210
Views
28
CrossRef citations to date
0
Altmetric
Research Article

Silibinin induces protective superoxide generation in human breast cancer MCF-7 cells

, , , , , & show all
Pages 90-100 | Received 11 Jul 2009, Published online: 08 Dec 2009

References

  • Pradhan SC, Girish C. Hepatoprotective herbal drug, sily-marin from experimental pharmacology to clinical medicine. Indian J Med Res 2006;124:491–504.
  • Kosina P, Kren V, Gebhardt R, Grambal F, Ulrichova J, Walterova D. Antioxidant properties of silybin glycosides. Phytother Res 2002;16:S33–S39.
  • Comelli MC, Mengs U, Schneider C, Prosdocimi M. Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy. Integr Cancer Ther 2007;2:120–129.
  • Tager M, Dietzmann J, Thiel U, Hinrich Neumann K, Ansorge S. Restoration of the cellular thiol status of peritoneal macrophages from CAPD patients by the flavonoids silibinin and silymarin. Free Radic Res 2001;34:137–151.
  • Comoglio A, Leonarduzzi G, Carini R, Busolin D, Basaga H, Albano E, Tomasi A, Poli G, Morazzoni P, Magistretti MJ. Studies on the antioxidant and free radical scavenging properties of IdB 1016 a new flavanolignan complex. Free Radic Res Commun 1990;11:109–115.
  • Ramasamy K, Agarwal R. Multitargeted therapy of cancer by silymarin. Cancer Lett 2008;269:352–362.
  • Wang HJ, Tashiro S, Onodera S, Ikejima T. Inhibition of insulin-like growth factor 1 receptor signaling enhanced silibinin-induced activation of death receptor and mitochon–drial apoptotic pathways in human breast cancer MCF-7 cells. J Pharmacol Sci 2008;107:260–269.
  • Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009;417:1–13.
  • Boveris A. Mitochondrial production of superoxide radical and hydrogen peroxide. Adv Exp Med Biol 1977;78:67–82.
  • Soller M, Dröse S, Brandt U, Brüne B, von Knethen A. Mechanism of thiazolidinedione-dependent cell death in Jurkat T cells. Mol Pharmacol 2007;71:1535–1544.
  • Dong LF, Low P, Dyason JC, Wang XF, Prochazka L, Witting PK, Freeman R, Swettenham E, Valis K, Liu J, Zobalova R, Turanek J, Spitz DR, Domann FE, Scheffler IE, Ralph SJ, Neuzil J. Alpha-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochon drial respiratory complex II. Oncogene 2008;27:4324–4335.
  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996;86:147–157.
  • Martin KR, Barrett JC. Reactive oxygen species as double–edged swords in cellular processes: low–dose cell signaling versus high–dose toxicity. Hum Exp Toxicol 2002;21:71–75.
  • Lebel CP, Bondy SC. Sensitive and rapid quantitation of reactive oxygen species in rat synaptosomes. Neurochem Int 1990;17:435–440.
  • Ji JP, Wu ZB, Liu QS, Zhang YS, Ye M, Li MJ. An ultramicro-analytic and rapid method for determination of superoxide dismutase activity. J Nanjing Railway Med Coll 1991;10:27–30.
  • Bunting JR, Phan TV, Kamali E, Dowben RM. Fluorescent cationic probes of mitochondria. Metrics and mechanism of interaction. Biophys J 1989;56:979–993.
  • Fehér J, Láng I, Nékám K, Csomós G, Müzes G, Deák G. Effect of silibinin on the activity and expression of superoxide dismutase in lymphocytes from patients with chronic alco holic liver disease. Free Radic Res Commun 1987;3:373–377.
  • Skulachev VP Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 1998;423:275–280.
  • Petersen LC. The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase. Biochim Biophys Acta 1977;460:299–307.
  • Galkin A, Brandt U. Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarro–wia lipolytica. J Biol Chem 2005;280:30129–30135.
  • Kussmaul L, Hirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci 2006;103:7607–7612.
  • Holland PC, Clark MG, Bloxham DP, Lardy HA. Mechan ism of action of the hypoglycemic agent diphenyleneiodo–nium. J Biol Chem 1973;248:6050–6056.
  • Okun JG, Lummen P, Brandt U. Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:ubiquinone oxidoreductase). J Biol Chem 1999;274:2625–2630.
  • Xu JX, King TE. Two-site property of thenoyltrifluoroace– tone inhibiting succinate-ubiquinone reductase. Sci China B 1992;35:162–168.
  • Thierbach G, Kunze B, Reichenbach H, Hofle G. The mode of action of stigmatellin, a new inhibitor of the cytochrome b–cl segment of the respiratory chain. Biochim Biophys Acta 1984;765:227–235.
  • Tsujimoto Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 1998;3:697–707.
  • Li D, Ueta E, Kimura T, Yamamoto T, Osaki T Reactive oxygen species (ROS) control the expression of Bcl-2 family proteins by regulating their phosphorylation and ubiquitination. Cancer Sci 2004;95:644–650.
  • Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 1998;60:619–642.
  • Liu SS. Generating, partitioning, targeting and functioning of superoxide in mitochondria. Biosci Rep 1997;17:259–272.
