1,003
Views
122
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Sterically shielded spin labels for in-cell EPR spectroscopy: Analysis of stability in reducing environment

, , , , &
Pages 78-85 | Received 20 Sep 2014, Accepted 19 Oct 2014, Published online: 20 Nov 2014

References

  • Gesteland RF, Cech TR, Atkins JF. The RNA World: The Nature of Modern RNA Suggests a Prebiotic RNA, 3rd ed Cold Spring Harbor Laboratory Press, New York; 2006.
  • Holbrook SR. Structural principles from large RNAs. Annu Rev Biophys 2008;37:445–464.
  • Scott LG, Hennig M. RNA structure determination by NMR. Methods Mol Biol 2008;452:29–61.
  • Blanchard SC. Single-molecule observations of ribosome function. Curr Opin Struc Biol 2009;19:103–109.
  • Milov AD, Ponomarev AB, Tsvetkov YD. Electron Electron Double-Resonance in electron-spin echo-Model biradical systems and the sensitized photolysis of decalin. Chem Phys Lett 1984;110:67–72.
  • Schiemann O. Mapping global folds of oligonucleotides by Pulsed Electron-Electron Double Resonance. Method Enzymol 2009;469:329–351.
  • Sowa GZ, Qin PZ. Site-directed spin labeling studies on nucleic acid structure and dynamics. Prog Nucleic Acid Re 2008;82:147–197.
  • Schiemann O, Prisner TF. Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 2007;40:1–53.
  • Jeschke G, Polyhach Y. Distance measurements on spin- labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys Chem Chem Phys 2007;9:1895–1910.
  • Krstic I, Hansel R, Romainczyk O, Engels JW, Dotsch V, Prisner TF. Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew Chem Int Ed Engl 2011;50:5070–5074.
  • Azarkh M, Okle O, Singh V, Seemann IT, Hartig JS, Dietrich DR, Drescher M. Long-range distance determination in a DNA model system inside Xenopus laevis oocytes by in-cell spin-label EPR. Chembiochem 2011;12:1992–1995.
  • Igarashi R, Sakai T, Hara H, Tenno T, Tanaka T, Tochio H, Shirakawa M. Distance determination in proteins inside xenopus laevis oocytes by double electron-electron resonance experiments. J Am Chem Soc 2010;132:8228–9229.
  • Azarkh M, Singh V, Oklre O, Seemann IT, Dietrich DR, Hartig JS, Drescher M. Site-directed spin-labeling of nucleotides and the use of in-cell EPR to determine long-range distances in a biologically relevant environment. Nat Protoc 2013;8:131–147.
  • Zhelev Z, Bakalova R, Aoki I, Matsumoto KI, Gadjeva V, Anzai K, Kanno I. Nitroxyl radicals as low toxic spin-labels for non-invasive magnetic resonance imaging of blood-brain barrier permeability for conventional therapeutics. Chem Commun 2009:53–55.
  • Soule BP, Hyodo F, Matsumoto K-I, Simone NL, Cook JA, Krishna MC, Mitchell JB. The chemistry and biology of nitroxide compounds. Free Radical Biol Med 2007;42: 1632–1650.
  • Zhelev Z, Matsumoto KI, Gadjeva V, Bakalova R, Aoki I, Zheleva A, Anzai K. EPR signal reduction kinetic of several nitroxyl derivatives in blood in vitro and in vivo. Gen Physiol Biophys 2009;28:356–362.
  • Rajca A, Wang Y, Boska M, Paletta JT, Olankitwanit A, Swanson MA, et al. Organic radical contrast agents for magnetic resonance imaging. J Am Chem Soc 2012;134: 15724–15727.
  • Samuni A, Goldstein S, Russo A, Mitchell JB, Krishna MC, Neta P. Kinetics and mechanism of hydroxyl radical and OH-adduct radical reactions with nitroxides and with their hydroxylamines. J Am Chem Soc 2002;124:8719–8724.
  • Israeli A, Patt M, Oron M, Samuni A, Kohen R, Goldstein S. Kinetics and mechanism of the comproportionation reaction between oxoammonium cation and hydroxylamine derived from cyclic nitroxides. Free Radical Biol Med 2005;38: 317–324.
  • Swartz HM, Clarkson RB. The measurement of oxygen in vivo using EPR techniques. Phys Med Biol 1998;43:1957–1975.
  • Khramtsov VV, Grigor'ev IA, Foster MA, Lurie DJ, Nicholson I. Biological applications of spin pH probes. Cell Mol Biol 2000;46:1361–1374.
