1,484
Views
61
CrossRef citations to date
0
Altmetric
Review Article

Molecular genetics of essential hypertension

, , , , &
Pages 268-277 | Received 23 Jun 2015, Accepted 19 Oct 2015, Published online: 30 Mar 2016

References

  • Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2224–60.
  • Lawes CM, Vander Hoorn S, Rodgers A. Global burden of blood-pressure-related disease, 2001. Lancet 2008;371:1513–8.
  • Bahr V, Oelkers W, Diederich S. Monogenic hypertension. Med Klin 2003;98:208–17.
  • Chalmers J, MacMahon S, Mancia G, et al. 1999 World Health Organization-International Society of Hypertension Guidelines for the management of hypertension. Guidelines sub-committee of the World Health Organization. Clin Exp Hypertens 1999; 21:1009–60.
  • Singh M, Singh AK, Pandey P, et al. Oxidative stress expedite risk of hypertension disorders: a study of total oxidant, total antioxidant & oxidative stress index on North Indian patients. Int J Appl Nat Sci 2014;3:87–98.
  • ALLHAT. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA 2002;288:2981–97.
  • Li H, Kong F, Xu J, et al. Hypertension subtypes and risk of cardiovascular diseases in a Mongolian population, inner Mongolia, China. Clin Exp Hypertens 2015;13:1–6.
  • Staessen JA, Wang J, Bianchi G, Birkenhager WH. Essential hypertension. Lancet 2003;361:1629–41.
  • Turner ST, Boerwinkle E. Genetics of blood pressure, hypertensive complications, and antihypertensive drug responses. Pharmacogenomics 2003;4:53–65.
  • Lifton RP. Molecular genetics of human blood pressure variation. Science 1996;272:676–80.
  • Lifton RP, Dluhy RG, Powers M, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992;355:262–5.
  • Hansson JH, Nelson-Williams C, Suzuki H, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 1995;11:76–82.
  • Shimkets RA, Warnock DG, Bositis CM, et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 1994;79:407–14.
  • Mune T, Rogerson FM, Nikkila H, et al. Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet 1995;10:394–9.
  • Mansfield TA, Simon DB, Farfel Z, et al. Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31-42 and 17p11-q21. Nat Genet 1997;16:202–5.
  • Schuster H, Wienker TE, Bahring S, et al. Severe autosomal dominant hypertension and brachydactyly in a unique Turkish kindred maps to human chromosome 12. Nat Genet 1996;13:98–100.
  • Corvol P, Persu A, Gimenez-Roqueplo AP, Jeunemaitre X. Seven lessons from two candidate genes in human essential hypertension: angiotensinogen and epithelial sodium channel. Hypertension 1999;33:1324–31.
  • Doris PA. Hypertension genetics, single nucleotide polymorphisms, and the common disease: common variant hypothesis. Hypertension 2002;39:323–31.
  • Higaki J, Baba S, Katsuya T, et al. Deletion allele of angiotensin-converting enzyme gene increases risk of essential hypertension in Japanese men: the Suita Study. Circulation 2000;101:2060–5.
  • Luft FC, Miller JZ, Grim CE, et al. Salt sensitivity and resistance of blood pressure. Age and race as factors in physiological responses. Hypertension 1991;17:1102–8.
  • Spielman RS, Ewens WJ. The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet 1996;59:983–9.
  • Sharma P, Fatibene J, Ferraro F, et al. A genome-wide search for susceptibility loci to human essential hypertension. Hypertension 2000;35:1291–6.
  • Rice T, Rankinen T, Province MA, et al. Genome-wide linkage analysis of systolic and diastolic blood pressure: the Quebec Family Study. Circulation 2000;102:1956–63.
  • Perola M, Kainulainen K, Pajukanta P, et al. Genome-wide scan of predisposing loci for increased diastolic blood pressure in Finnish siblings. J Hypertens 2000;18:1579–85.
  • Pankow JS, Rose KM, Oberman A, et al. Possible locus on chromosome 18q influencing postural systolic blood pressure changes. Hypertension 2000;36:471–6.