  • de Laszlo SE, Visco D, Agarwal L, Chang L, Chin J, Croft G, Forsyth A, Fletcher D, Frantz B, Hacker C, Hanlon W, Harper C, Kostura M, Li B, Luell S, MacCoss M, Mantlo N, O’Neill EA, Orevillo C, Pang M, Parsons J, Rolando A, Sahly Y, Sidler K, O’Keefe SJ. Pyrroles and other heterocycles as inhibitors of p38 kinase. Bioorg Med Chem Lett 1998;8:2689–2694.
  • Flaig TW, Gustafson DL, Su LJ, Zirrolli JA, Crighton F, Harrison GS, Pierson AS, Agarwal R, Glode LM. A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Invest New Drugs 2007;25:139–146.
  • Pocernich CB, La Fontaine M, Butterfield DA. In–vivo glutathione elevation protects against hydroxyl free radical–induced protein oxidation in rat brain. Neurochem Int 2000;36:185–191.
  • Ross D. Glutathione, free radicals and chemotherapeutic agents. Mechanisms of free-radical induced toxicity and glutathione-dependent protection. Pharmacol Ther 1988;37:231–249.
  • Hall RD, Chignell CF. Steady-state near-infrared detection of singlet molecular oxygen: a Stern-Volmer quenching experi ment with sodium azide. Photochem Photobiol 1987;45:459–464.
  • Mira L, Silva M, Manso CF. Scavenging of reactive oxygen species by silibinin dihemisuccinate. Biochem Pharmacol 1994;48:753–759.
  • Fu H, Lin M, Muroya Y, Hata K, Katsumura Y, Yokoya A, Shikazono N, Hatano Y. Free radical scavenging reactions and antioxidant activities of silybin: mechanistic aspects and pulse radiolytic studies. Free Radic Res 2009;43:887–897.
  • Kharbanda S, Pandey P, Schofield L, Israels S, Roncinske R, Yoshida K, Bharti A, Yuan ZM, Saxena S, Weichselbaum R, Nalin C, Kufe D. Role for Bcl–xL as an inhibitor of cytosolic cytochrome c accumulation in DNA damage-induced apoptosis. Proc Natl Acad Sci USA 1997;94:6939–6942.
  • Fiebig AA, Zhu W, Hollerbach C, Leber B, Andrews DW Bcl–xL is qualitatively different from and ten times more effective than Bcl-2 when expressed in a breast cancer cell line. BMC Cancer 2006;6:213.
  • Aronis A, Komarnitsky R, Shilo S, Tirosh O. Membrane depolarization of isolated rat liver mitochondria attenuates permeability transition pore opening and oxidant production. Antioxid Redox Signal 2002;4:647–654.
  • Sieg DJ, Hauck CR, Schlaepfer DD. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J Cell Sci 1999;112:2677–2691.
  • Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD. FAK integrates growth–factor and integrin signals to promote cell migration. Nat Cell Biol 2000;2:249–256.
  • Liu W, Bloom DA, Cance WG, Kurenova EV, Golubovskaya VM, Hochwald SN. FAK and IGF-IR interact to provide survival signals in human pancreatic adenocarcinoma cells. Carcinogenesis 2008;29:1096–1107.
  • Hannay JA, Yu D. Silibinin: a thorny therapeutic for EGF–R expressing tumors? Cancer Biol Ther 2003;2:532–533.
  • Hsieh YS, Chu SC, Yang SF, Chen PN, Liu YC, Lu KH. Silibinin suppresses human osteosarcoma MG-63 cell invasion by inhibiting the ERK-dependent c-Jun/AP-1 induction of MMP–2. Carcinogenesis 2007;28:977–987.
  • Burdon RH. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 1995;18:775–794.
  • Kabe Y, Ando K, Hirao S, Yoshida M, Handa H. Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 2005;7:395–403.
  • Schreck R, Albermann K, Baeuerle PA. Nuclear factor kB: an oxidative stress responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun 1992;17:221–237.
  • Hsieh HL, Sun CC, Wu CB, Wu CY, Tung WH, Wang HH, Yang CM. Sphingosine 1-phosphate induces EGFR expression via Akt/NF-kappaB and ERK/AP-1 pathways in rat vascular smooth muscle cells. J Cell Biochem 2007;103:1732–1746.
  • Nakai K, Yoneda K, Igarashi J, Moriue T, Kosaka H, Kubota Y. Angiotensin II enhances EGF receptor expression levels via ROS formation in HaCaT cells. J Dermatol Sci 2008;51:181–189.
  • Araujo AS, Enzveiler AT, Schenkel P, Fernandes TR, Ribeiro MF, Partata WA, Llesuy S, Bello-Klein A. Oxidative stress activates insulin-like growth factor I receptor protein expression, mediating cardiac hypertrophy induced by thyroxine. Mol Cell Biochem 2007;303:89–95.
  • Delafontaine P, Ku L. Reactive oxygen species stimulate insulin-like growth factor I synthesis in vascular smooth muscle cells. Cardiovasc Res 1997;33:216–222.
  • Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regula tion by mitogen-activated protein kinase signal transduction pathways. J Mol Med 1996;74:589–607.
  • Pramanik R, Qi X, Borowicz S, Choubey D, Schultz RM, Han J, Chen G. p38 isoforms have opposite effects on AP-1-dependent transcription through regulation of c-Jun. The determinant roles of the isoforms in the p38 MAPK signal specificity. J Biol Chem 2003;278:4831–839.
  • Kulisz A, Chen N, Chandel NS, Shao Z, Schumacker PT Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am J Physiol Lung Cell Mol Physiol 2002;282:L1324–L1329.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.