplatin to lung cancer using ScFvEGFR-heparin-cisplatin nanoparticles. ACS Nano 2011;5:9480–93.
  • Cho KJ, Moon HT, Park G-E, et al. Preparation of sodium deoxycholate (DOC) conjugated heparin derivatives for inhibition of angiogenesis and cancer cell growth. Bioconjug Chem 2008;19:1346–51.
  • Wang Y, Wang Y, Xiang J, Yao K. Target-specific cellular uptake of taxol-loaded heparin-PEG-folate nanoparticles. Biomacromolecules 2010;11:3531–8.
  • Zhang L, Gao X, Men K, et al. Gene therapy for C-26 colon cancer using heparin-polyethyleneimine nanoparticle-mediated survivin T34A. Int J Nanomedicine 2011;6:2419–27.
  • Joung YK, Jang JY, Choi JH, et al. Heparin-conjugated pluronic nanogels as multi-drug nanocarriers for combination chemotherapy. Mol Pharm 2012;10:685–93.
  • Ye L, Gao Z, Zhou Y, et al. A pH-sensitive binary drug delivery system based on poly(caprolactone)-heparin conjugates. J Biomed Mater Res A 2014;102:880–9.
  • Suflet DM, Chitanu GC, Desbrieres J. Phosphorylated polysaccharides. 2. Synthesis and properties of phosphorylated dextran. Carbohyd Poly 2011;82:1271–7.
  • Varshosaz J. Dextran conjugates in drug delivery. Expert Opin Drug Deliv 2012;9:509–23.
  • Hennink WE, De Jong SJ, Bos GW, et al. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. Int J Pharm 2004;277:99–104.
  • Jeong Y-I, Kim DH, Chung C-W, et al. Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly (DL-lactide-co-glycolide) copolymer. Int J Nanomedicine 2011;6:1415–27.
  • Jeong Y-IL, Chung K-D, Choi KC. Doxorubicin release from self-assembled nanoparticles of deoxycholic acid-conjugated dextran. Arch Pharm Res 2011;34:159–67.
  • Varshosaz J, Ahmadi F, Emami J, et al. Colon delivery of budesonide using solid dispersion in dextran for the treatment and secondary prevention of ulcerative colitis in rat. Int J Prev Med 2010;1:115–23.
  • Pang Y-N, Zhang Y, Zhang Z-R. Synthesis of an enzyme-dependent prodrug and evaluation of its potential for colon targeting. World J Gastroenterol 2002;8:913–17.
  • Larsen C, Jensen BH, Olesen HP. Bioavailability of ketoprofen from orally administered ketoprofen-dextran ester prodrugs in the pig. Acta Pharm Nord 1990;3:71–6.
  • Nishikawa M, Kamijo A, Fujita T, et al. Synthesis and pharmacokinetics of a new liver-specific carrier, glycosylated carboxymethyl-dextran, and its application to drug targeting. Pharm Res 1993;10:1253–61.
  • Bisht S, Maitra A. Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009;1:415–25.
  • Nakamura J, Nakajima N, Matsumura K, Hyon S-H. Water-soluble taxol conjugates with dextran and targets tumor cells by folic acid immobilization. Anticancer Res 2010;30:903–9.
  • Porfire AS, Zabaleta V, Gamazo C, et al. Influence of dextran on the bioadhesive properties of poly(anhydride) nanoparticles. Int J Pharma 2010;390:37–44.
  • Jung S-W, Jeong Y-I, Kim Y-H, et al. Drug release from core-shell type nanoparticles of poly (DL-lactide-co-glycolide)-grafted dextran. J Microencapsul 2005;22:901–11.
  • Thambi T, You DG, Han HS, et al. Bioreducible carboxymethyl dextran nanoparticles for tumor-targeted drug delivery. Adv Healthc Mater 2014;3:1829–38.
  • Varshosaz J, Emami J, Tavakoli N, et al. Synthesis and evaluation of dextran-budesonide conjugates as colon specific prodrugs for treatment of ulcerative colitis. Int J Pharm 2009;365:69–76.
  • Varshosaz J, Emami J, Fassihi A, et al. Effectiveness of budesonide-succinate-dextran conjugate as a novel prodrug of budesonide against acetic acid-induced colitis in rats. Int J Colorectal Dis 2010;25:1159–65.
