816
Views
115
CrossRef citations to date
0
Altmetric
Research Article

Oxidative stress in patients with cardiovascular disease and chronic renal failure

, , &
Pages 346-356 | Received 13 Dec 2012, Accepted 20 Feb 2013, Published online: 25 Mar 2013

References

  • Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956;11:298–300.
  • Sugamura K, Keaney JF Jr. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 2011;51:978–992
  • Mozaffarian D, Wilson PW, Kannel WB. Beyond established and novel risk factors lifestyle risk factors for cardiovascular disease. Circul 2008;117:3031–3038.
  • US Renal Data System, USRDS. “Atlas of end-stage renal disease in the United States,” Annual Data Report, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Md, USA, 2009.
  • Manjunath G, Tighiouart H, Coresh J. Level of kidney function as a risk factor for cardiovascular outcomes in the elderly. Kidney Int, 2003;63:1121–1129.
  • Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. New Engl J Med 2004;351: 1296–1370.
  • Hambali Z, Ahmad Z, Arab S, Khazaai H. Oxidative stress and its association with cardiovascular disease in chronic renal failure patients. Indian J Nephrol 2003;21:21–25.
  • Culleton BF, Larson MG, Wilson PWF, Evans JC, Parfrey PS, Levy D. Cardiovascular disease and mortality in a community-based cohort with mild renal insufficiency. Kidney Int 1999;56:2214–2219.
  • Rhee SG. Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 1999;31:53–59.
  • Locatelli F, Canaud B, Eckardt KU, Stenvinkel P, Wanner C, Zoccali C. Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrol Dial Transplant 2003;18:1272–1280.
  • Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 2007;83: 84–92.
  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44–84.
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82:47–95.
  • Finkel T. Oxidant signals and oxidative stress. Curr Opin Cell Biol 2003;15:247–254.
  • Nathan C. Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signalling. J Clin Invest 2003;111:769–778.
  • Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007;87:245–313.
  • Kau N, Forman HJ. Reactive oxygen species in physiology and toxicology: from lipid peroxidation to transcriptional activation. In: Rhodes CR (ed.). Toxicology of the Human Environment: The Critical Role of Free Radicals. New York, NY: Taylor and Francis; 2000. pp. 310–335.
  • Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nat 1987;327:524–526.
  • Nordberg J, Arner ESJ. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001;31:1287–1312.
  • Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen. Annu Rev of Pharmacol and Toxicol 1999;39:67–101.
  • Chen ZH, Niki E. Two faces of lipid peroxidation products: the “Yin and Yang” principles of oxidative stress. J Exp Integr Med 2011;1:215–219.
  • Seis H. Oxidative stress: introductory remarks. In: Seis H (ed). Oxidative Stress. London: Academic Press; 1985. pp. 1–8.
  • Fearon IM, Faux SP. Oxidative stress and cardiovascular disease: novel tools give (free) radical insight. J Mol Cell Cardiol 2009;47:372–381.
  • Laksmi SVV, Padmaja G, Kuppusamy P, Kutala VK. Oxidative stress in cardiovascular disease. Indian J Biochem Biophys 2009;46:421–440.
  • Elahi MM, Kong YX, Matata BM. Oxidative stress as a mediator of cardiovascular disease. Oxid Med Cell Longev 2009;2:259–269.
  • Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet, 1989;2:997–1000.
  • Vanhoutte PM. Endothelium and control of vascular tone. Hypertens 1989;13:658–667.
  • Cai H, Harrison DG. Endothelial dysfunction in cardiovascular disease. The role of oxidant stress. Circ Res 2000;87:840–844.
  • Panza JA, Quyyumi AA, Brush JE Jr., Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990;323:22–27.
  • Zorio E, Gilabert-Estellés J, España F, Ramón LA, Cosín R, Estellés A. Fibrinolysis: the key to new pathogenic mechanisms. Curr Med Chem 2008;15:923–929.
  • Foncea R, Carvajal C, Almarza C, Leighton F. Endothelial cell oxidative stress and signal tansduction. Biol Res 2000;33:89–96.
