332
Views
114
CrossRef citations to date
0
Altmetric
Review Article

The Consequences of Traumatic Brain Injury on Cerebral Blood Flow and Autoregulation: A Review

, &
Pages 299-332 | Published online: 03 Jul 2009

References

  • Selecki B R, Simpson D A, Vanderfield O K, Ring I, Sewell M K. The epidemiology of head injury in New South Wales. Proceedings of the 5th Annual Brain Impairment Conference. Lidcombe Hospital, Sydney 1982, (Abstr.)
  • Frankowski R F, Annegers J F, Whitman S. Epidemiology and descriptive studies Pt 1: the descriptive epidemiology of head trauma in the United States. In Central Nervous System Trauma Status Report, D. P Becker, J. T Povlishock. National Institute of Health, Bethesda 1985; 33–43
  • Waxweiler R J, Thurman D, Sniezek J, Sosin D, O'Neil J. Monitoring the impact of traumatic brain injury: a review and update. J Neurotrauma 1995; 12: 509–516
  • Kraus J F. Epidemiology of head injury. In Head Injury, P.R Cooper. Williams & Wilkins, Baltimore 1993; 1–25
  • Sosin D M, Sniezik J E, Waxweiler R J. Trends in death associated with traumatic brain injury 1979 through 1992 1995; 273: 1778–1780, JAMA
  • Kraus J F, Black M A, Hessol N, Ley P, Rokaw W, Sullivan C, Bowers S, Knowlton S, Marshall L. The incidence of acute brain injury and serious impairment in a defined population. AmJEpidemiol 1984; 119: 186–201
  • Kraus J. F, Nourjah P. The epidemiology of mild uncomplicated brain injury. J Trauma 1988; 28: 1637–1643
  • Max W, MacKenzie E J, Rice D P. Head injuries: costs and consequences. J Head Trauma Rehab 1991; 6: 76–91
  • Fearnside M R, Cook R J, McDougall P, Lewis W A. The Westmead head injury project. Physical and social outcomes following severe head injury. Br J Neurosurg 1993; 7: 643–650
  • Gennarelli T A. Animate models of human head injury. J Neurotrauma 1994; 11: 357–368
  • Povlishock J T, Hayes R L, Michel M E, McIntosh T K. Workshop on animal models of traumatic brain injury. J Neurotrauma 1994; 11: 723–732
  • Marmarou A, Foda M A. A, Brinkvan den W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats Part 1: Pathophysiology and biomechanics. J Neurosurg 1994; 80: 291–300
  • Soares H D, Thomas M, Cloherty K, McIntosh T K. Development of prolonged focal cerebral edema and regional cation changes following experimental brain injury in the rat. J Neurochem 1992; 58: 1845–1852
  • Yamakami I, McIntosh T K. Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheres. J Cereb Blood Flow Metab 1989; 9: 117–124
  • Povlishock J T, Becker D P, Cheng C L. Y, Vaughan G W. Axonal changes in minor head injury. J Neuropath Exp Neurol 1983; 42: 225–242
  • Teasdale G, Jennett B. Assessment of coma and impaired consciousness. Lancet 1974; 2: 81–84
  • Hamm R J, Dixon C E, Gbadebo D M, Singha A K, Jenkins L W, Lyeth E G, Hayes R L. Cognitive deficits following traumatic brain injury produced by controlled cortical impact injury. J Neurotrauma 1992; 9: 11–20
  • Baldwin S A, Fugaccia I, Brown D R, Brown L V, Scheff S W. Blood-brain barrier breach following cortical contusion in the rat. J Neurosurg 1996; 85: 476–481
  • Dixon C E, Clifton G L, Lighthall J W, Yaghami A A, Hayes R L. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 1991; 39: 253–262
  • Cooper P R. Delayed brain injury: secondary insults. In Central Nervous System Status Report, D. P Becker, J. T Povlishock. William Byrd Press, Bethesda 1985; 217–228, NIH
  • Faden A I, Demediuk P, Panter S S, Vink R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 1989; 244: 798–800
  • Katayama Y, Becker D P, Tamura T, Hovda D A. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 1990; 73: 889–900
  • Nilsson P, Hillered L, Ponten U, Ungerstedt U. Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J Cereb Blood Flow Metab 1990; 10: 631–637
  • Palmer A M, Marion D W, Botscheller M L, Swedlow P E, Stryen S D, DeKosky S T. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J Neurochem 1993; 61: 2015–2024
  • Shapira Y, Yadid G, Cotev S, Shohami E. Accumulation of calcium in the brain following head trauma. Neurol Res 1989; 11: 169–171
  • Hovda D A, Yoshino A, Fireman I, Smith M, Becker D P. Intracellular calcium accumulates for at least 48 hours following fluid percussion brain injury in the rat. Proc Am Assoc Neurol Surg 1991; 1: 452, (Abstr.)
