138
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Protective role of ortho-substituted Mn(III) N-alkylpyridylporphyrins against the oxidative injury induced by tert-butylhydroperoxide

, , , , , , & show all
Pages 430-440 | Received 30 Oct 2009, Published online: 27 Jan 2010

References

  • Halliwell B, Gutterdige JMC. Free radicals in biology and medicine. 4th ed. New York: Oxford University Press; 2007.
  • Fridovich I. Superoxide ion radical, superoxide dismutases and related matters. J Biol Chem 1997;272:18515–18517.
  • Fridovich I. Fundamental aspects of reactive oxygen species, or what's the matter with oxygen. Ann N Y Acad Sci 1999;893:13–18.
  • McCord J. Superoxide dismutase, lipid peroxidation and bell-shaped dose response curves. Dose Response 2008;6:223–238.
  • Zhao Y, Xue Y, Oberley TD, Kiningham KK, Lin SM, Yen HC, Majima H, Hines J, StClair D. Overexpression of manganese superoxide dismutase suppresses tumor formation by modulation of activator protein-1 signaling in a multistage skin carcinogenesis model. Cancer Res 2001;61:6082–6088.
  • Zhao Y, Kiningham KK, Lin SM, StClair DK. Overexpression of MnSOD protects murine fibrosarcoma cells (FSa-II) from apoptosis and promotes a differentiation program upon treatment with 5-azacytidine: involvement of MAPK and NFka-ppaB pathways. Antioxid Redox Signal 2001;3:375–386.
  • Weydert CJ, Waugh TA, Ritchie JM, Iyer KS, Smith JL, Li L, Spitz DR, Oberley LW. Overexpression of manganese or copper-zinc superoxide dismutase inhibits breast cancer growth. Free Radic Biol Med 2006;41:226–237.
  • Day BJ. Catalytic antioxidants: a radical approach to new therapeutics. Drug Discov Today 2004;9:557–566.
  • Batinic-Haberle I, Reboucas JS, Spasojevic I. Superoxide dismutase mimics: their superoxide dismuting ability in aqueous solutions and protective effects in oxidative stress injuries in vitro and in vivo. Antiox Redox Signal 2009;under revision.
  • Batinic-Haberle I, Benov L, Spasojevic I, Fridovich I. The ortho effect makes manganese(III) meso-tetrakis-(N-methyl-pyridinium-2-yl)porphyrin a powerful and potentially useful superoxide dismutase mimic. J Biol Chem 1998;273:24521–24528.
  • Batinic-Haberle I, Spasojevic I, Hambright P, Benov L, Crumbliss AL, Fridovich I. Relationship among redox potentials, proton dissociation constants of pyrrolic nitrogens, and in vitro and in vivo superoxide dismutating activities of manganese(III) and iron(III) water-soluble porphyrins. Inorg Chem 1999;38:4011–4022.
  • Batinic-Haberle I, Spasojevic I, Stevens RD, Hambright P, Fridovich I. Manganese(III) meso-tetrakis(ortho-N-alkylpyridyl) porphyrins. Synthesis, characterization and catalysis of O2- dis-mutation. J Chem Soc, Dalton Trans 2002;2689–2696.
  • Riley DP, Henke SL, Lennon PJ, Weiss RH, Neumann WL, Rivers WJ Jr, Aston KW, Sample KR, Rahman H, Ling CS, Shieh JJ, Busch DH, Szulbinksi W. Synthesis, characterization, and stability of manganese(II) C-substituted 1,4,7,10,13-pentaazacyclopentadecane complexes exhibiting superoxide dismutase activity. Inorg Chem 1996;35:5213–5231.
  • Doctrow SR, Huffman K, Marcus CB, Tocco G, Malfroy E, Adinolfi CA, Kruk H, Baker K, Lazarowych N, Mascarenhas J, Malfroy B. Salen-manganese complexes as catalytic scavengers of hydrogen peroxide and cytoprotective agents: structure-activity relationship studies. J Med Chem 2002;45:4549–4558.
  • Goldstein S, Samuni A, Merenyi G. Reactions of nitric oxide, peroxynitrite, and carbonate radicals with nitroxides and their corresponding oxoammonium cations. Chem Res Toxicol 2004;17:250–257.Erratum in: Chem Res Toxicol 2004;17:1549.
