11
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Intracellular Oxidative Cleavage of DNA in Escherichia Coli by the Copper-1, 10-Phenanthroline Complex

, &
Pages 37-45 | Received 08 May 1989, Published online: 07 Jul 2009

References

  • Sigman D. S., Graham D. R., D'Aurora V., Stern A. M. Oxygen-dependent cleavage of DNA by the 1, 10-phenanthroline-cuprous complex. J. Biol. Chem 1979; 245: 12269–12272
  • Downey K. M., Que B. G., So A. G. Degradation of DNA by 1, 10-phenanthroline. Biochem. Biophys. Res. Commun 1980; 93: 264–270
  • Que B. G., Downey K. M., So A. G. Degradation of deoxyribonucleic acid by 1, 10-phenanth-roline-copper complex: The role of hydroxyl radicals. Biochemistry 1980; 19: 5987–5991
  • Graham D. R., Marshall L. E., Reich K. A., Sigman D. S. Cleavage of DNA by coordination complexes. Superoxide formation in the oxidation of 1,10-phenanthroline-cuprous complexes by oxygen — relevance to DNA cleavage reaction. J. Am. Chem. Soc 1980; 102: 5419–5421
  • Marshall L. E., Graham D. R., Reich K. A., Sigman D. S. Cleavage of deoxyribonucleic acid by 1, 10-phenanthroline-cuprous complex. Hydrogen peroxide requirement and primary and secondary structure specificity. Blochemistry 1981; 20: 244–250
  • Reich K. A., Marshall L. E., Graham D. R., Sigman D. S. Cleavage of DNA by the 1, 10-phenanthroline-copper ion complex. Superoxide mediates the reaction dependent on NADH and hydrogen peroxide. J. Am. Chem. Soc 1981; 103: 3582–3584
  • Gutteridge J. M.C., Halliwell B. The role of superoxide and hydroxyl radicals in the degradation of DNA and deoxyribose induced by a copper phenanthroline complex. Biochem. Pharmacol 1982; 31: 2801–2805
  • Pope L. M., Reich K. A., Graham D. R., Sigman D. S. Products of DNA cleavage by the 1, 10-phenanthroline-copper complex. J. Biol. Chem 1982; 257: 12121–12128
  • Pope L. E., Sigman D. S. Secondary structure specificity of the nuclease activity of the 1,10-phenanthroline-copper complex. Proc. Natl. Acad. Sci. U.S.A 1984; 81: 3–7
  • Chiou S. H., Chang W. C., Jou Y. S., Chung H. M.M., Lo T. B. Specific cleavages of DNA by ascorbate in the presence of copper ion or copper chelates. J. Biochem 1985; 98: 1723–1726
  • Goldstein S., Czapski G. Mechanism and reaction products of the oxidation of Cu(1)-phenanth-roline by H2O2. J. Free Rad Biol. Med 1985; 1: 373–380
  • Goldstein S., Czapski G. Mechanisms of the reactions of some copper complexes in the presence of DNA with O2, H2O2, and molecular oxygen. J. Am. Chem. Soc 1986; 108: 224–2250
  • Goldstein S., Czapski G. The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these systems from the toxicity of O2. J. Free Rad. Biol. Med. 1986; 2: 3–11
  • Samuni A., Aronovitch J., Chevion M., Czapski G. Metal mediated hydroxyl radical damage. A site-specific mechanism, In: Life Chemistry Reports, Supplement Series, Supplement 2, Oxidative Damage and Related Enzymes. Harwood Academic Publishers, EMBO Workshop, RomeItaly 1983; 39–47
  • Spassky A., Sigman D. S. Nuclease activity of 1,10-phenanthroline-copper ion. Conformational analysis and footprinting ot the lac operon. Biochemistry 1985; 24: 8050–8056
  • Sigman D. S., Spassky A., Rimsky S., Buc H. Conformational analysis of lac promoters using the nuclease activity of 1,10-phenanthroline-copper ion. Biopolymers 1985; 24: 183–197
  • Veal J. M., Rill R. L. Sequence specifity of DNA cleavage by bis(1,10-phenanthroline) copper (I). Biochemistry 1988; 27: 1822–1827
  • Jessee B., Gargiulo G., Razvi F., Worcel A. Analogous cleavage of DNA by micrococcal nuclease and a 1,10-phenanthroline-cuprous complex. Nucl. Acids Res 1982; 10: 5823–5834