  • Vink R, McIntosh T K, Demediuk P, Weiner M W, Faden A I. Decline in intracellular free magnesium concentration is associated with irreversible tissue injury following brain trauma. J Biol Chem 1988; 263: 757–761
  • Prasad M R, Tzigaret C, Smith D H, Scares H, McIntosh T K. Decreased alpha-adrenergic receptors after experimental brain injury. J Neurotrauma 1993; 9: 269–279
  • McIntosh T K, Hayes R L, DeWitt D S, Agura V, Faden A I. Endogenous opioids may mediate secondary damage after experimental brain injury. Am J Physiol 1987; 253: E565–E574
  • DeWitt D, Kong D L, Lyeth B, Jenkins L, Hayes R, Wooten E D, Prough D. Experimental traumatic brain injury elevates brain prostaglandin E2 and thromboxane B2 levels in rats. J Neurotrauma 1988; 5: 303–313
  • Ellis E, Wright K, Wei E, Kontos H. Cyclo-oxygenase products of arachidonic acid metabolism in cat cerebral cortex after experimental concussive brain injury. J Neurochem 1981; 37: 892–896
  • Kontos H. A, Wei E P. Superoxide production in experimental brain injury. J Neurosurg 1986; 64: 803–807
  • Quattrocchi K B, Frank E H, Miller C H, MacDermott J P. A, Hein L, Frey L, Wagner F C. Suppression of cellular immune activity following severe head injury. J Neurotrauma 1990; 7: 77–87
  • Goodman J C, Robertson C S, Grossman R G, Narayan R K. Elevation of tumour necrosis factor in head injury. J Neuroimmunol 1990; 30: 213–217
  • McIntosh T K. Novel pharmacologic therapies in the treatment of experimental brain injury: a review. J Neurotrauma 1993; 10: 215–261
  • Doppenberg E. M R, Bullock R. Clinical neuro-protection trials in severe traumatic brain injury: lessons from previous studies. J Neurotrauma 1997; 14: 71–80
  • Chesnut R M, Marshall L F, Klauber M R, Blunt B A, Baldwin N, Eisenberg H M, Jane J A, Marmarou A, Foulkes M A. The role of secondary brain injury in determining outcome from severe head injury. J Trauma 1993; 34: 216–222
  • Ishige N, Pitts L H, Berry I, Carlson S G, Nishimura M C, Moseley M E, Weinstein P R. The effect of hypoxia on traumatic head injury in rats: alterations in neurologic function, brain edema, and cerebral blood flow. J Cereb Blood Flow Metab 1987; 7: 759–767
  • Jenkins L W, Moszynski D, Lyeth E G, Lewelt W, DeWitt D S, Allen A, Dixon C E, Povlishock J T. Increased vulnerability of the mildly traumatized brain to cerebral ischemia: the use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injury. Brain Res 1989; 477: 211–224
  • Cherian L, Robertson C S, Goodman J C. Secondary insults increase injury after controlled cortical impact in rats. J Neurotrauma 1996; 13: 371–383
  • DeWitt D S, Jenkins L W, Prough D S. Enhanced vulnerability to secondary ischemic insults after experimental traumatic brain injury. New Horizons 1995; 3: 376–383
  • Harper S L, Bohlen H G, Rubin Y. Arterial and microvascular contributions to cerebral cortical autoregulation in rats. Am J Physiol 1984; 246: H17–H24
  • Kuschinsky W, Wahl M. Local chemical and neurogenic regulation of cerebral vascular resistance. Physiol Reviews 1978; 58: 656–689
  • Brian J E, Jr, Faraci P M, Heistad D D. Recent insights into the regulation of cerebral circulation. Clin Exp Pharmacol Physiol 1996; 23: 449–457
