341
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Assessment of oxidative stress biomarkers – neuroprostanes and dihomo-isoprostanes – in the urine of elite triathletes after two weeks of moderate-altitude training

, , , , , , , , , & show all
Pages 485-494 | Received 13 May 2015, Accepted 19 Oct 2015, Published online: 28 Mar 2016

References

  • Rusko HK, Tikkanen HO, Peltonen JE. Altitude and endurance training. J Sport Sci 2004;22:928–944.
  • Joseph F. Why is the nervous system vulnerable to oxidative stress? In: Natan Gadoth HHG, editor. Oxidative stress and free radical damage in neurology. Illustrated edition. New York, NY: Springer Science & Business Media; 2010:323.
  • Askew EW. Work at high altitude and oxidative stress: antioxidant nutrients. Toxicology 2002;180:107–119.
  • Calbet JA, Lundby C. Air to muscle O2 delivery during exercise at altitude. High Alt Med Biol 2009;10:123–134.
  • Dosek A, Ohno H, Acs Z, Taylor AW, Radak Z. High altitude and oxidative stress. Respir Physiol Neurobiol 2007;158:128–131.
  • Camiletti-Moirón D, Aparicio VA, Aranda P, Radak Z. Does exercise reduce brain oxidative stress? A systematic review. Scand J Med Sci Spor 2013;23:e202–e212.
  • Li JIE, Wang Y. Effect of different methods of hypoxic exercise training on free radical oxidation and antioxidant enzyme activity in the rat brain. Biomed Rep 2013;1:925–929.
  • Bakonyi T, Radak Z. High altitude and free radicals. J Sport Sci Med 2004;3:64–69.
  • Radak Z, Acs Z, Bori Z, Taylor AW, Yang H. The effects of high-altitude exposure on reactive oxygen and nitrogen species. In: Laher I, ed. Systems biology of free radicals and antioxidants. Berlin, Heidelberg: Springer; 2014:407–416.
  • Galano JM, Mas E, Barden A, Mori TA, Signorini C, De Felice C, et al. Isoprostanes and neuroprostanes: total synthesis, biological activity and biomarkers of oxidative stress in humans. Prostaglandins Other Lipid Mediat 2013;107:95–102.
  • Hsiu-Chuan Y. Detection of F2-isoprostanes and F4-neuroprostanes in clinical studies. J Biomed Lab Sci 2010;22:1–10.
  • Halliwel BG, Gutteridge JMC. Free radicals, other reactive species and disease. In: Halliwell BG, Gutteridge JMC, eds. Free radicals in biology and medicine. 3rd ed. Oxford: Clarendon Press; 1999:639–645.
  • Roberts LJ, 2nd, Montine TJ, Markesbery WR, Tapper AR, Hardy P, Chemtob S, et al. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem 1998;273:13605–13612.
  • Signorini C, De Felice C, Durand T, Oger C, Galano J-M, Leoncini S, et al. Isoprostanes and 4-hydroxy-2-nonenal: markers or mediators of disease? Focus on Rett syndrome as a model of autism spectrum disorder. Oxid Med Cell Longev 2013;2013:1–10.
  • VanRollins M, Woltjer RL, Yin H, Morrow JD, Montine TJ. F2-dihomo-isoprostanes arise from free radical attack on adrenic acid. J Lipid Res 2008;49:995–1005.
  • Arterburn LM, Hall EB, Oken H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr 2006;83:S1467–1476S.
  • Musiek ES, Cha JK, Yin H, Zackert WE, Terry ES, Porter NA, et al. Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay. J Chromatogr B Analyt Technol Biomed Life Sci 2004;799:95–102.
  • Durand T, De Felice C, Signorini C, Oger C, Bultel-Ponce V, Guy A, et al. F(2)-Dihomo-isoprostanes and brain white matter damage in stage 1 Rett syndrome. Biochimie 2013;95:86–90.
  • Montine TJ, Quinn JF, Milatovic D, Silbert LC, Dang T, Sanchez S, et al. Peripheral F2-isoprostanes and F4-neuroprostanes are not increased in Alzheimer’s disease. Ann Neurol 2002;52:175–179.
  • Alvero Ramón JR, Cabañas Armesilla MD, Herrero de Lucas A, Martínez Riaza L, Moreno Pascual C, Porta Manzañido J, et al. Protocolo de valoración de la composición corporal para el reconocimiento médico-deportivo. Documento de Consenso del Grupo Español de Cineantropometría (GREC) de la Federación Española de Medicina del Deporte (FEMEDF). Archivos de Medicina del Deporte 2010;27:330–344.
  • Withers RT, Craig NP, Bourdon PC, Norton KI. Relative body fat and anthropometric prediction of body density of male athletes. Eur J Appl Physiol Occup Physiol 1987;56:191–200.
