313
Views
10
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Oxidation of glycosaminoglycans by free radicals and reactive oxidative species: A review of investigative methods

Pages 618-632 | Received 25 Sep 2014, Accepted 03 Nov 2014, Published online: 04 Feb 2015

References

  • Toole BP. Hyaluronan and its binding proteins. Curr Opin Cell Biol 1990;2:839–844.
  • Milner CM, Day AJ. TSG-6: a multifunctional protein associated with inflammation. J Cell Sci 2003;116:1863–1873.
  • Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: An overview. Immunol Cell Biol 1996;74:A1–A7.
  • Hardingham TE, Muir H. The specific interaction of hyaluronic acid with cartilage proteoglycans. Biochim Biophys Acta 1972;279:401–405.
  • Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A Jr, et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 2000;106:349–360.
  • Laurent TC, Fraser JR. Hyaluronan. FASEB J 1992;6: 2397–2404.
  • Toole BP. Developmental role of hyaluronate. Connect Tissue Res 1982;10:93–100.
  • Thorne RF, Legg JW, Isacke CM. The role of the CD44 transmembrane and cytoplasmic domains in co-ordinating adhesive and signalling events. J Cell Sci 2004;117:373–380.
  • Misra S, Obeid LM, Hannun YA, Minamisawa S, Berger FG, Markwald RR, et al. Hyaluronan constitutively regulates activation of COX-2-mediated cell survival activity in intestinal epithelial and colon carcinoma cells. J Biol Chem 2008;283:14335–14344.
  • Toole BP, Slomiany MG. Hyaluronan: a constitutive regulator of chemoresistance and malignancy in cancer cells. Semin Cancer Biol 2008;18:244–250.
  • Turley EA, Noble PW, Bourguignon LY. Signaling properties of hyaluronan receptors. J Biol Chem 2002;277:4589–4592.
  • Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol 2006;85:699–715.
  • Parsons BJ. Chemical aspects of free radical reactions in connective tissue. In Rice-Evans CA, Burdon RH (eds.). Free Radical Damage and Its Control. Amsterdam: Elsevier; 1994. pp. 281–300.
  • Rees MD, Kennett EC, Whitelock JM, Davies MJ. Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Biol Med 2008;44:1973–2001.
  • Myint P, Deeble DJ, Beaumont PC, Blake SM, Phillips GO. The reactivity of various free radicals with hyaluronic acid: steady-state and pulse radiolysis studies. Biochim Biophys Acta 1987;925:194–202.
  • Wedlock DJ, Phillips GO, Davies A, Gormally J, Wyn-Jones E. Depolymerization of sodium hyaluronate during freeze drying. Int J Biol Macromol 1983;5:186–188.
  • Stankovska M, Soltes L, Vikartovska A, Gemeiner P, Kogan G, Bakos D. Degradation of high-molecular-weight hyaluronan: a rotational viscometry study. Biologia 2005;60:149–152.
  • Rychly J, Soltes L, Stankovska M, Janigova I, Csomorova K, Sasinkova V, et al. Unexplored capabilities of chemiluminescence and thermoanalytical methods in characterization of intact and degraded hyaluronans. Polym Degrad Stab 2006;91:3174–3184.
  • Rees MD, Hawkins CL, Davies MJ. Hypochlorite-mediated fragmentation of hyaluronan, chondroitin sulfates, and related N-acetyl glycosamines: Evidence for chloramide intermediates, free radical transfer reactions, and site-specific fragmentation. J Am Chem Soc 2003;125:13719–13733.
  • Soltes L, Kogan G, Stankovska M, Mendichi R, Rychly J, Schiller J, Gemeiner P. Degradation of high-molar-mass hyaluronan and characterization of fragments. Biomacromolecules 2007;8:2697–2705.
  • Soltes L, Valachova K, Mendichi R, Kogan G, Arnhold J, Gemeiner P. Solution properties of high-molar-mass hyaluronans: the biopolymer degradation by ascorbate. Carbohydr Res 2007;342:1071–1077.
  • Soltes L, Stankovska M, Kogan G, Mendichi R, Sasinkova V, Gemeiner P. Degradation of high-molar-mass hyaluronan by an oxidative system comprising ascorbate, Cu(II), and hydrogen peroxide: Inhibitory action of antiinflammatory drugs – Naproxen and acetylsalicylic acid. J Pharm Biomed Anal 2007;44:1056–1063.
  • Valachova K, Hrabarova E, Gemeiner P, Soltes L. Study of pro- and anti-oxidative properties of D-penicillamine in a system comprising high-molar-mass hyaluronan, ascorbate, and cupric ions. Neuro Endocrinol Lett 2008;29:697–701.