  • Lassen N A. Cerebral blood flow and oxygen consumption in man. Physiol Rev 1959; 39: 183–238
  • Edvinsson L, Owman C, Siesjo B. Physiological role of cerebrovascular sympathetic nerves in the autoregulation of cererbral blood flow. Brain Res 1976; 117: 519–523
  • Barry D I, Jarden J O, Paulson O B, Graham D I, Strandgaard S. Cerebrovascular aspects of converting-enzyme inhibition I: effects of intravenous captopril in spontaneously hypertensive and normotensive rats. J Hypertension 1984; 2: 589–597
  • Ekstrom-Jodal B, Haggendal E, Linder L E, Nilsson N J. Cerebral blood flow autoregulation at high arterial pressures and different levels of carbon dioxide tension in dogs. Eur Neurol 1971; 6: 6–10
  • Bayliss W M. On the local reaction of the arterial wall to changes of internal pressure. J Physiol 1902; 28: 220–231
  • Osol G, Halpern W. Myogenic properties of cerebral blood vessels from normotensive and hypertensive rats. Am J Physiol 1985; 249: H914–H921
  • McCarron J G, Osol G, Halpern W. Myogenic responses are independent of the endothelium in rat pressurized posterior cerebral arteries. Blood Vessels 1989; 26: 315–319
  • Harder D R. Pressure-dependent membrane deploarization in cat middle cerebral artery. Circ Res 1984; 55: 197–202
  • Golding E M, Robertson C S, Bryan R M, Jr. Comparison of the myogenic response in rat cerebral arteries of different calibers. Brain Res 1998; 785: 293–298
  • Meininger G. A, Davis M J. Cellular mechanisms involved in the vascular myogenic response. Am J Physiol 1992; 263: H647–H659
  • Gobiet W, Grote W, Bock W J. The relation between intracranial pressure mean arterial pressure and cerebral blood flow in patients with severe head injury. Acta Neurochir 1975; 32: 13–34
  • Langfitt T W, Obrist W D, Gennarelli T A, O'Connor M J, Weeme C A. Correlation of cerebral blood flow with outcome in head injured patients. Ann Surg 1977; 186: 411–414
  • Bruce C A, Raphaely R C, Goldberg A I, Zimmerman R A, Bilaniuk L T, Schut L, Khul D E. Pathophysiology treatment and outcome following severe head injury in children. Childs Brain 1979; 5: 174–191
  • Muizelaar J P, Marmarou A, DeSalles A A, Ward J D, Zimmerman R S, Li Z, Choi S C, Young H F. Cerebral blood flow and metabolism in severely head-injured children. Part 1: Relationship with GSC score, outcome, ICP, and PVI. J Neurosurg 1989; 71: 63–71
  • Robertson C S, Contant C F, Gokaslan Z L, Narayan R K, Grossman R G. Cerebral blood flow, arteriovenous oxygen difference, and outcome in head injured patients. J Neurol Neurosurg Psych 1992; 55: 594–603
  • Kelly D F, Martin N A, Kordestani R, Counelis G, Hovda D A, Bergsneider M, McBride D Q, Shalmon E, Herman D, Becker D P. Cerebral blood flow as a predictor of outcome following traumatic brain injury. J Neurosurg 1997; 86: 633–641
  • Nilsson B, Ponten U. Experimental head injury in the rat. Part 3: cerebral blood flow and oxygen consumption after concussive impact acceleration. J Neurosurg 1977; 47: 262–273
  • Muir J K, Boerschel M, Ellis E F. Continuous monitoring of posttraumatic cerebral blood flow using laser-doppler flowmetry. J Neurotrauma 1992; 9: 355–362
  • Bryan R M, Jr, Cherian L, Robertson C S. Regional cerebral blood flow after controlled cortical impact injury in rats. Anesth Analg 1995; 80: 687–695