  • Münzel T, Sinning C, Post F, Warnholtz A, Schulz E. Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction. Ann Med 2008;40:180–196.
  • Witte KK, Clark AL. Chronic heart failure and multiple micronutrient supplementation: realistic hope or idealistic conjecture? Heart Fail Mon 2005;4:123–129.
  • Nedeljkovic ZS, Gokce N, Loscalzo J. Mechanisms of oxidative stress and vascular dysfunction. Postgrad Med J 2003;79: 195–200.
  • Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circul J 2009;73:411–418.
  • Singh U, Jialal I. Oxidative stress and atherosclerosis. Pathophysiology, 2006;13:129–142.
  • Chisolm, GM, Steinberg D. The oxidative modification hypothesis of atherogenosis: an overview. Free Radic Biol Med 2008;28:1815–1826.
  • Stocker R, Keaney JF. Role of oxidative modifications in atherosclerosis. Physiological Review 2001;84:1381–1478.
  • Montezano AC, Touyz RM. Molecular mechanisms of hypertension-reactive oxygen species and antioxidants: a basic science update for the clinician. Can J Cardiol 2012; 28:288–295.
  • Suzuki H, DeLano FA, Parks DA, Jamshidi N, Granger DN, Ishii H, et al. Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats. Proc Natl Acad Sci U S A 1998;95:4754–4759.
  • Victor VM, Apostolova N, Herance R, Hernandez-Mijares A, Rocha M. Oxidative stress and mitochondrial dysfunction in atherosclerosis: mitochondria-targeted antioxidants as potential therapy. Curr Med Chem 2009;16:4654–4667.
  • Briones AM, Touyz RM. Oxidative stress and hypertension: current concepts. Curr Hypertens Rep 2010;12:135–142.
  • Hirata Y, Satanoka H. Hypertension and oxidative stress. J Jpn Med Assoc 2001;124:1575–1579.
  • Lassague B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003;285:R277–297.
  • Beg M, Gupta A, Khanna VN. Oxidative stress in essential hypertension and role of antioxidants. J Indian Acad Clin Med 2010;11:287–293.
  • Paravicini TM, Touyz RM. Redox signalling in hypertension. Cardiovas Re 2006;71:247–258.
  • Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch-Eur J Physiol 2010;459:923–939.
  • Nickenig G, Harrison DG. The AT1-type angiotensin receptor in oxidative stress ans atherogenesis. Circulation 2002; 105:393–396.
  • Zalba G, San Jose G, Moreno MU, Fortuno MA, Beaumont FJ, Diez J. Oxidative stress in arterial hypertension; role of NAD(P)H oxidase. Hypertension, 2001;38:1395–1399.
  • Wassmann S, Laufs U, Bäumer AT, Müller K, Konkol C, Sauer H, et al. Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression in Rac1 GTPase. Mol Pharmacol 2001; 59:646–654.
  • Touyz RM, Yao G, Schiffrin EL. c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2003;23:981–987.
  • Suh YA, Arnold RS, Lassègue B, Shi J, Xu X, Sorescu D, et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature 1999;401:459–461.
  • Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25:29–38.
  • Sorescu D, Griendling KK. Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 2002;8: 132–140.
  • Hamilton CA, Miller WH, Al-Benna S, Brosnan MJ, Drummond RD, McBride MW, et al. Strategies to reduce oxidative stress in cardiovascular disease. Clini Sci 2004; 106:219–234.
  • Mallat Z, Phi M, Chatel D, Maclouf J, Tedgui A. Elevated level of 8-iso-prostaglandin F2α in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circ 1998;97:1536–1539.
  • Murdoch CE, Zhang M, Cave AC, Shah AM. NAD(P)H oxidase-dependent redox signaling in cardiac hypertrophy, remodeling and failure. Cardiovas Res 2006;71:208–215.
  • Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Inves 2005;115:500–508.
  • Victor VM, Apostolova N, Herance R. Oxidative stress and mitochondrial dysfunction in atherosclerosis: mitochondria-targeted antioxidants as potential therapy. Curr Med Chem 2009;16:4654–4667.