  • Lee JY, Chung SJ, Cho HJ, Kim DD. Bile acid-conjugated chondroitin sulfate A-based nanoparticles for tumor-targeted anticancer drug delivery. Eur J Pharm Biopharm 2015;94:532–41.
  • Rubinstein A, Nakar D, Sintov A. Colonic drug delivery: enhanced release of indomethacin from cross-linked chondroitin matrix in rat cecal content. Pharm Res 1992;9:276–8.
  • Radhakrishnan K, Tripathy J, Datey A, et al. Mesoporous silica-chondroitin sulphate hybrid nanoparticles for targeted and bio-responsive drug delivery. New J Chem 2015;39:1754–60.
  • Wang L, Liu Y. 717: PCL-grafted chondroitin sulfate copolymers to promote dual medicated endocytosis for enhanced anti-cancer drug delivery. Eur J Cancer 2014;50:S172–S3.
  • Park W, Park S-J, Na K. Potential of self-organizing nanogel with acetylated chondroitin sulfate as an anti-cancer drug carrier. Colloids Surf B Biointerfaces 2010;79:501–8.
  • Huang S-J, Sun S-L, Feng T-H, et al. Folate-mediated chondroitin sulfate-Pluronic 127 nanogels as a drug carrier. Eur J Pharm Sci 2009;38:64–73.
  • Xi J, Qin J, Fan L. Chondroitin sulfate functionalized mesostructured silica nanoparticles as biocompatible carriers for drug delivery. Int J Nanomedicine 2012;7:5235–47.
  • Fajardo AR, Silva MB, Lopes LC, et al. Hydrogel based on an alginate-Ca 2+/chondroitin sulfate matrix as a potential colon-specific drug delivery system. RSC Adv 2012;2:11095–103.
  • Kakuta T, Takashima Y, Nakahata M, et al. Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv Mater 2013;25:2849–53.
  • Szente L, Szeman J. Cyclodextrins in analytical chemistry: host-guest type molecular recognition. Anal Chem 2013;85:8024–30.
  • Choi SG, Lee S-E, Kang B-S, et al. Thermosensitive and mucoadhesive sol-gel composites of paclitaxel/dimethyl-β-cyclodextrin for buccal delivery. PLoS One 2014;9:e109090.
  • Morabito A, Costanzo R, Rachiglio AM, et al. Activity of gefitinib in a non-small-cell lung cancer patient with both activating and resistance EGFR mutations. J Thorac Oncol 2013;8:e59–60.
  • Shi Y, Su C, Cui W, et al. Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl-beta-cyclodextrin nanoparticles enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cells. J Nanobiotechnology 2014;12:43. doi: 10.1186/s12951-014-0043-7.
  • Yin J-J, Sharma S, Shumyak SP, et al. Synthesis and biological evaluation of novel folic acid receptor-targeted, β-cyclodextrin-based drug complexes for cancer treatment. PLoS One 2013;8:e62289.
  • Oda M, Saitoh H, Kobayashi M, Aungst BJ. Beta-Cyclodextrin as a suitable solubilizing agent for in situ absorption study of poorly water-soluble drugs. Int J Pharm 2004;280:95–102.
  • Torne S, Darandale S, Vavia P, et al. Cyclodextrin-based nanosponges: effective nanocarrier for Tamoxifen delivery. Pharm Dev Technol 2013;18:619–25.
  • Yallapu MM, Jaggi M, Chauhan SC. beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B Biointerfaces 2010;79:113–25.
  • Park C, Youn H, Kim H, et al. Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. J Mater Chem 2009;19:2310–5.
  • Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 2009;6:659–68.
  • Shazid MS, Sung MK, Sung HK, et al. Target delivery of β-cyclodextrin/paclitaxel complexed fluorescent carbon nanoparticles: externally NIR light and internally pH sensitivemediated release of paclitaxel with bio-imaging. J Mater Chem B 2015;3:5833.
  • Kralova J, Kejik Z, Briza T, et al. Porphyrin-cyclodextrin conjugates as a nanosystem for versatile drug delivery and multimodal cancer therapy. J Med Chem 2009;53:128–38.
  • Prajapati VD, Jani GK, Khanda SM. Pullulan: an exopolysaccharide and its various applications. Carbohydr Polym 2013;95:540–9.