  • Nilsson P, Gazelius B, Carlson H, Hillered L. Continuous measurement of changes in regional cerebral blood flow following cortical compression contusion trauma in rat. J Neurotrauma 1996; 13: 201–207
  • Yuan X, Prough D S, Smith T L, DeWitt D S. The effects of traumatic brain injury on regional cerebral blood flow in rats. J Neurotrauma 1988; 5: 289–301
  • Yamakami I, McIntosh T K. Alterations in regiohal cerebral blood flow following brain injury in the rat. J Cereb Blood Flow Metab 1991; 11: 655–660
  • Pfenninger E G, Reith A, Breitig D, Grunert A, Ahnefeld F W. Early changes of intracranial pressure, perfusion pressure, and blood flow after acute head injury. J Neurosurg 1989; 70: 774–779
  • Kochanek P M, Marion D W, Zhang W, Shiding J K, White M, Palmer A M, Clark R S. B, O'Malley M E, Styren S D, Ho C, DeKosky S T. Severe controlled cortical impact in rats: assessment of cerebral edema, blood flow, and contusion volume. J Neurotrauma 1995; 12: 1015–1025
  • Cherian L, Robertson C S, Contant C F, Jr, Bryan R M, Jr. Lateral cortical impact injury in rats: cerebrovascular effects of varying depth of cortical deformation and impact velocity. J Neurotrauma 1994; 11: 573–585
  • Rosner M J, Newsome H H, Becker D P. Mechanical brain injury: the sympathoadrenal response. J Neurosurg 1984; 61: 76–86
  • Shiozaki T, Taneda M, Kishikawa M, Iwai A, Sugimoto H, Yoshioka T, Sugimoto T. Transient and repetitive rises in blood pressure synchronized with plasma catecholamine increases after head injury. Report of two cases. J Neurosurg 1993; 78: 501–504
  • Andrews B T, Levy M L, Pitts L H. Implications of systemic hypotension for the neurological examination in patients with severe head injury. Surg Neurol 1987; 28: 419–422
  • Luerssen T G, Klauber M R, Marshall L F. Outcome from head injury related to patient's age. A longitudinal prospective study of adult and pediatric head injury. J Neurosurg 1988; 68: 409–416
  • Dixon C E, Lyeth B G, Povlishock J T, Findling R L, Hamm R J, Marmarou A, Young H F, Hayes R L. A fluid percussion model of experimental brain injury in the rat. J Neurosurg 1987; 67: 110–119
  • McIntosh T K, Vink R, Noble L J, Yamakami I, Femyak S E, Scares H, Faden A I. Traumatic brain injury in the rat: characterization of a lateral fluid percussion injury model. Neurosci 1989; 28: 233–244
  • Yuan X, Wade C E, Prough D S, DeWitt D S. Traumatic brain injury creates biphasic systemic hemodynamic and organ blood flow responses in rats. J Neurotrauma 1990; 7: 141–153
  • Wei E P, Dietrich W D, Povlishock J T, Navari R M, Kontos H A. Functional, morphological, and metabolic abnormalities of the cerebral microcirculation after concussive brain injury in cats. Circ Res 1980; 46: 37–47
  • Wei E P, Kontos H A, Dietrich W D, Povlishock J T, Ellis E F. Inhibition by free radical scavengers and by cyclooxygenase inhibitors of pial arteriolar abnormalities from concussive brain injury in cats. Circ Res 1981; 48: 95–103
  • Becker D P. Common Themes in Head Injury. In Textbook of Head Injury, D. P Becker, S. K Gudeman, W. B Saunders, Philadelphia 1989; 1–22