  • Lee RC, Wang Z, Heo M, Ross R, Janssen I, Heymsfield SB. Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am J Clin Nutr 2000;72:796–803.
  • Saugy JJ, Schmitt L, Cejuela R, Faiss R, Hauser A, Wehrlin JP, et al. Comparison of “live high-train low” in normobaric versus hypobaric hypoxia. PLoS One 2014;9:e114418.
  • Lucia A, Esteve-Lanao J, Olivan J, Gomez-Gallego F, San Juan AF, Santiago C, et al. Physiological characteristics of the best Eritrean runners – exceptional running economy. Appl Physiol Nutr Metab 2006;31:530–540.
  • Medina S, Dominguez-Perles R, Cejuela-Anta R, Villano D, Martinez-Sanz JM, Gil P, et al. Assessment of oxidative stress markers and prostaglandins after chronic training of triathletes. Prostag Oth Lipid M 2012;99:79–86.
  • Medina S, Domínguez-Perles R, García-Viguera C, Cejuela-Anta R, Martínez-Sanz JM, Ferreres F, Gil-Izquierdo A. Physical activity increases the bioavailability of flavanones after dietary aronia – citrus juice intake in triathletes. Food Chem 2012;135:2133–2137.
  • Medina S, Miguel-Elizaga ID, Oger C, Galano JM, Durand T, Martinez-Villanueva M, et al. Dihomo-isoprostanes-nonenzymatic metabolites of AdA – are higher in epileptic patients compared to healthy individuals by a new ultrahigh pressure liquid chromatography-triple quadrupole-tandem mass spectrometry method. Free Radic Biol Med 2015;79:154–163.
  • Ciccoli L, De Felice C, Paccagnini E, Leoncini S, Pecorelli A, Signorini C, et al. Morphological changes and oxidative damage in Rett syndrome erythrocytes. Biochim Biophys Acta 2012;1820:511–520.
  • Gureeva NV. Pancreatic lipase activation, inhibition, and relationship to peroxide oxidation of lipids. Pharm Chem J 2009;43:619–624.
  • Kurtul N, Bakan E, Aksoy H, Baykal O. Leukocyte lipid peroxidation, superoxide dismutase and catalase activities of type 2 diabetic patients with retinopathy. Acta Medica (Hradec Kralove) 2005;48:35–38.
  • Ohmori K, Ebihara S, Kuriyama S, Ugajin T, Ogata M, Hozawa A, et al. The relationship between body mass index and a plasma lipid peroxidation biomarker in an older, healthy Asian community. Ann Epidemiol 2005;15:80–84.
  • Signorini C, Ciccoli L, Leoncini S, Carloni S, Perrone S, Comporti M, et al. Free iron, total F-isoprostanes and total F-neuroprostanes in a model of neonatal hypoxic-ischemic encephalopathy: neuroprotective effect of melatonin. J Pineal Res 2009;46:148–154.
  • Solberg R, Longini M, Proietti F, Vezzosi P, Saugstad OD, Buonocore G. Resuscitation with supplementary oxygen induces oxidative injury in the cerebral cortex. Free Radic Biol Med 2012;53:1061–1067.
  • De Felice C, Ciccoli L, Leoncini S, Signorini C, Rossi M, Vannuccini L, et al. Systemic oxidative stress in classic Rett syndrome. Free Radic Biol Med 2009;47:440–448.
  • Burtscher M, Mairer K, Wille M, Gatterer H, Ruedl G, Faulhaber M, Sumann G. Short-term exposure to hypoxia for work and leisure activities in health and disease: which level of hypoxia is safe? Sleep Breath 2012;16:435–442.
  • Favret F, Richalet JP. Exercise and hypoxia: the role of the autonomic nervous system. Respir Physiol Neurobiol 2007;158:280–286.
  • Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dyn Med 2009;8:1–9.
  • Lin C, Wu CJ, Wei IH, Tsai MH, Chang NW, Yang TT, Kuo YM. Chronic treadmill running protects hippocampal neurons from hypobaric hypoxia-induced apoptosis in rats. Neuroscience 2013;231:216–224.
  • Liu J, Yeo HC, Overvik-Douki E, Hagen T, Doniger SJ, Chyu DW, et al. Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol (1985) 2000;89:21–28.
  • Nikolaidis MG, Kyparos A, Vrabas IS. F(2)-isoprostane formation, measurement and interpretation: the role of exercise. Prog Lipid Res 2011;50:89–103.
  • Bailey DM, Davies B. Physiological implications of altitude training for endurance performance at sea level: a review. Br J Sports Med 1997;31:183–190.
  • Heinicke K, Heinicke I, Schmidt W, Wolfarth B. A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes. Int J Sports Med 2005;26:350–355.
  • Wehrlin JP, Hallen J. Linear decrease in VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol 2006;96:404–412.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.