  • Valachova K, Rapta P, Kogan G, Hrabarova E, Gemeiner P, Soltes L. Degradation of high-molar-mass hyaluronan by ascorbate plus cupric ions: effects of D-penicillamine addition. Chem Biodivers 2009;6:389–395.
  • Valachova K, Hrabarova E, Priesolova E, Nagy M, Banasova M, Juranek I, Soltes L. Free-radical degradation of high-molecular-weight hyaluronan induced by ascorbate plus cupric ions. Testing of bucillamine and its SA981-metabolite as antioxidants. J Pharm Biomed Anal 2011;56:664–670.
  • Hrabarova E, Valachova K, Juranek I, Soltes L. Free-radical degradation of high-molar-mass hyaluronan Induced by ascorbate plus cupric Ions: evaluation of antioxidative effect of cysteine-derived compounds. Chem Biodivers 2012;9:309–317.
  • Valachova K, Hrabarova E, Drafi F, Juranek I, Bauerova K, Priesolova E, et al. Ascorbate and Cu(II)-induced oxidative degradation of high-molar-mass hyaluronan. Pro- and antioxidative effects of some thiols. Neuro endocrinol Lett 2010;31:101–104.
  • Valachova K, Vargova A, Rapta P, Hrabarova E, Drafi F, Bauerova K, et al. Aurothiomalate as preventive and chain-breaking antioxidant in radical degradation of high-molar-mass hyaluronan. Chem Biodivers 2011;8:1274–1283.
  • Surovcikova-Machova L, Valachova K, Banasova M, Snirc V, Priesolova E, Nagy M, et al. Free-radical degradation of high-molar-mass hyaluronan induced by ascorbate plus cupric ions: testing of stobadine and its two derivatives in function as antioxidants. Gen Physiol Biophys 2012;31:57–64.
  • Valachova K, Kogan G, Gemeiner P, Soltes L. Hyaluronan degradation by ascorbate: protective effects of manganese(II) chloride. Cel Chem Technol 2008:42:473–483.
  • Valachova K, Kogan G, Gemeiner P, Soltes L. Protective effects of manganese(II) chloride on hyaluronan degradation by oxidative system ascorbate plus cupric chloride. Interdiscip Toxicol 2010;3:26–34.
  • Pavan M, Galesso D, Menon G, Renier D, Guarise C. Hyaluronan derivatives: Alkyl chain length boosts viscoelastic behavior to depolymerization. Carbohydr Polym 2013;97:321–326.
  • Al-Assaf S, Navaratnam S, Parsons BJ, Phillips GO. Chain scission of hyaluronan by peroxynitrite. Arch Biochem Biophys 2003;411:73–82.
  • Drimalova E, Velebny V, Sasinkova V, Hromadkova Z, Ebringerova A. Degradation of hyaluronan by ultrasonication in comparison to microwave and conventional heating. Carbohyd Polym 2005;61:420–426
  • Al-Assaf S, Navaratnam S, Parsons BJ, Phillips GO. Chain scission of hyaluronan by carbonate and dichloride radical anions: Potential reactive species in inflammation? Free Radic Biol Med 2006;40:2018–2027
  • Akeel A, Sibanda S, Martin SW, Paterson AWJ, Parsons BJ. Chlorination and oxidation of heparin and hyaluronan by hypochlorous acid and hypochlorite anions: effect of sulfate groups on reaction pathways and kinetics. Free Radic Biol Med 2013;56:72–88.
  • Sibanda S, Akeel A, Martin SW, Paterson AWJ, Edge R, Al-Assaf S, Parsons BJ. Efficiencies of fragmentation of glycosaminoglycan chloramides of the extracellular matrix by oxidizing and reducing radicals: potential site-specific targets in inflammation? Free Radic Biol Med 2013;65: 280–290.
  • Kristiansen KA, Dalheim MO, Christensen BE. Periodate oxidation and macromolecular compaction of hyaluronan. Pure Appl Chem 2013;85:1893–1900.
  • Lee HG, Cowman MK. An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution. Anal Biochem 1994;219:278–287.
  • Spicer AP, McDonald JA. Characterisation and molecular evolution of a vertebrate hyaluronan synthase gene family. J Biol Chem 1998;273:1923–1932.
  • Pummill PE, DeAngelis PL. Alteration of polysaccharide size distribution of a vertebrate hyaluronan synthase by mutation. J Biol Chem 2003;278:19808–19814.
  • Cowman MK, Chen CC, Pandya M, Yuan H, Ramkishun D, LoBello J, et al. Improved agarose gel electrophoresis method and molecular mass calculation for high molecular mass hyaluronan. Anal Biochem 2011;417:50–56.
  • Bhilocha S, Amin R, Panfya M, Yuan H, Tank M, LoBello J, et al. Agarose and polyacrylamide gel electrophoresis methods for molecular mass analysis of 5- to 500-kDA hyaluronan. Anal Biochem 2011;417:41–49.