  • Viel EC, Benkirane K, Javeshghani D. Xanthine oxidase and mitochondria contribute to vascular superoxide anion generation in DOCA-salt hypertensive rats. Am J Physiol Heart circ Physio 2008;295:H281–H288.
  • Tsutsui H, Kinugawa S, Matsushima S. Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovas Res 2009;81:449–456.
  • Siwik DA, Pagano PJ, Colucci WS. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 2001; 280:C53–C60.
  • Klebl BM, Ayoub AT, Pette D. Protein oxidation, tyrosine nitration, and inactivation of sarcoplasmic reticulum Ca2++-ATPase in low-frequency stimulated rabbit muscle. FEBS Letters 1998;422:381–384.
  • Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 2000;87:241–247.
  • Ahmed Z, Tang WHW. Pharmacologic strategies to target oxidative stress in heart failure. Curr Heart Fail Rep 2012;9:14–22.
  • Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFayden J, et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA 2008;300: 2123–2133.
  • Forstermann U. Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal. Biol Chem 2006;387:1521–1533.
  • Yasunari K, Maeda K, Minami M, Yoshikawa J. HMG-CoA reductase inhibitors prevent migration of human coronary smooth muscle cells through suppression of increase in oxidative stress. Arterioscler Thromb Vasc Biol 2001;21: 937–942.
  • Delbose S, Cristol JP, Descomps B, Mimran A, Jover B. Simvastatin prevents angiotensin II-induced cardiac alteration and oxidative stress. Hypertens 2002;40:142–147.
  • Hostetter TH. Chronic kidney disease predicts cardiovascular disease. New Engl J Med 2004;351:1344–1346
  • Beaglehole R, Ebrahim S, Reddy S, Voûte J, Leeder S. Chronic Disease Action Group. Prevention of chronic diseases: a call to action. Lancet 2007;370:2152–2157.
  • Getz GS, Reardon CA. Nutrition and cardiovascular disease. Arterioscler Thromb Vasc Biol 2007;27:2499–2506.
  • Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nat 1993;362:801–809.
  • Ross R. Atherosclerosis — an inflammatory disease. New Engl J Med 1999;340:115–126.
  • Redón J, Cea-Calvo L, Lozano JV, Fernández-Pérez C, Navarro J, Bonet A, et al. Kidney function and cardiovascular disease in the hypertensive population: the ERIC-HTA study. Journal of Hypertens 2006;2:663–669
  • Vaziri ND. Oxidative stress in uremia: nature, mechanisms, and potential consequences. Semin Nephrol 2004; 24:469–473.
  • Agarwal R. Chronic kidney disease is associated with oxidative stress independent of hypertension. Clin Nephrol 2004;61:377–383.
  • Diepeveen SH, Verhoeven GH, van der Palen J, Dikkeschei BL, van Tits LJ, et al. Oxidative stress in patients with end-stage renal disease prior to the start of renal replacement therapy. Nephron Clin Pract 2004;98:c3–c7.
  • Witko-Sarsat V, Friedlander M, Nguyen Khoa T, Capeillère-Blandin C, Nguyen AT, Canteloup S, et al. Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol 1998;161:2524–2532.
  • Ikizler TA, Morrow JD, Roberts LJ, Evanson JA, Becker B, Hakim RM, et al. Plasma F-isoprostane levels are elevated in chronic hemodialysis patients. Clin Nephrol 2002;58: 190–197.
  • Salomon RG, Batyreva E, Kaur K, Sprecher DL, Schreiber MJ, Crabb JW, et al. Isolevuglandinprotein adducts in humans: products of free radical- induced lipid oxidation through the isoprostane pathway. Biochimica et Biophysica Acta 2000;1485: 225–235.
  • Puchades Montesa MJ, González Rico MA, Solís Salguero MA, Torregrosa Maicas I, Tormos Muñoz MC, Saez Tormo G, et al. Study of oxidative stress in advanced kidney disease. Nefrologia 29:464–473.