  • Nilsson P, Hillered L, Olsson Y, Sheardown M J, Hansen A J. Regional changes in interstitial K+and Ca2+levels following cortical compression contusion trauma in rats. J Cereb Blood Flow Metab 1993; 13: 183–192
  • Leao A A. P. Spreading depression of activity in the cerebral cortex. J Neurophysiol 1944; 7: 359–390
  • Cotman CW, Iversen L L. Excitatory amino acids in the brain-focus on NMDA receptors. TINS 1987; 10: 263–265
  • Armstead W M. Brain injury impairs ATP-sensitive K+channel in piglet cerebral arteries. Stroke 1997; 28: 2273–2279
  • Armstead W M. Role of impaired cAMP and calcium-sensitive K+channel function in altered cerebral hemodynamics following brain injury. Brain Res 1997; 768: 177–184
  • Roberts J K. M, Wade-Jardetzky N, Jardetzky O. Intracellular pH measurements by31P nuclear magnetic resonance. Influence of factors other than pH on31P chemical shifts. Biochem 1981; 20: 5389–5394
  • Vink R, McIntosh T K, Weiner M W, Faden A I. Effects of traumatic brain injury on cerebral high-energy phosphates and pH: a31P magnetic resonance spectroscopy study. J Cereb Blood Flow Metab 1987; 7: 563–571
  • DeSalles A F, Kontos H A, Becker D P, Yang M S, Ward J D, Moulton R, Gruemer H D, Lutz H, Maset A L, Jenkins L, Marmarou A, Muizelaar P. Prognostic significance of ventricular CSF lactic acidosis in severe head injury. J Neurosurg 1986; 65: 615–624
  • Cohen Y, Sanada T, Pitts L H, Chang L H, Nishimura M C, Weinstein P R, Litt L, James T L. Surface coil spectroscopic imaging: time and spatial evolution of lactate production following fluid percussion brain injury. Magn Reson Med 1991; 17: 225–236
  • Paschen W, Djuricic B, Mies G, Schmidt-Kastner R, Linn F. Lactate and pH in the brain: association and dissociation in different pathophysiological states. J Neurochem 1987; 48: 154–159
  • Wahl M, Deetjen P, Thurau K, Ingvar D H, Lassen N A. Micropuncture evaluation of the importance of perivascular pH for the arteriolar diameter on the brain surface. Pflugers Arch 1970; 316: 152–163
  • Cold G, Jensen F T, Malmros R. The effects of PaCO2reduction on regional cerebral blood flow in the acute phase of brain injury. Acta Anesth Scand 1977; 21: 359–367
  • Enevoldsen E. M, Jensen F T. Autoregulation and CO2responses of cerebral blood flow in patients with acute severe head injury. J Neurosurg 1978; 48: 689–703
  • Saunders M L, Miller J D, Stablein D, Allen G. The effects of graded experimental trauma on cerebral blood flow and responsiveness to CO2. J Neurosurg 1979; 51: 18–26
  • Lewelt W, Jenkins L W, Miller J D. Autoregulation of cerebral blood flow after experimental fluid percussion injury of the brain. J Neurosurg 1980; 53: 500–511
  • Ellis E F, Dodson L Y, Police R J. Restoration of cerebrovascular responsiveness to hyperventilation by the oxygen radical scavenger n-acetylcysteine following experimental traumatic brain injury. J Neurosurg 1991; 75: 774–779
  • Forbes M L, Hendrich K S, Kochanek P M, Williams D S, Schiding J K, Wisniewski S R, Kelsey S F, DeKosky S T, Graham S H, Marion D W, Ho C. Assessment of cerebral blood flow and CO2reactivity after controlled cortical impact by perfusion magnetic resonance imaging using arterial spin-labeling in rats. J Cereb Blood Flow Metab 1997; 17: 865–874