  • Francois J. C., Saison-Behmoaras T., Chassignol M., Thuong N. T., Sun J. S., Héléne C. Periodic cleavage of poly(dA) by oligothymidylates covalently linked to the 1, 10-phenanthroline-copper complex. Biochemistry 1988; 27: 2272–2276
  • Aronovitch J., Samuni A., Godinger D., Czapski G. In vivo degradation of bacterial DNA by H2O2 and o-phenanthroline. Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine, G. Rotilio, 1986; 346–348
  • Mello Filho A.C., Meneghini R. In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by the Haber-Weiss reaction. BBA 1984; 781: 56–63
  • Mello Filho A.C., Hofmann M. E., Meneghini R. Cell killing and DNA damage by hydrogen peroxide are mediated by intracellular iron. Biochem. J 1984; 218: 273–275
  • Mello Filho A.C., Meneghini R. Protection of mammalian cells by o-phenanthroline from lethal and DNA-damaging effects produced by active oxygen species. BBA 1985; 847: 82–89
  • Hassan H. M., Fridovich I. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch. Biochem. Biophys 1979; 196: 385–395
  • Aronovitch J., Godinger D., Samuni A., Czapski G. The effect of cell-bound copper on the toxicity of superoxide and vitamin C. Oxygen Radicals in Chemistry and Biology, W. Bors, M. Saran, D. Tait. Walter de Gruyter, Berlin-New York 1984; 219–223
  • Falchuk K. H., Krischan A. 1,10-phenanthroline inhibition of lymphoblast cell cycle. Cuncer Res 1977; 37: 2050–2056
  • Sies H. Antioxidant activity in cells and organs. Am. Rev. Respir. Dis 1987; 136: 478–480
  • Maniatis T., Fritsch E. F., Sambrook J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory). Cold Spring Harbor, NY 1982
  • Anonymous, Analytical Methods for Atomic Absorption Spectrophotometer. Perkin Elmer. 1976
  • Southern E. M. Detection of specific sequences among DNA fragments separated by gelelectro-phoresis. J. Mol. Biol 1975; 98: 503–517
  • Martell A. E., Smith R. M. Critical Stability Constants. Plenum, New York-London 1974
  • van Hemmen J. J., Meuling W. J.A. Inactivation of Escherichia coli by superoxide radicals and their dismutation products. Arch. Biochem. Biophys 1977; 182: 743–748
  • Berglin E. H., Edlund M. B.K., Nyberg G. K., Carlsson J. Potentiation by L-cysteine of the bactericidial effect of hydrogen peroxide in. Escherichia coli. J. Bucteriol 1982; 152: 81–88
  • Brown O. R., Seither R. L. Oxygen and redox-active drugs: Shared toxicity sites. Fund. Appl. Toxicol 1983; 3: 209–214
  • Brawn M. K., Fridovich I. Increased superoxide radical production evokes inducible DNA repair in. Escherichia coli. J. Biol. Chem 1985; 260: 922–925
  • Farr S. P., D'Ari R, Touati D. Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase. Proc. Natl. Acud. Sci. U.S.A 1986; 83: 8268–8272
  • Carlioz A., Touati D. Isolation of superoxide dismutase mutants in Escherichia coli: Is superoxide dismutase necessary for aerobic life?. EMBO J 1986; 5: 623–630
  • Korbashi P., Kohen R., Katzhendler J, Chevion M. Iron mediates paraquat toxicity in. Escherichia coli. J. Bid. Chem 1986; 261: 12472–12476
  • Sies H. Biochemistry of oxidative stress. Angew. Chem. Int. Ed. Engl 1986; 25: 1058–1071
  • Becker W. M. The World of the Cell. Benjamin/Cummings. Menlo Park, 420
  • Chance B., Sies H., Boveris. A. Hydroperoxide metabolism in mammalian organs. Physiol. Rey 1979; 59: 527–610
  • Kazakov S. A., Astashkina T. G., Mamaev S. V., Vlassov V. V. Site-specific cleavage of single-stranded DNAs at unique sites by a copper-dependent redox reaction. Nature 1988; 335: 186–188

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.