  • Yilmaz MI, Saglam M, Caglar K, Cakir E, Sonmez A, Ozgurtas T, et al. The determinants of endothelial dysfunction in CKD: oxidative stress and asymmetric dimethylarginine. Am J Kidney Dis 2006;47:42–50.
  • Cottone S, Mulè G, Guarneri M, Palermo A, Lorito MC, Riccobene R, et al. Endothelin-1 and F2-isoprostane relate to and predict renal dysfunction in hypertensive patients. Nephrol Dial Transplant 2009;24:497–503.
  • Dounousi E, Papavasiliou E, Makedou A, Ioannou K, Katopodis KP, Tselepis A, et al. Oxidative stress is progressively enhanced with advancing stages of CKD. Am J Kidney Dis 2006;48:752–760.
  • Gosmanova EO, Le NA. Cardiovascular Complications in CKD Patients: role of Oxidative Stress. SAGE-Hindawi Access to Research Cardiology Research and Practice Volume, Article ID 156326, 8 pages.
  • Himmelfarb J, McMenamin E, McMonagle E. Plasma aminothiol oxidation in chronic hemodialysis patients. Kidney Int 2002;61:705–716.
  • Ceballos-Picot I, Witko-Sarsat V, Merad-Boudia M, Nguyen AT, Thévenin M, Jaudon MC, Zingraff J, et al. Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Radic Biol Med 1996; 21:845–853.
  • Ceballos-Picot I, Witko-Sarsat V, Merad-Boudia M, Nguyen AT, Thévenin M, Jaudon MC, Zingraff J, et al. Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Radic Biol Med 1996; 21:845–853.
  • Kim HJ, Vaziri ND. Contribution of impaired Nrf2–Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am Physiol Renal Physiol 2010;298: F662–671.
  • Miyata T, van Ypersele C, Kurokawa K, Baynes JW. Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl-stress” in long-term uremic complications. Kidney Int 1999;55:389–399.
  • Vaziri ND, Pahl MV, Crum A, Norris K. Effect of uremia on structure and function of immune system. J Renal Nutr 2012;22:149–156.
  • Tsakolos ND, Theoharides THC, Hendler ED, Goffinet J, Dwyer JM, Whisler RL. Immune defect in chronic renal impairment: evidence for defective regulation of lymphocyte response by macrophages from patients with chronic renal impairment on hemodialysis. Clin Exp Immunol 1986;63: 218–227.
  • Robinson MK, Rodrick ML, Jacobs DO, Rounds JD, Collins KH, Saporoschetz IB, et al. Glutathione depletion in rats impairs T-cell and macrophage immune function. Arch Surg 1993;128:29–34.
  • Peterson JD, Herzenberg LA, Vasquez K, Waltenbaugh C. Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. Proc Natl Acad Sci 1998;95: 3071–3076.
  • Charra B. Fluid balance, dry weight, and blood pressure in dialysis. Hemodial Int 2007;11:21–31.
  • Depner TA. Uremic toxicity: urea and beyond. Semin Dial 2001;14:246–251.
  • Di Micco L, Marzocco S, Sirico ML, Torraca S, Di Iorio B. Does daily dialysis improve hypertension in chronic haemodialysis patients?. Current Hypertension Review 2012;8: 291–295.
  • Akahoshi T, Kobayashi N, Hosaka S, Sekiyama N, Wada C, Kondo H. In-vivo induction of monocyte chemotactic and activating factor in patients with chronic renal failure. Nephrol Dial Transplant 1995;10:2244–2249.
  • Nakanishi I, Moutabarrik A, Okada N, Kitamura E, Hayashi A, Syouji T, et al. Interleukin-8 in chronic renal failure and dialysis patients. Nephrol Dial Transplant 1994;9:1435–1442.
  • Becker BN, Himmelfarb J, Henrich WL, Hakim RM. Reassessing the cardiac risk profile in chronic hemodialysis patients: a hypothesis on the role of oxidant stress and other non-traditional cardiac risk factors. J Am Soc Nephrol 1997;8:475–486.