  • Rebouças JS, DeFreitas-Silva G, Spasojević I, Idemori YM, Benov L, Batinić-Haberle I. Impact of electrostatics in redox modulation of oxidative stress by Mn porphyrins: protection of SOD-deficient Escherichia coli via alternative mechanism where Mn porphyrin acts as a Mn carrier. Free Radic Biol Med 2008;45:201–210.
  • Patel M, Day BJ. Metalloporphyrin class of therapeutic catalytic antioxidants. Trends Pharmacol Sci 1999;20:359–364.
  • Ferrer-Sueta G, Vitturi D, Batinic-Haberle I, Fridovich I, Goldstein S, Czapski G, Radi R. Reactions of manganese porphyrins with peroxynitrite and carbonate radical anion. J Biol Chem 2003;278:27432–27438.
  • Rabbani ZN, Spasojevic I, Zhang X, Moeller BJ, Haberle S, Vasquez-Vivar J, Dewhirst MW, Vujaskovic Z, Batinic-Haberle I. Antiangiogenic action of redox-modulating Mn(III) m eso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP5+, via suppression of oxidative stress in a mouse model of breast tumor. Free Radic Biol Med 2009;47:992–1004.
  • Zhao Y, Chaiswing L, Oberley TD, Batinić-Haberle I, St. Clair W, Epstein CJ, St. Clair D. A mechanism-based antioxidant approach for the reduction of skin carcinogenesis. Cancer Res 2005;65:1401–1405.
  • Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals and stress granules. Cancer Cell 2004;5:429–441.
  • Tse HM, Milton MJ, Piganelli JD. Mechanistic analysis of the immunomodulatory effects of a catalytic antioxidant on antigen-presenting cells: Implication for their use in targeting oxidation/reduction reactions in innate immunity. Free Radic Biol Med 2004;36:233–247.
  • Sheng H, Yang W, Fukuda S, Tse HM, Paschen W, Johnson K, Batinic-Haberle I, Crapo JD, Pearlstein RD, Piganelli J, Warner DS. Long-term neuroprotection from a potent redox-modulating metalloporphyrin in the rat. Free Radic Biol Med 2009;47:917–923.
  • Fernandes AS, Serejo J, Caspar J, Cabral MF, Bettencourt A, Rueff J, Castro M, Costa J, Oliveira NG. Oxidative injury in V79 Chinese hamster cells: protective role of the superoxide dismutase mimetic MnTM-4-PyP. Cell Biol Toxicol 2009, in press (doi: 10.1007/s10565-009-9120-3).
  • Spasojevic I, Batinic-Haberle I, Reboucas JS, Idemori YM, Fridovich I. Electrostatic contribution in the catalysis of 02-dismutation by superoxide dismutase mimics. MnlllTE-2-PyP5+ versus MnIIIBr8T-2-PyP+. J Biol Chem 2003;278:6831–6837.
  • Rebouças JS, Spasojevic I, Tjahjono DH, Richaud A, Méndez F, Benov L, Batinic-Haberle I. Redox modulation of oxidative stress by Mn porphyrin-based therapeutics: the effect of charge distribution. Dalton Trans 2008;1233–1242.
  • Okado-Matsumoto A, Batinic-Haberle I, Fridovich I. Complementation of SOD-deficient Escherichia coli by manganese porphyrin mimics of superoxide dismutase activity. Free Radic Biol Med 2004;37:401–410.
  • Kos I, Reboucas JS, DeFreitas-Silva G, Salvemini D, Vujaskovic Z, Dewhirst MW, Spasojevic I, Batinic-Haberle I. Lipophilicity of potent porphyrin-based antioxidants: comparison of ortho and meta isomers of Mn(III) N-alkylpyridyl-porphyrins. Free Radic Biol Med 2009;47:72–78.
  • Pollard JM, Reboucas JS, Durazo A, Kos I, Fike F, Panni M, Gralla EB, Valentine JS, Batinic-Haberle I, Gatti RA. Radio-protective effects of manganese-containing superoxide dismutase mimics on ataxia telangiectasia cells. Free Radic Biol Med 2009;47:250–260.
  • Nardini M, Pisu P, Gentili V, Natella F, Di Felice M, Piccolella E, Scaccini C. Effect of caffeic acid on ten-butyl hydroperox-ide-induced oxidative stress in U937. Free Radic Biol Med 1998;25:1098–1105.