  • Bobko AA, Kirilyuk IA, Grigor'ev IA, Zweier JL, Khramtsov VV. Reversible reduction of nitroxides to hydroxylamines: roles for ascorbate and glutathione. Free Radical Biol Med 2007;42:404–412.
  • Sakai K, Yamada K, Yamasaki T, Kinoshita Y, Mito F, Utsumi H. Effective 2,6-substitution of piperidine nitroxyl radical by carbonyl compound. Tetrahedron 2010;66: 2311–2315.
  • Ma ZK, Huang QT, Bobbitt JM. Oxoammonium salts .51 A new synthesis of hindered piperidines leading to unsymmetrical tempo-type nitroxides - synthesis and enantioselective oxidations with chiral nitroxides and chiral oxoammonium salts. J Org Chem 1993;58:4837–4843.
  • Marx L, Chiarelli R, Guiberteau T, Rassat A. A comparative study of the reduction by ascorbate of 1,1,3,3-tetraethylisoindolin-2-yloxyl and of 1,1,3,3-tetramethylisoindolin-2-yloxyl. J Chem Soc Perk Trans 12000;(8):1181–1182.
  • Belkin S, Mehlhorn RJ, Hideg K, Hankovsky O, Packer L. Reduction and destruction rates of nitroxide spin probes. Arch Biochem Biophys 1987;256:232–243.
  • Couet WR, Eriksson UG, Tozer TN, Tuck LD, Wesbey GE, Nitecki D, Brasch RC. Pharmacokinetics and metabolic- fate of two nitroxides potentially useful as contrast agents for magnetic-resonance imaging. Pharm Res 1984;1: 203–209.
  • Yelinova V, Krainev A, Savelov A, Grigor'ev I. Comparative-study of the reduction rates of various types of imidazoline radicals in tissues. J Chem Soc Perk Trans 2 1993;(11): 2053–2055.
  • Sentjurc M, Pecar S, Chen K, Wu M, Swartz H. Cellular-metabolism of proxyl nitroxides and hydroxylamines. Biochim Biophys Acta 1991;1073:329–335.
  • Eriksson UG, Tozer TN, Sosnovsky G, Lukszo J, Brasch RC. Human-erythrocyte membrane-permeability and nitroxyl spin-label reduction. J Pharm Sci 1986;75:334–337.
  • Couet WR, Brasch RC, Sosnovsky G, Lukszo J, Prakash I, Gnewuch CT, Tozer TN. Influence of chemical-structure of nitroxyl spin labels on their reduction by ascorbic-acid. Tetrahedron 1985;41:1165–1172.
  • Morris S, Sosnovsky G, Hui B, Huber CO, Rao NUM, Swartz HM. Chemical and electrochemical reduction rates of cyclic nitroxides (nitroxyls). J Pharm Sci 1991;80: 149–152.
  • Brasch RC, Mcnamara MT, Ehman RL, Couet WR, Tozer TN, Sosnovsky G, et al. Influence of chemical-structure on nitroxyl spin label magnetic-relaxation characteristics. Eur J Med Chem 1989;24:335–340.
  • Nothiglaslo V, Bobst AM. Reinvestigation of the oxidation properties of nitroxides. Croat Chem Acta 1991;64:1–8.
  • Blinco JP, Hodgson JL, Morrow BJ, Walker JR, Will GD, Coote ML, Bottle SE. Experimental and theoretical studies of the redox potentials of cyclic nitroxides. J Org Chem 2008; 73:6763–6771.
  • Kavala M, Boca R, Dlhan L, Brezova V, Breza M, Kozisek J, et al. Preparation and spectroscopic, magnetic and electrochemical studies of mono-/biradical TEMPO derivatives. J Org Chem 2013;78:6558–6569.
  • Kinoshita Y, Yamada K, Yamasaki T, Mito F, Yamato M, Kosem N, et al. In vivo evaluation of novel nitroxyl radicals with reduction stability. Free Radical Biol Med 2010;49: 1703–1709.
  • Fuchs J, Freisleben HJ, Podda M, Zimmer G, Milbradt R, Packer L. Nitroxide radical biostability in skin. Free Radical Biol Med 1993;15:415–423.
  • Quintanilha AT, Packer L. Surface localization of sites of reduction of nitroxide spin-sabeled molecules in mitochondria. Proc Natl Acad Sci USA 1977;74:570–574.
  • Okazaki S, Mannan MA, Sawai K, Masumizu T, Miura Y, Takeshita K. Enzymatic reduction-resistant nitroxyl spin probes with spirocyclohexyl rings. Free Radical Res 2007; 41:1069–1077.