  • Kochanek P M, Clark R S, Obrist W D, Carcillo J A, Jackson E K, Mi Z, Wisniewski S R, Bell M J, Marion D W. The role of adenosine during the period of delayed cerebral swelling after severe traumatic brain injury in humans. Acta Neurochir-Suppl 1997; 70: 109–111
  • Bell M J, Kochanek P M, Carcillo J A, Zaichuan M I, Shiding J K, Wisniewski S R, Clark R S, Dixon C E, Marion D W, Jackson E. Interstitial adenosine, inosine, hypoxanthine are increased after experimental traumatic brain injury in the rat. J Neurotrauma 1998; 15: 163–170
  • Headrick J P, Bendall M R, Faden A I, Vink R. Dissociation of adenosine levels from bioenergetic state in experimental brain trauma: potential role in secondary injury. J Cereb Blood Flow Metab 1994; 14: 853–861
  • Povlishock J T, Becker D P, Sullivan H G, Miller J D. Vascular permeability alterations to horseradish peroxidase in experimental brain injury. Brain Res 1978; 153: 223–239
  • Kontos H. A, Wei E P. Endothelium-dependent responses after experimental brain injury. J Neurotrauma 1992; 9: 349–354
  • Ellison M D, Erb D E, Kontos H A, Povlishock J T. Recovery of endothelium-dependent relaxation after fluid-percussion brain injury in cats. Stroke 1989; 20: 911–917
  • Bukoski R D, Wang S N, Bian K, DeWitt D S. Traumatic brain injury does not alter cerebral artery contractility. Am J Physiol 1997; 272: H1406–H1411
  • Golding E M, Steenberg M L, Cherian L, Marrelli S P, Robertson C S, Bryan R M, Jr. Endothelial-mediated dilations following severe controlled cortical impact injury in the rat middle cerebral artery. J Neurotrauma 1998; 15: 633–642
  • Jacob T D, Ochoa J B, Udekwu A O, Wilkinson J, Murray T, Billiar T R, Simmons R L, Marion D W, Peitzman A B. Nitric oxide production is inhibited in trauma patients. J Trauma 1993; 35: 590–596
  • Goodman J C, Tan D H, Ritter A M, Robertson C S. Cerebrospinal fluid nitrate levels following head injury. J Neurotrauma 1995; 12: 971
  • Sakamoto K, Fujisawa H, Koizumi H, Tsuchida E, Ito H, Sadamitsu D, Maekawa T. Effects of mild hypothermia on nitric oxide synthesis following contusion trauma in the rat. J Neurotrauma 1997; 14: 349–353
  • Cobbs C S, Fenoy A, Bredt D S, Noble L J. Expression of nitric oxide synthase in the cerebral microvasculature after traumatic brain injury in the rat. Brain Res 1997; 751: 336–338
  • DeWitt D S, Smith T S, Deyo D J, Miller K R, Uchida T, Prough D S. L-arginine and superoxide dismutase prevent or reverse cerebral hypoperfusion after fluid-percussion traumatic brain injury. J Neurotrauma 1997; 14: 223–233
  • Reyes A A, Karl I E, Klahr S. Role of arginine in health and renal disease. Am J Physiol 1994; 267: F331–F346
  • Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. TINS 1997; 20: 132–139
  • Bonfoco E, Krainc D., Ankarcrona M., Nicotera P, Lipton S A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Nat Acad Sci 1995; 92: 7162–7166
  • Clifton G L, Robertson C S, Kyper K, Taylor A A, Dhekne R D, Grossman R G. Cardiovascular response to severe head injury. J Neurosurg 1983; 59: 447–454
  • Hamill R W, Woolf P D, McDonald J V, Lee L A, Kelly M. Catecholamines predict outcome in traumatic brain injury. Ann Neurol 1987; 21: 438–443