  • Wang J, Dou B, Bao Y. Efficient targeted pDNA/siRNA delivery with folate-low-molecular-weight polyethyleneimine-modified pullulan as non-viral carrier. Mater Sci Eng C Mater Biol Appl 2014;34:98–109.
  • Vijayendra SVN, Shamala TR. Film forming microbial biopolymers for commercial applications-a review. Crit Rev Biotechnol 2014;34:1–20.
  • Yang X-C, Niu Y-L, Zhao N-N, et al. A biocleavable pullulan-based vector via ATRP for liver cell-targeting gene delivery. Biomaterials 2014;35:3873–84.
  • Yuan R, Zheng F, Zhong S, et al. Self-assembled nanoparticles of glycyrrhetic acid-modified pullulan as a novel carrier of curcumin. Molecules 2014;19:13305–18.
  • Yim H, Park S-j, Bae YH, Na K. Biodegradable cationic nanoparticles loaded with an anticancer drug for deep penetration of heterogeneous tumours. Biomaterials 2013;34:7674–82.
  • Kageyama S, Wada H, Muro K, et al. Dose-dependent effects of NY-ESO-1 protein vaccine complexed with cholesteryl pullulan (CHP-NY-ESO-1) on immune responses and survival benefits of esophageal cancer patients. J Transl Med 2013;11:246. doi: 10.1186/1479-5876-11-246.
  • Muraoka D, Harada N, Hayashi T, et al. Nanogel-based immunologically stealth vaccine targets macrophages in the medulla of lymph node and induces potent antitumor immunity. ACS Nano 2014;8:9209–18.
  • Guo H, Liu Y, Wang Y, et al. pH-sensitive pullulan-based nanoparticle carrier for adriamycin to overcome drug-resistance of cancer cells. Carbohydr Polym 2014;111:908–17.
  • Bae B-C, Yang S-G, Jeong S, et al. Polymeric photosensitizer-embedded self-expanding metal stent for repeatable endoscopic photodynamic therapy of cholangiocarcinoma. Biomaterials 2014;35:8487–95.
  • Zhang H-Z, Gao F-P, Liu L-R, et al. Pullulan acetate nanoparticles prepared by solvent diffusion method for epirubicin chemotherapy. Colloids Surf B Biointerfaces 2009;71:19–26.
  • Moon S, Yang S-G, Na K. An acetylated polysaccharide-PTFE membrane-covered stent for the delivery of gemcitabine for treatment of gastrointestinal cancer and related stenosis. Biomaterials 2011;32:3603–10.
  • Lee SJ, Hong G-Y, Jeong Y-I, et al. Paclitaxel-incorporated nanoparticles of hydrophobized polysaccharide and their antitumor activity. Int J Pharm 2012;433:121–8.
  • Guhagarkar SA, Gaikwad RV, Samad A, et al. Polyethylene sebacate-doxorubicin nanoparticles for hepatic targeting. Int J Pharma 2010;401:113–22.
  • Wang J, Cui S, Bao Y, et al. Tocopheryl pullulan-based self assembling nanomicelles for anti-cancer drug delivery. Mater Sci Eng C Mater Biol Appl 2014;43:614–21.
  • Yang W, Wang M, Ma L, et al. Synthesis and characterization of biotin modified cholesteryl pullulan as a novel anticancer drug carrier. Carbohydr Polym 2014;99:720–7.
  • Lu D, Wen X, Liang J, et al. A pH-sensitive nano drug delivery system derived from pullulan/doxorubicin conjugate. J Biomed Mater Res Part B Appl Biomater 2009;89:177–83.
  • Li H, Bian S, Huang Y, et al. High drug loading pH-sensitive pullulan-DOX conjugate nanoparticles for hepatic targeting. J Biomed Mater Res A 2014;102:150–9.
  • Wang Y, Chen H, Liu Y, et al. pH-sensitive pullulan-based nanoparticle carrier of methotrexate and combretastatin A4 for the combination therapy against hepatocellular carcinoma. Biomaterials 2013;34:7181–90.
  • Rekha MR, Sharma CP. Hemocompatible pullulan-polyethyleneimine conjugates for liver cell gene delivery: in vitro evaluation of cellular uptake, intracellular trafficking and transfection efficiency. Acta Biomater 2011;7:370–9.
  • Zhang H, Li F, Yi J, et al. Folate-decorated maleilated pullulan-doxorubicin conjugate for active tumor-targeted drug delivery. Eur J Pharm Sci 2011;42:517–26.