  • Lee KJ, Choi CY, Chung YC, Kim YS, Ryu SY, Roh SH, Jeong HG. Protective effect of saponins derived from roots of Platy-codon grandiflorum on tert-butyl hydroperoxide-induced oxidative hepatotoxicity. Toxicol Lett 2004;147:271–282.
  • Macone A, Matarese RM, Gentili V, Antonucci A, Duprè S, Nardini M. Effect of aminoethylcysteine ketimine decarboxy-lated dimer, a natural sulfur compound present in human plasma, on tert-butyl hydroperoxide-induced oxidative stress in human monocytic U937 cells. Free Radic Res 2004;38:705–714.
  • Alia M, Ramos S, Mateos R, Bravo L, Goya L. Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2). J Biochem Mol Toxicol 2005;19:119–128.
  • Kanupriya, Prasad D, SaiRam M, Sawhney RC, Ilavazhagan G, Banerjee PK. Mechanism of tert-butylhydroperoxide induced cytotoxicity in U-937 macrophages by alteration of mitochondrial function and generation of ROS. Toxicol Vitro 2007;21:846–854.
  • Voloboueva LA, Liu J, Suh JH, Ames BN, Miller SS. (R)-α-Lipoic acid protects retinal pigment epithelial cells from oxidative damage. Invest Ophthalmol Vis Sci 2005;46:4302–1310.
  • Awe SO, Adeagbo ASO. Analysis of tert-butyl hydroperoxide induced constrictions of perfused vascular beds in vitro. Life Sci 2002;71:1255–1266.
  • Piret J-P, Arnould T, Fuks B, Chatelain P, Remacle J, Mchiels C. Mitochondria permeability transition-dependent tert-butylhydroperoxide-induced apoptosis in hepatoma HepG2 cells. Biochem Pharmacol 2004;67:611–620.
  • Sohn JH, Han K-L, Lee S-H, Hwang J-K. Protective effects of panduratin A against oxidative damage of tert-butylhydroperoxide in human HepG2 cells. Biol Pharm Bull 2005;28:1083–1086.
  • Chu C-Y, Tseng T-H, Hwang J-M, Chou F-P, Wang C-J. Protective effects of capillarisin on tert-butylhydroperoxide-induced oxidative damage in rat primary hepatocytes. Arch Toxicol 1999;73:263–268.
  • Hwang J-M, Wang C-J, Chou F-P, Tseng T-H, Hsieh Y-S, Lin W-L, Chu C-Y. Inhibitory effect of berberine on tert-butyl hydroperoxide-induced oxidative damage in rat liver. Arch Toxicol 2002;76:664–670.
  • Martín C, Martínez R, Navarro R, Ruiz-Sanz JI, Lacort M, Ruiz-Larrea MB. ten-Butyl hydroperoxide-induced lipid signaling in hepatocytes: involvement of glutathione and free radicals. Biochem Pharmacol 2001;62:705–712.
  • Park JE, Yang J-H, Yoon SJ, Lee J-H, Yang ES, Park J-W. Lipid peroxidation-mediated cytotoxicity and DNA damage in U937 cells. Biochimie 2003;84:1198–1204.
  • Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/ glutathione couple. Free Radic Biol Med 2001;30:1191–1212.
  • Fernandes AS, Gaspar J, Cabral MF, Caneiras C, Guedes R, Rueff J, Castro M, Costa J, Oliveira NG. Macrocyclic copper(II) complexes: superoxide scavenging activity, structural studies and cytotoxicity evaluation. J Inorg Biochem 2007;101:849–858.
  • Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 1969;27:502–522.
  • Anderson ME. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 1985;113:548–555.
  • Kamencic H, Lyon A, Paterson PG, Juurlink BHJ. Monochlo-robimane fluorometric method to measure tissue glutathione. Anal Biochem 2000;286:35–37.
  • Oliveira NG, Pingarilho M, Martins C, Fernandes AS, Vaz S, Martins V, Rueff J, Gaspar J. Cytotoxicity and chromosomal aberrations induced by acrylamide in V79 cells: role of glutathione modulators. Mutat Res 2009;676:87–92.