  • Canaud B, Cristol J, Morena M, Leray-Moragues H, Bosc J. Imbalance of oxidants and antioxidants in haemodialysis patients. Blood Purif 1999;17:99–106.
  • Descamps-Latscha B, Herbelin A. Long-term dialysis and cellular immunity: a critical survey. Kidney Int Suppl 1993;41:S135–S142.
  • Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 2002;62: 1524–1538.
  • Ritz E, Deppisch R, Stier E, Hänsch G. Atherogenesis and cardiac death: are they related to dialysis procedure and biocompatibility? Nephrol Dial Transplant 1994;9: S165–S172.
  • Libetta C, Sepe V, Esposito P, Galli F, Dal Canton A. Oxidative stress and inflammation: Implications in uremia and hemodialysis. Clin Biochem 2011;44:1189–1198
  • Autore G, Marzocco S, Sorrentino R, Mirone V, Baydoun A, Pinto A. In vitro and in vivo TNFα synthesis by methylguanidine, an uremic catabolyte. Life Sci 1999; 65:121–127.
  • Marzocco S, Di Paola R, Serraino I, Sorrentino R, Meli R, Mattaceraso G, et al. Effect of methylguanidine in carrageenan-induced acute inflammation in the rats. Eur J Pharmacol 2004;484:341–350.
  • Marzocco S, Di Paola R, Genovese T, Sorrentino R, Britti D, Scollo G, et al. Methylguanidine reduces the development of non septic shock induced by zymosan in mice. Life Sci 2004;75:1417–33.
  • Marzocco S, Popolo A, Bianco G, Pinto A, Autore G. Pro-apoptotic effect of methylguanidine on hydrogen peroxide-treated rat glioma cell line. Neurochem Int 2010;57: 518–24.
  • Tanaka H, Komaba H, Koizumi M, Kakuta T, Fukagawa M. Role of uremic toxins and oxidative stress in the development of chronic kidney disease-mineral bone disorder. J Renal Nutr 2012;22:98–101.
  • Herbelin A, Urena P, Nguyen AT, Zingraff J, Descamps-Latscha B. Elevated circulating levels of interleukin-6 in patients with chronic renal failure. Kidney Int 1991;39:954–960.
  • Kiss I. The uremic toxin, indoxyl sulphate, signifies cardio-renal risk and intestinal-renal relationship. Orv Hetil 2011;152:1724–30.
  • Iida S, Kohno K, Yoshimura J, Ueda S, Usui M, Miyazaki H, et al. Carbonic-adsorbent AST-120 reduces overload of indoxyl sulfate and the plasma level of TGF-beta1 in patients with chronic renal failure. Clin Exp Nephrol 2006;10:262–7.
  • Patel KP, Luo FJ, Plummer NS, Hostetter TH, Meyer TW. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin J Am Soc Nephrol 2012;982–8.
  • Marzocco S, Dal Piaz F, Di Micco L, Torraca S, Sirico ML, Tartaglia D, et al. Very Low Protein Diet Reduces Indoxyl Sulfate Levels in Chronic Kidney Disease. Blood Purific 2013;35:196–201.
  • Kao MP, Ang DSC, Pall A, Struthers AD. Oxidative stress in renal dysfunction: mechanisms, clinical sequelae and therapeutic options. J Hum Hypertens 2010;24:1–8.
  • Cristol JP, Bosc JY, Badiou S, Leblanc M, Lorrho R, Descomps B. Erythropoietin and oxidative stress in haemodyalisis: beneficial effects of Vitamin E supplementation. Nephrol Dial Transplant 1997;12:2312–2317.
  • Targn DC, Huang TP, Chen TW, Yang WC. Erythropoietin hyporesponsiveness: from iron deficiency to iron overload. Kidney Int Supp 1999;69:S107–S118.
  • Wratten ML, Navino C, Tetta C, Verzetti G. Haemolipodialysis. Blood Purif 1999;17:127–33.
  • Iglesias P, Selgas R, Romero S, Díez JJ. Selenium and kidney disease. J Nephrol. 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.