  • Woolf P D, Hamill R W, Lee L A, Cox C, McDonald J. The predictive value of catecholamines in assessing outcome in traumatic brain injury. J Neurosurg 1987; 66: 875–882
  • McIntosh T K, Yu T, Gennarelli T A. Alterations in regional brain catecholamine concentrations after experimental brain injury in the rat. J Neurochem 1994; 63: 1426–1433
  • Inoue I, McHugh M, Pappius H M. The effect of α-adrenergic receptor blockers prazosin and yohimbine on cerebral metabolism and biogenic amine content of traumatized brain. J Cereb Blood Flow Metab 1991; 11: 242–252
  • Feeney D M, Sutton R L, Boyeson M G, Hovda D A, Dail W G. The locus coeruleus and cerebral metabolism: recovery of function after cortical injury. Physiol Psychol 1985; 13: 197–205
  • Kogure K, Scheinberg P, Kishikawa H, Utsunomiya Y, Busto R. Adrenergic control of cerebral blood flow and energy metabolism in the rat. Stroke 1979; 10: 179–184
  • Weiss H. R, Milton E B. Role of α-adrenoceptors in the control of the cerebral blood flow response to hypoxia. J Pharmacol 1988; 148: 107–113
  • Woodward D J, Moises H C, Waterhouse B D, Hoffer B J, Freedman R. Modulatory actions of norepinephrine in the central nervous system. Fed Proc 1979; 38: 2109–2116
  • Stanton P K, Mody I, Heinemann U. A role for N-methyl-D-aspartate receptors in norepinephrine-induced long-lasting potentiation in the dentate gyrus. Exp Brain Res 1989; 77: 517–530
  • Nayak A K, Mohanty S, Singh R K, Chansouria J P. Plasma biogenic amines in head injury. J Neurol Sci 1980; 47: 211–219
  • Markianos M, Seretis A, Kotsou A, Christopoulos M. CSF neurotransmitter metabolites in comatose head injury patients during changes in their clinical state. Acta Neurochir 1996; 138: 57–59
  • Cold G E. Cerebral blood flow in acute head injury. The regulation of cerebral blood flow and metabolism during the acute phase of head injury and its significance for therapy. Acta Neurochir Suppl Wien 1990; 49: 1–64
  • Cold G. E, Jensen F T. Cerebral autoregulation in uncounscious patients with brain injury. Acta Anaesthesiol Scand 1978; 22: 270–280
  • Muizelaar J P, Ward J D, Marmarou A, Newlon P G, Wachi A. Cerebral blood flow and metabolism in severely head-injured children. Part 2: Autoregulation. J Neurosurg 1989; 71: 72–76
  • Paulson O B, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Revs 1990; 2: 161–192
  • Junger E G, Newell D W, Grant G. A, Avellino AM., Ghatan S, Douville C M, Lam A M, Aaslid R, Winn H R. Cerebral autoregulation following minor head injury. J Neurosurg 1997; 86: 425–432
  • Czosnyka M, Smielewski P, Kirkpatrick P, Menon D K, Pickard J D. Monitoring of cerebral autoregulation in head-injured patients. Stroke 1996; 27: 1829–1834
  • DeWitt D S, Prough D S, Taylor C L, Whitley J M, Deal D D, Vines S M. Regional cerebrovascular responses to progressive hypotension after traumatic brain injury in cats. Am J Physiol 1992; 263: H1276–H1284
  • Proctor H J, Palladino G W, Fillipo D. Failure of autoregulation after closed head injury: an experimental model. J Trauma 1988; 28: 347–351
  • Lewelt W, Jenkins L W, Miller J D. Effects of experimental fluid-percussion injury of the brain on cerebrovascular reactivity to hypoxia and to hypercapnia. J Neurosurg 1982; 56: 332–338