  • Scomparin A, Salmaso S, Bersani S, et al. Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery. Eur J Pharm Sci 2011;42:547–58.
  • Bae B-C, Na K. Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy. Biomaterials 2010;31:6325–35.
  • Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 2012;33:3279–305.
  • Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 2013;14:1629–54.
  • Aktar B, Erdal MS, Sagirli O, et al. Optimization of biopolymer based transdermal films of metoclopramide as an alternative delivery approach. Polym 2014;6:1350–65.
  • Sosnik A. Alginate particles as platform for drug delivery by the oral route: state-of-the-art. ISRN Pharma 2014;2014:926157
  • Huebsch N, Kearney CJ, Zhao X, et al. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc Natl Acad Sci USA 2014;111:9762–7.
  • Sikorski P, Mo F, Skjak-Brà K. G, Stokke BT. Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber x-ray diffraction. Biomacromolecules 2007;8:2098–103.
  • Donati I, Holtan S, Morch YA, et al. New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules 2005;6:1031–40.
  • Taleb MFA, Alkahtani A, Mohamed SK. Radiation synthesis and characterization of sodium alginate/chitosan/hydroxyapatite nanocomposite hydrogels: a drug delivery system for liver cancer. Polym Bull 2015;72:725–42.
  • Liao Y-T, Liu C-H, Yu J, Wu KCW. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres. Int J Nanomed 2014;9:2767–78.
  • Ma HL, Xu YF, Qi XR, et al. Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int J Pharm 2008;354:217–26.
  • Boekhoven J, Zha RH, Tantakitti F, et al. Alginate-peptide amphiphile core-shell microparticles as a targeted drug delivery system. RSC Advances 2015;5:8753–6.
  • Goren A, Dahan N, Goren E, et al. Encapsulated human mesenchymal stem cells: a unique hypoimmunogenic platform for long-term cellular therapy. FASEB J 2010;24:22–31.
  • Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine 2010;6:153–60.
  • Bhunchu S, Rojsitthisak P. Biopolymeric alginate-chitosan nanoparticles as drug delivery carriers for cancer therapy. Pharmazie 2014;69:563–70.
  • Kobayashi M, Sakane M, Abe T, et al. Anti-Tumor effect of a local delivery system; hydroxyapatite-alginate beads of paclitaxel. Bioceram Dev Appl 2012;2:1–3.
  • Kanwar JR, Mahidhara G, Kanwar RK. Novel alginate-enclosed chitosan-calcium phosphate-loaded iron-saturated bovine lactoferrin nanocarriers for oral delivery in colon cancer therapy. Nanomedicine 2012;7:1521–50.
  • Batyrbekov YO, Rakhimbaeva D, Musabekov K, Zhubanov B. Alginate based microparticle drug delivery systems for the treatment of eye cancer. Mater Res Soc Symp Proc 2010;1209:1–6.
  • Brule S, Levy M, Wilhelm C, et al. Doxorubicin release triggered by alginate embedded magnetic nanoheaters: a combined therapy. Adv Mater Weinheim 2011;23:787–90.
  • Ciofani G, Riggio C, Raffa V, et al. A bi-modal approach against cancer: magnetic alginate nanoparticles for combined chemotherapy and hyperthermia. Med Hypotheses 2009;73:80–2.
  • Beneke CE, Viljoen AM, Hamman JH. Polymeric plant-derived excipients in drug delivery. Molecules 2009;14:2602–20.
  • Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 2007;59:207–33.
  • Arora D, Sharma N, Sharma V, et al. An update on polysaccharide-based nanomaterials for antimicrobial applications. Appl Microbiol Biotechnol 2016;100:2603–15.
  • Wilson PJ, Basit AW. Exploiting gastrointestinal bacteria to target drugs to the colon: an in vitro study using amylose coated tablets. Int J Pharm 2005;300:89–94.
  • Siew LF, Basit AW, Newton JM. The potential of organic-based amylose-ethylcellulose film coatings as oral colon-specific drug delivery systems. AAPS PharmSciTech 2000;1:53–61.
  • Fujii H, Shin-Ya M, Takeda S, Hashimoto Y, et al. Cycloamylose-nanogel drug delivery system-mediated intratumor silencing of the vascular endothelial growth factor regulates neovascularization in tumor microenvironment. Cancer Sci 2014;105:1616–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.