  • Levy D, DeStefano AL, Larson MG, et al. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham heart study. Hypertension 2000;36:477–83.
  • Krushkal J, Ferrell R, Mockrin SC, et al. Genome-wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation 1999;99:1407–10.
  • Kato N. Genetic analysis in human hypertension. Hypertens Res 2002;25:319–27.
  • Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell 2001;104:545–56.
  • Geller DS, Farhi A, Pinkerton N, et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 2000;289:119–23.
  • Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995;11:241–7.
  • Nabel EG. Cardiovascular disease. N Engl J Med 2003;349:60–72.
  • Naber CK, Siffert W. Genetics of human arterial hypertension. Minerva Med 2004;95:347–56.
  • Garcia EA, Newhouse S, Caulfield MJ, Munroe PB. Genes and hypertension. Curr Pharm Des 2003;9:1679–89.
  • Luft FC. Mendelian forms of human hypertension and mechanisms of disease. Clin Med Res 2003;1:291–300.
  • Inoue I, Nakajima T, Williams CS, et al. A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 1997;99:1786–97.
  • O’Donnell CJ, Lindpaintner K, Larson MG, et al. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation 1998;97:1766–72.
  • Brand E, Chatelain N, Mulatero P, et al. Structural analysis and evaluation of the aldosterone synthase gene in hypertension. Hypertension 1998;32:198–204.
  • Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990;86:1343–6.
  • Gaillard I, Clauser E, Corvol P. Structure of human angiotensinogen gene. DNA 1989;8:87–99.
  • Fardella C, Zamorano P, Mosso L, et al. A(-6)G variant of angiotensinogen gene and aldosterone levels in hypertensives. Hypertension 1999;34:779–81.
  • Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al. Molecular basis of human hypertension: role of angiotensinogen. Cell 1992;71:169–80.
  • Caulfield M, Lavender P, Newell-Price J, et al. Angiotensinogen in human essential hypertension. Hypertension 1996;28:1123–5.
  • Caulfield M, Lavender P, Farrall M, et al. Linkage of the angiotensinogen gene to essential hypertension. N Engl J Med 1994;330:1629–33.
  • Jeunemaitre X, Inoue I, Williams C, et al. Haplotypes of angiotensinogen in essential hypertension. Am J Hum Genet 1997;60:1448–60.
  • Watkins WS, Hunt SC, Williams GH, et al. Genotype-phenotype analysis of angiotensinogen polymorphisms and essential hypertension: the importance of haplotypes. J Hypertens 2010;28:65–75.
  • Middleton-Price H, van den Berghe J, Harding A, et al. Analysis of markers on chromosome 1. Cytogenet Cell Genet 1987;46:662.
  • Qin H, Chen YH, Yip MY, et al. Reassignment of human renin gene to chromosome 1q32 in studies of a (1;4)(q42;p16) translocation. Hum Hered 1993;43:261–4.
  • Hobart PM, Fogliano M, O’Connor BA, et al. Human renin gene: structure and sequence analysis. Proc Natl Acad Sci USA 1984;81:5026–30.
  • Imai T, Miyazaki H, Hirose S, et al. Cloning and sequence analysis of cDNA for human renin precursor. Proc Natl Acad Sci USA 1983;80:7405–9.
  • Morris BJ, Griffiths LR. Frequency in hypertensives of alleles for a RFLP associated with the renin gene. Biochem Biophys Res Commun 1988;150:219–24.
  • Masharani U, Frossard PM. MboI RFLP at the human renin (ren) gene locus. Nucl Acids Res 1988;16:2357.
  • Naftilan AJ, Williams R, Burt D, et al. A lack of genetic linkage of renin gene restriction fragment length polymorphisms with human hypertension. Hypertension 1989;14:614–8.
  • Frossard PM, Lestringant GG, Malloy MJ, Kane JP. Human renin gene BglI dimorphism associated with hypertension in two independent populations. Clin Genet 1999;56:428–33.