  • Reilly P L, Farrar J K, Miller J D. Vascular reactivity in the primate brain after acute cryogenic injury. J Neurol Neurosurg Psych 1977; 40: 1092–1101
  • Bruce D A, Langfitt T W, Miller J D, Schutz H, Vapalahti M P, Stanek A, Goldberg H I. Regional cerebral blood flow, intracranial pressure, and brain metabolism in comatose patients. J Neurosurg 1973; 38: 131–144
  • Miller J D, Garibi J, North J B, Teasdale G M. Effects of increased arterial pressure on blood flow in the damaged brain. J Neurol. Neurosurg. Psych 1975; 38: 657–665
  • Wang Q, Paulson O B, Lassen N A. Effect of nitric oxide blockade by NG-nitro-L-arginine on cerebral blood flow response to changes in carbon dioxide tension. J Cereb Blood Flow Metab 1992; 12: 947–953
  • Wang Q, Paulson O B, Lassen N A. Is autoregulation of cerebral blood flow in rats influenced by nitro-L-arginine a blocker of the synthesis of nitric oxide?. Acta Physiol Scand 1992; 145: 297–298
  • Buchanan J. E, Phillis J W. The role of nitric oxide in the regulation of cerebral blood flow. Brain Res 1993; 610: 248–255
  • Takahashi S, Cook M, Jehle J, Kennedy C, Sokoloff L. Preservation of autoregulatory cerebral vasodilator responses to hypotension after inhibition of nitric oxide synthase. Brain Res 1995; 678: 21–28
  • McCulloch J, Edvinsson L. Cerebrovascular smooth muscle reactivity, a critical appraisal of in vitro and in situ techniques. J Cereb Blood Flow Metab 1984; 4: 129–139
  • Compton J. S, Teddy P J. Cerebral arterial vasospasm following severe head injury: a transcranial Doppler study. Br J Neurosurg 1987; 1: 435–439
  • Cipolla M J, Porter J M, Osol G. High glucose concentrations dilate cerebral cerebral arteries and diminish myogenic tone through an endothelial mechanism. Stroke 1997; 28: 405–411
  • Cipolla M J, McCall A L, Lessov N, Porter J M. Reperfusion decreases myogenic reactivity and alters middle cerebral artery function after focal cerebral ischemia in rats. Stroke 1997; 27: 2287–2291
  • Bryan R M, Jr, Eichler M Y, Swafford M W. G, Johnson T D, Suresh M S, Childres W F. Stimulation of α2adrenoceptors dilates the rat middle cerebral artery. Anesthesiology 1996; 85: 82–90
  • Hamer J, Hoyer S, Stoeckel H, Alberts E, Weinhardt F. Cerebral blood flow and cerebral metabolism in acute increase of intracranial pressure. Acta Neurochir 1973; 28: 95–110
  • Lassen N A. Control of cerebral circulation in health and disease. Circ Res 1974; 34: 749–760
  • Marshall W J. S, Jackson J L. F, Langfitt T W. Brain swelling caused by trauma and hypertension. Arch Neurol 1969; 21: 545–553
  • Lang E. W, Chesnut R M. Intracranial pressure and cerebral perfusion pressure in severe head injury. New Horizons 1995; 3: 400–409
  • Unterberg A W, Kiening K L, Hartl R, Bardt T, Sarrafzadeh A S, Lanksch W R. Multimodal monitoring in patients with head injury: evaluation of the effects of treatment on cerebral oxygenation. J Trauma 1997; 42: S32–S37
  • Muizelaar J P, Lutz H A, Becker D P. Effect of mannitol on ICP and CBF and correlation with pressure autoregulation in severely head injured patients. J Neurosurg 1984; 61: 700–706
  • Wahl M, Schilling L. Regulation of cerebral blood flow- a brief review. Acta Neurochir 1993; 59: 3–10

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.