  • Cowman MK, Slahetka DM, Hittner J, Kim M, Forino G, Gadelrab G. Polyacrylamide-gel electrophoresis and Alcian blue staining of sulphated glycosaminoglycan oligosaccharides. Biochem J 1984;221:707–716.
  • Hampson IN, Gallagher JT. Separation of radiolabelled glycosaminoglycan oligosaccharides by polyacrylamide-gel electrophoresis. Biochem J 1984;221:697–705.
  • Knudson W, Gundlach MW, Schmid TM, Conrad HE. Selective hydrolysis of chondroitin sulphates by hyaluronidase. Biochemistry 1984;23:368–375.
  • Min H, Cowman MK. Combined Alcian blue and silver staining of glycosaminoglycans in polyacrylamide gels: application to electrophoretic analysis of molecular weight distribution. Anal Biochem 1986;155:275–285.
  • Ikegami-Kawai M, Takahashi T. Microanalysis of hyaluronan oligosaccharides by polyacrylamide gel electrophoresis and its application to assay of hyaluronidase activity. Anal Biochem 2002;311:157–165.
  • Turner RE, Lin PY, Cowman MK. Self-association of hyaluronan segments in NaCl solution. Arch Biochem Biophys 1988;265:484–495
  • Kooy FK, Ma M, Beeftink HH, Eggink G, Tramper J, Boeriu CG. Quantification and characterization of enzymatically produced hyaluronan with fluorophore-assisted carbohydrate electrophoresis. Anal Biochem 2009;384:329–336.
  • Karousou EG, Militsopoulou M, Porta G, De Luca G, Hascall VC, Passi A. Polyacrylamide gel electrophoresis of fluorophore-labeled hyaluronan and chondroitin sulfate disaccharides: Application to the analysis in cells and tissues. Electrophoresis 2004;25:2919–2925.
  • Viola M, Vigetti D, Karouso E, Bartolini B, Genasetti A, Rizzi M, et al. New electrophoretic and chromatographic techniques for análysis of heparan and heparan sulphate. Electrophoresis 2008;29:3168–3174.
  • Rice KG, Rottink MK, Linhardt RJ. Fractionation of heparin-derived oligosaccharides by gradient polyacrylamide-gel electrophoresis. Biochem J 1987;244:515–522.
  • Turnbull JE, Gallagher JT. Oligosaccharide mapping of heparin sulphate by polyacrylamide-gradient gel electrophoresis and electrotransfer to nylon membrane. Biochem J 1988;251;597–608.
  • Edens RE, al-Hakim A, Weiler JM, Rethwisch DG, Fareed J, Linhardt RJ. Gradient polyacrylamide gel electrophoresis for determination of molecular weights of heparin preparations and low-molecular-weight heparin derivatives. J Pharm Sci 1992;81:823–827.
  • Pervin A, Gallo C, Jandik KA, Han XJ, Linhardt RJ. Preparation and structural characterization of large heparin-derived oligosaccharides. Glycobiology 1995;5:83–95.
  • Rees MD, Hawkins CL, and Davies MJ. Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates. Biochem J 2004;381:175–184.
  • Rees MD, Davies MJ. Heparan sulfate degradation via reductive homolysis of its N-chloro derivatives. J Am Chem Soc 2006;128:3085–3097.
  • Kennett EC, Davies MJ. Degradation of matrix glycosaminoglycans by peroxynitrite/preoxynitrous acid: evidence for a hydroxyl-radical-like mechanism. Free Radic Biol Med 2007;42:1278–1289.
  • Kennett EC, Davies MJ. Glycosaminoglycans are fragmented by hydroxyl, carbonate, and nitrogen dioxide radicals in a site-selective manner: implications for peroxynitrite-mediated damage at sites of inflammation. Free Radic Biol Med 2009;47:389–400.
  • Sibanda S. Free radical induced fragmentation of extracellular matrix glycosaminoglycans and their chloramides: Relevance to inflammation. Ph.D. Thesis. Leeds Metropolitan University. 2013.
  • Hawkins CL, Davies MD. Degradation of hyaluronic acid, poly- and mono-saccharides, and model compounds by hypochlorite: evidence for radical intermediates and fragmentation. Free Radic Biol Med 1998;24:1396–1410.
  • Al-Assaf S, Hawkins CL, Parsons BJ, Davies MJ, Phillips GO. Identification of radicals from hyaluronan (hyaluronic acid) and crosslinked derivatives using electron paramagnetic resonance spectroscopy. Carbohyd Polym 1999;38:17–22.
  • Rees MD, McNiven TN, Davies MJ. Degradation of extracellular matrix and its components by hypobromous acid. Biochem J 2007;401:587–596.