  • Azarkh M, Okle O, Eyring P, Dietrich DR, Drescher M. Evaluation of spin labels for in-cell EPR by analysis of nitroxide reduction in cell extract of Xenopus laevis oocytes. J Magn Reson 2011;212:450–454.
  • Bobko AA, Dhimitruka I, Zweier JL, Khramtsov VV. Trityl radicals as persistent dual function pH and oxygen probes for in vivo electron paramagnetic resonance spectroscopy and imaging: concept and experiment. J Am Chem Soc 2007;129:7240–7241.
  • Siegenthaler KO, Schafer A, Studer A. Chemical surface modification via radical C-C bond-forming reactions. J Am Chem Soc 2007;129:5826–5827.
  • Kirilyuk IA, Bobko AA, Grigor'ev IA, Khramtsov VV. Synthesis of the tetraethyl substituted pH-sensitive nitroxides of imidazole series with enhanced stability towards reduction. Org Biomol Chem 2004;2:1025–1030.
  • Volodarsky LB, Reznikov VA, Grigor'ev IA. Chemical properties of heterocyclic nitroxides. In: Volodarsky LB (ed.). Imidazoline Nitroxides, Volume 1. Boca Raton, Florida: CRC Press; 1988. pp. 5–23.
  • Paletta JT, Pink M, Foley B, Rajca S, Rajca A. Synthesis and reduction kinetics of sterically shielded pyrrolidine nitroxides. Org Lett 2012;14:5322–5325.
  • Liu Y, Villamena FA, Sun J, Xu Y, Dhimitruka I, Zweier JL. Synthesis and characterization of ester-derivatized tetrathiatriarylmethyl radicals as intracellular oxygen probes. J Org Chem 2008;73:1490–1497.
  • Reid DA, Bottle SE, Micallef AS. The synthesis of water soluble isoindoline nitroxides and a pronitroxide hydroxylamine hydrochloride UV-VIS probe for free radicals. Chem Commun 1998:1907–1908.
  • Miller TR, Hopkins PB. Toward the synthesis of a 2nd- generation nitroxide spin-probe for DNA dynamics studies. Bioorg Med Chem Lett 1994;4:981–986.
  • Mileo E, Etienne E, Martinho M, Lebrun R, Roubaud V, Tordo P, et al. Enlarging the panoply of site-directed spin labeling electron paramagnetic resonance (SDSL-EPR): sensitive and selective spin-labeling of tyrosine using an isoindoline-based nitroxide. Bioconjugate Chem 2013;24:1110–1117.
  • Huang WL, Charleux B, Chiarelli R, Marx L, Rassat A, Vairon JP. Synthesis of water-soluble nitroxides and their use as mediators in aqueous-phase controlled radical polymerization. Macromol Chem Phys 2002;203:1715–1723.
  • Belton PS, Sutcliffe LH, Gillies DG, Wu XP, Smirnov AI. A new water-soluble and lipid-insoluble spin probe: application to the study of aqueous sucrose solutions. Magn Reson Chem 1999;37:36–42.
  • Vianello F, Momo F, Scarpa M, Rigo A. Kinetics of nitroxide spin-label removal in biological-systems - an in-vitro and in-vivo ESR study. Magn Reson Imaging 1995;13: 219–226.
  • Keana JFW, Pou S, Rosen GM. Nitroxides as potential contrast enhancing agents for MRI application: influence of structure on the rate of reduction by rat hepatocytes, whole liver homogenate, subcellular-fractions, and ascorbate. Magnet Reson Med 1987;5:525–536.
  • Levine M, Padayatty SJ, Espey MG. Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr 2011;2:78–88.
  • Loach PA. Handbook of Biochemistry and Molecular Biology. CRC Press Inc, Cleveland, Ohio; 1976. pp. 122–130.
  • Kajer TB, Fairfull-Smith KE, Yamasaki T, Yamada K, Fu SL, Bottle SE, et al. Inhibition of myeloperoxidase- and neutrophil-mediated oxidant production by tetraethyl and tetramethyl nitroxides. Free Radical Biol Med 2014;70:96–105.
  • Kinoshita Y, Yamada KI, Yamasaki T, Sadasue H, Sakai K, Utsumi H. Development of novel nitroxyl radicals for controlling reactivity with ascorbic acid. Free Radical Res 2009;43:565–571.
  • Morrow BJ, Keddie DJ, Gueven N, Lavin MF, Bottle SE. A novel profluorescent nitroxide as a sensitive probe for the cellular redox environment. Free Radical Biol Med 2010;49:67–76.
  • Quintanilha AT, Packer L. Surface localization of sites of reduction of nitroxide spin-labeled molecules in mitochondria. Proc Natl Acad Sci USA 1977;74:570–574.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.