  • Hasimu B, Nakayama T, Mizutani Y, et al. Haplotype analysis of the human renin gene and essential hypertension. Hypertension 2003;41:308–12.
  • Hasimu B, Nakayama T, Mizutani Y, et al. A novel variable number of tandem repeat polymorphism of the renin gene and essential hypertension. Hypertens Res 2003;26:473–7.
  • Moore N, Dicker P, O’Brien JK, et al. Renin gene polymorphisms and haplotypes, blood pressure, and responses to renin-angiotensin system inhibition. Hypertension 2007;50:340–7.
  • Itani HA, Liu X, Pratt JH, Sigmund CD. Functional characterization of polymorphisms in the kidney enhancer of the human renin gene. Endocrinology 2007;148:1424–30.
  • Sayed-Tabatabaei FA, Oostra BA, Isaacs A, et al. ACE polymorphisms. Circ Res 2006;98:1123–33.
  • Zhang L, Miyaki K, Araki J, et al. Interaction of angiotensin I-converting enzyme insertion-deletion polymorphism and daily salt intake influences hypertension in Japanese men. Hypertens Res 2006;29:751–8.
  • Jimenez PM, Conde C, Casanegra A, et al. Association of ACE genotype and predominantly diastolic hypertension: a preliminary study. J Renin Angiotensin Aldosterone Syst 2007;8:42–4.
  • Rieder MJ, Taylor SL, Clark AG, Nickerson DA. Sequence variation in the human angiotensin converting enzyme. Nat Genet 1999;22:59–62.
  • Tiret L, Rigat B, Visvikis S, et al. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet 1992;51:197–205.
  • Staessen JA, Wang JG, Ginocchio G, et al. The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk. J Hypertens 1997;15:1579–92.
  • Fornage M, Amos CI, Kardia S, et al. Variation in the region of the angiotensin-converting enzyme gene influences interindividual differences in blood pressure levels in young white males. Circulation 1998;97:1773–9.
  • Lapierre AV, Arce ME, Lopez JR, Ciuffo GM. Angiotensin II type 1 receptor A1166C gene polymorphism and essential hypertension in San Luis. Biocell 2006;30:447–55.
  • Kobashi G, Hata A, Ohta K, et al. A1166C variant of angiotensin II type 1 receptor gene is associated with severe hypertension in pregnancy independently of T235 variant of angiotensinogen gene. J Hum Genet 2004;49:182–186.
  • Henskens LH, Spiering W, Stoffers HE et al. Effects of ACE I/D and AT1R-A1166C polymorphisms on blood pressure in a healthy normotensive primary care population: first results of the Hippocates study. J Hypertens 2003;21:81–6.
  • Kainulainen K, Perola M, Terwilliger J, et al. Evidence for involvement of the type 1 angiotensin II receptor locus in essential hypertension. Hypertension 1999;33:844–9.
  • Bonnardeaux A, Davies E, Jeunemaitre X, et al. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension 1994;24:63–69.
  • Sugimoto K, Katsuya T, Ohkubo T, et al. Association between angiotensin II type 1 receptor gene polymorphism and essential hypertension: the Ohasama Study. Hypertens Res 2004;27:551–6.
  • Suh I, Nam CM, Kim SJ, et al. Association analysis of the essential hypertension susceptibility genes in adolescents: Kangwha study. J Prev Med Public Health 2006;39:177–83.
  • Zhang KX, Liu TB, Xu QX, et al. Association of angiotensin II receptor type 1 gene single nucleotide polymorphism with Chinese essential hypertension complicated with coronary heart disease. Zhonghua Xin Xue Guan Bing Za Zhi 2005;33:720–3.
  • Wu H, Song X, Xiao J, et al. Two single nucleotide polymorphisms of beta 2-adrenoceptor gene in elderly patients with hypertension. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2002;19:127–9.
  • Miyama N, Hasegawa Y, Suzuki M, et al. Investigation of major genetic polymorphisms in the Renin-Angiotensin-aldosterone system in subjects with young-onset hypertension selected by a targeted-screening system at university. Clin Exp Hypertens 2007;29:61–7.