  • Hawkins CL, Davies MJ. Direct detection and identification of radicals generated during the hydroxyl radical-induced degradation of hyalruonic acid and related materials. Free Radic Biol Med 1996;21:275–290.
  • Corsaro MM, Pietra D, Di Lorenzo AS, Minetti M, Marino G. Reaction of peroxynitrite with hyaluronan and related saccharides. Free Radic Res 2004;38:343–353.
  • Rees MD, Pattison DL, Davies MJ. Oxidation of heparan sulphate by hypochlorite: role of N-chloro derivatives and dichloramine-dependent fragmentation. Biochem J 2005;391: 125–134.
  • Hrabarova E, Valachova K, Rychky J, Rapta P, Sasinkova V, Malikova M, Soltes L. High-molar-mass hyaluronan degradation by Weissberger's system: Pro- and anti-oxidative effects of some thiol compounds. Polym Degrad Stab 2009;94: 1867–1875.
  • Balazs EA, Davies JV, Phillips GO, Scheufele DS. Polyanions and their complexes. Part III. Reactions of heparin, hyaluronic acid, sodium poly(ethylenesulphonate), sodium poly (styrenesulphonate) and sodium carboxymethylcellulose with hydroxyl radicals and hydrated electrons. J Chem Soc C, Perkin Trans 1 1968;12:1420–1423.
  • Sibanda S, Parsons BJ, Houee-Levin C, Marignier JL, Paterson AW, Heyes DJ. One-electron oxidation and reduction of glycosaminoglycan chloramides: A kinetic study. Free Radic Biol Med 2013;63:126–134.
  • Eriksen TE, Lind J, Merenyi G. On the acid-base equilibrium of the carbonate radical. Radiat Phys Chem 1985;26: 197–199.
  • Poskrebyshev GA, Huie RE, Neta P. Radiolytic reactions of monochloramine in aqueous solutions. J Phys Chem 2003;107:7423–7428.
  • Pattison DI, O’Reilly RJ, Skaff O, Radom L, Anderson, RF, Davies MJ. One-electron reduction of N-chlorinated and N-brominated species is a source of radicals and bromine atom formation. Chem Res Toxicol 2011;24:371–382.
  • Pattison DI, Davies MJ, Asmus KD. Absolute rate constants for the formation of nitrogen-centred radicals from chloramines and their reactions with antioxidants. J Chem Soc Perkin Trans 2002;2:1461–1467.
  • Parsons BJ, Sibanda S, Heyes DJ, Paterson AW. Reaction of superoxide radicals with glycosaminoglycan chloramides: a kinetic study. Free Radic Biol Med 2013;61:111–118.
  • Bielski BHJ, Cabelli DE, Arudi RL. Reactivity of HO2./O2.− radicals in aqueous solution. J Phys Chem 1985;14:1041–1100.
  • Hawkins CL, Rees MD, Davies MJ. Superoxide radicals can act synergistically with hyochlorite to induce damage to proteins. FEBS Lett 2002;510:41–44.
  • Soltes L, Stankovska M, Brezova V, Schiller J, Arnhold J, Kogan G, Gemeiner P. Hyaluronan degradation by copper(II) chloride and ascorbate: rotational viscometric, EPR spin-trapping, and MALDI-TOF mass spectrometric investigations. Carbohydr Res 2006;341:2826–2834.
  • Hrabarova E, Rychly J, Sasinkova V, Valachova K, Janigova I, Csomorova K, et al. Structural characterisation of thiol-modified hyaluronans. Cellulose 2012;19:2093–2104.
  • Rees MD, Whitelock JM, Malle E, Chuang CY, Iozzo RV, Nilasaroya A, Davies MJ. Myeloperoxidase-derived oxidants selectively disrupt the protein core of the heparan sulfate proteoglycan perlecan. Matrix Biol 2010;29:63–73.
  • Kennett EC, and Davies MJ. Degradation of extracellular matrix by peroxynitrite/peroxynitrous acid. Free Radic Biol Med 2008;45:716–725.
  • Zhao X, Yang B, Li L, Zhang F, Linhardt RJ. On-line separation and characterization of hyaluronan oligosaccharides derived from radical depolymerization. Carbohydr Polym 2013;96:503–509.
  • Heinecke JW. Mechanisms of oxidative damage by myeloperxidase in atherosclerosis and other inflammatory disorders. J Lab Clin Med 1999;133:321–325.
  • Libby P. Inflammation in atherosclerosis. Nature 2002;420: 868–874.
  • Malle E, Marsche G, Panzenboeck U, Sattle W. Myelo- peroxidase-mediated oxidation of high-density lipoproteins: fingerprints of newly recognized potential proathero- genic lipoproteins. Arch Biochem Biophys 2006; 445: 245–255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.