  • Kos I, Benov L, Spasojevic I, Rebouças JS, Batinic-Haberle I. High lipophilicity of meta Mn(III) N-alkylpyridylporphy-rin-based SOD mimics compensates for their lower antioxidant potency and makes them equally effective as ortho analogues in protecting SOD-deficient E. coli. J Med Chem 2009;52:7868–7872.
  • Chiba K, Kawakami K, Tohyama K. Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol Vitro 1998;12:251–258.
  • Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mtchell JB. Evaluation of a tetrazolium-based semiautomated colori-metric assay: assessment of chemosensitivity testing. Cancer Res 1987;47:936–942.
  • Mickuviene I, Kirveliene V, Juodka B. Experimental survey of non-clonogenic viability assays for adherent cells in vitro. Toxicol Vitro 2004;18:639–648.
  • Bloodsworth A, O’Donnell VB, Batinic-Haberle I, Chumley PH, Day BJ, Crow JP, Freeman BA. Manganese-porphyrin reactions with lipids and lipoproteins. Free Radic Biol Med 2000;28:1017–1029.
  • Day BJ, Batinic-Haberle I, Crapo JD. Metalloporphyrins are potent inhibitors of lipid peroxidation. Free Radic Biol Med 1999;26:730–736.
  • Müller L, Kikuchi Y, Probst G, Schechtman L, Shimada H, Sofuni T, Tweats D. ICH-Harmonised guidances on genoto-xicity testing of pharmaceuticals: evolution, reasoning and impact. Mutat Res 1999;436:195–225.
  • Tarpey MM, Wink DA, Grisham MB. Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 2004;286:R431–R444.
  • Peshavariya HM, Dusting GJ, Selemidis S. Analysis of dihy-droethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic Res 2007;41:699–712.
  • Pias EK, Ekshyyan OY, Rhoads CA, Fuseler J, Harrison L, Aw TY. Differential effects of superoxide dismutase isoform expression on hydroperoxide-induced apoptosis in PC-12 cells. J Biol Chem 2003;278:13294–13301.
  • Biswas SK, Rahman I. Environmental toxicity, redox signaling and lung inflammation: the role of glutathione. Mol Aspects Med 2009;30:60–76.
  • Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glu-tathione: implication in redox and detoxification. Clin Chim Acta 2003;333:19–39.
  • Ochi T. Mechanism for the changes in levels of glutathione upon exposure of cultured mammalian cells to tertiary-butylhydroperoxide and diamide. Arch Toxicol 1993;67:401–410.
  • Tormos C, Javier Chaves F, Garcia MJ, Garrido F, Jover R, O’ Connor JE, Iradi A, Oltra A, Oliva MR, Sáez GT. Role of glutathione in the induction of apoptosis and c-fos and c-jun mRNAs by oxidative stress in tumor cells. Cancer Lett 2004;208:103–113.
  • Kaur P, Kaur G, Bansal MR. Upregulation of API by tertiary butyl hydroperoxide induced oxidative stress and subsequent effect on spermatogenesis in mice testis. Mol Cell Biochem 2008;308:177–181.
  • Ochi T. Menadione causes increases in the level of glutathione and in the activity of y-glutamylcysteine synthetase in cultured Chinese hamster V79 cells. Toxicology 1996;112:45–55.
  • Eklow L, Moldeus P, Orrenius S. Oxidation of glutathione during hydroperoxide metabolism: a study using isolated hepatocytes and the glutathione reductase inhibitor l,3-bis(2-chloroefhyl)-l-nitrosourea. Eur J Biochem 1984;138:459–163.
  • Ozaki M, Aoki S, Masuda Y. K+-Linked release of oxidized glutathione induced by tert-butyl hydroperoxide in perfused rat liver is independent of lipid peroxidation and cell death. Jpn J Pharmacol 1994;65:183–191.
  • Hayes JD, McLellan LI. Glutathione and glutathione-depend-ent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 1999;31:273–300.
  • Batinic-Haberle I, Benov LT. An SOD mimic protects NADP+-dependent isocitrate dehydrogenase against oxidative inactivation. Free Radic Res 2008;42:618–624.
  • Pectu LG, Plaut GWE. NADP-specific isocitrate dehydrogenase in regulation of urea synthesis in rat hepatocytes. Biochem J 1980;190:581–592.
  • Liu H, Kehrer JP. The reduction of glutathione disulfide produced by t-butyl hydroperoxide in respiring mitochondria. Free Radic Biol Med 1996;20:433–142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.