  • Kato N, Sugiyama T, Morita H, et al. G protein beta3 subunit variant and essential hypertension in Japanese. Hypertension 1998;32:935–8.
  • Beige J, Hohenbleicher H, Distler A, Sharma AM. G-Protein beta3 subunit C825T variant and ambulatory blood pressure in essential hypertension. Hypertension 1999;33:1049–51.
  • Siffert W. G-protein beta3 subunit 825T allele and hypertension. Curr Hypertens Rep 2003;5:47–53.
  • Siffert W, Rosskopf D, Siffert G, et al. Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet 1998;18:45–8.
  • Menzaghi C, Paroni G, De Bonis C, et al. The -318 C>G single-nucleotide polymorphism in GNAI2 gene promoter region impairs transcriptional activity through specific binding of Sp1 transcription factor and is associated with high blood pressure in Caucasians from Italy. J Am Soc Nephrol 2006;17:S115–9.
  • Mason DA, Moore JD, Green SA, Liggett SB. A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J Biol Chem 1999;274:12670–4.
  • Sinnarajah S, Dessauer CW, Srikumar D, et al. RGS2 regulates signal transduction in olfactory neurons by attenuating activation of adenylyl cyclase III. Nature 2001;409:1051–5.
  • Ingi T, Krumins AM, Chidiac P, et al. Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J Neurosci 1998;18:7178–88.
  • Heximer SP, Watson N, Linder ME, et al. RGS2/G0S8 is a selective inhibitor of Gqalpha function. Proc Natl Acad Sci USA 1997;94:14389–93.
  • Heximer SP, Knutsen RH, Sun X, et al. Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest 2003;111:445–52.
  • Yang CL, Angell J, Mitchell R, Ellison DH. WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 2003;111:1039–45.
  • Riddle EL, Rana BK, Murthy KK, et al. Polymorphisms and haplotypes of the regulator of G protein signaling-2 gene in normotensives and hypertensives. Hypertension 2006;47:415–20.
  • Felder RA, Sanada H, Xu J, et al. G protein-coupled receptor kinase 4 gene variants in human essential hypertension. Proc Natl Acad Sci USA 2002;99:3872–7.
  • Bengra C, Mifflin TE, Khripin Y, et al. Genotyping of essential hypertension single-nucleotide polymorphisms by a homogeneous PCR method with universal energy transfer primers. Clin Chem 2002;48:2131–40.
  • Speirs HJ, Katyk K, Kumar NN, et al. Association of G-protein-coupled receptor kinase 4 haplotypes, but not HSD3B1 or PTP1B polymorphisms, with essential hypertension. J Hypertens 2004;22:931–6.
  • Speirs HJ, Morris BJ. WNK4 intron 10 polymorphism is not associated with hypertension. Hypertension 2004;43:766–8.
  • Eckhart AD, Ozaki T, Tevaearai H, et al. Vascular-targeted overexpression of G protein-coupled receptor kinase-2 in transgenic mice attenuates beta-adrenergic receptor signaling and increases resting blood pressure. Mol Pharmacol 2002;61:749–58.
  • Liu S, Premont RT, Kontos CD, et al. A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nat Med 2005;11:952–8.
  • Keys JR, Zhou RH, Harris DM, et al. Vascular smooth muscle overexpression of G protein-coupled receptor kinase 5 elevates blood pressure, which segregates with sex and is dependent on Gi-mediated signaling. Circulation 2005;112:1145–53.
  • Seasholtz TM, Wessel J, Rao F, et al. Rho kinase polymorphism influences blood pressure and systemic vascular resistance in human twins: role of heredity. Hypertension 2006;47:937–47.
  • Benjafield AV, Morris BJ. Association analyses of endothelial nitric oxide synthase gene polymorphisms in essential hypertension. Am J Hypertens 2000;13:994–8.
  • Kimura T, Yokoyama T, Matsumura Y, et al. NOS3 genotype-dependent correlation between blood pressure and physical activity. Hypertension 2003;41:355–60.
  • Jin JJ, Nakura J, Wu Z, et al. Association of endothelin-1 gene variant with hypertension. Hypertension 2003;41:163–167.
  • Dell’Omo G, Penno G, Pucci L, et al. Lack of association between endothelial nitric oxide synthase gene polymorphisms, microalbuminuria and endothelial dysfunction in hypertensive men. J Hypertens 2007;25:1389–95.
  • Colomba D, Duro G, Corrao S, et al. Endothelial nitric oxide synthase gene polymorphisms and cardiovascular damage in hypertensive subjects: an Italian case-control study. Immun Age 2008;5:4.
  • Li X, Du Y, Huang X. Association of apolipoprotein E gene polymorphism with essential hypertension and its complications. Clin Exp Med 2003;2:175–9.
  • Safrina O, Yu Y. A functional single-nucleotide polymorphism (-254 C to G) in the TRPC6 gene is associated with idiopathic pulmonary arterial hypertension. Circulation 2006;114.
  • van Greevenbroek MM, Vermeulen VM, Feskens EJ, et al. Genetic variation in thioredoxin interacting protein (TXNIP) is associated with hypertriglyceridaemia and blood pressure in diabetes mellitus. Diabet Med 2007;24:498–504.
  • Moreno MU, San Jose G, Fortuno A, et al. A novel CYBA variant, the -675A/T polymorphism, is associated with essential hypertension. J Hypertens 2007;25:1620–6.
  • Markan S, Sachdeva M, Sehrawat BS, et al. MTHFR 677 CT/MTHFR 1298 CC genotypes are associated with increased risk of hypertension in Indians. Mol Cell Biochem 2007;302:125–31.
  • Zhou S, Feely J, Spiers JP, Mahmud A. Matrix metalloproteinase-9 polymorphism contributes to blood pressure and arterial stiffness in essential hypertension. J Hum Hypertens 2007;21:861–7.
  • Marcano AC, Burke B, Gungadoo J, et al. Genetic association analysis of inositol polyphosphate phosphatase-like 1 (INPPL1, SHIP2) variants with essential hypertension. J Med Genet 2007;44:603–5.
  • Morita A, Nakayama T, Soma M, Mizutani T. Association between the calcitonin-related peptide alpha (CALCA) gene and essential hypertension in Japanese subjects. Am J Hypertens 2007;20:527–32.
  • Lu X, Zhao W, Huang J, et al. Common variation in KLKB1 and essential hypertension risk: tagging-SNP haplotype analysis in a case-control study. Hum Genet 2007;121:327–35.
  • Manunta P, Citterio L, Lanzani C, Ferrandi M. Adducin polymorphisms and the treatment of hypertension. Pharmacogenomics 2007;8:465–72.
  • Cusi D, Barlassina C, Azzani T, et al. Polymorphisms of alpha-adducin and salt sensitivity in patients with essential hypertension. Lancet 1997;349:1353–7.
  • Bianchi G, Tripodi G, Casari G, et al. Two point mutations within the adducin genes are involved in blood pressure variation. Proc Natl Acad Sci USA 1994;91:3999–4003.
  • Stoll M, Kwitek-Black AE, Cowley AW, Jr., et al. New target regions for human hypertension via comparative genomics. Genome Res 2000;10:473–82.
  • Wu DA, Bu X, Warden CH, et al. Quantitative trait locus mapping of human blood pressure to a genetic region at or near the lipoprotein lipase gene locus on chromosome 8p22. J Clin Invest 1996;97:2111–8.
  • Julier C, Delepine M, Keavney B, et al. Genetic susceptibility for human familial essential hypertension in a region of homology with blood pressure linkage on rat chromosome 10. Hum Mol Genet 1997;6:2077–85.
  • Ehret GB. Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr Hypertens Rep 2010;12:17–25.
  • Levy D, Ehret GB, Rice K, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet 2009;41:677–87.
  • Newton-Cheh C, Johnson T, Gateva V, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 2009;41:666–76.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.