48
Views
47
CrossRef citations to date
0
Altmetric
Original Article

Microbial Strategies to Prevent Oxygen-Dependent Killing by Phagocytes

&
Pages 137-157 | Received 22 Oct 1991, Published online: 07 Jul 2009

References

  • Sies H. Biochemistry of oxidative stress. Angewandte Chemie International Edition in English 1986; 25: 1058–1071
  • Bannister J.V., Bannister W.H., Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Critical Reviews in Biochemistry 1987; 22: 111–180
  • Fridovich I. The biology of oxygen radicals. Science 1978; 201: 875–880
  • Hassett D.J., Cohen M.S. Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. The FASEB Journal 1989; 3: 2574–2582
  • Farr S.B., Touati D., Kogoma T. Effect of oxygen stress on membrane functions in Escherichia colt: Role of HPI catalase. Journal of Bacteriology 1988; 170: 1837–1842
  • Abril N., Pueyo C. Mutagenesis in Escherichia coli lacking catalase. Environmental and Molecular Mutagenesis 1990; 15: 184–189
  • Imlay J.A., Linn S. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. Journal of Bacteriology 1987; 169: 2967–2976
  • Gardner P.R., Fridovich I. Superoxide sensitivity of the Escherichia coli 6-phos-phogluconate dehydratase. The Journal of Biological Chemistry 1991; 266: 1478–1483
  • Fridovich I. Superoxide dismutases. Advances in Enzymology 1986; 58: 62–97
  • Carlioz A., Touati D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life?. The EMBO Journal 1986; 5: 623–630
  • Badwey J.A., Karnovsky M.L. Active oxygen species and the functions of phagocytic leukocytes. Annual Reviews in Biochemistry 1980; 49: 695–726
  • Davies B., Chattings L.S., Edwards S.W. Superoxide generation during phagocytosis by Acanthamoeba caslelanii. Similarities to the respiratory burst of immune phagocytes. Journal of General Microbiology 1991; 137: 705–710
  • Babior B.M. The respiratory burst of phagocytes. Journal of Clinical Investigations 1984; 73: 599–601
  • Mims C.A. The pathogenesis of infectious disease. The encounter of the microbe with the phagocytic cell 3rd ed. Academic Press, London 1987; 63–91
  • Hurst J.K., Barrette W.C., Jr. Leukocytic oxygen activation and microbicidal oxidative toxins. CRC Critical Reviews in Biochemistry and Molecular Biology 1989; 24: 271–328
  • Klebanoff S.J. Phagocytic cells: Products of oxygen metabolism. Inflammation: Basic Principles and Clinical Correlations, J.I. Gallin. Raven Press, New York 1988; 391–444
  • Gabic T.G., Babior B.M. The killing of pathogens by phagocytes. Annual Reviews in Medicine 1981; 32: 313–326
  • Andrews R.G.W., Orci L. A view of acidic intracellular compartments. Journal of Cell Biology 1988; 106: 539–543
  • Russo M., Teixeira H.C., Marcondes M.C.G., Barbuto J.A.M. Superoxide-independent hydrogen peroxide release by activated macrophages. Brazilian Journal of Medical and Biological Research 1989; 22: 1271–1273
  • Godfrey R.W., Wilder M.S. Relationship between oxidative metabolism, macrophage activation, and antilisterial activity. Journal of Leukocyte Biology 1984; 36: 533–543
  • Di Mascio P., Wefers H., Do-thi H.P., Lafleur M.V.M., Sies H. Singlet molecular oxygen causes loss of biological activity in plasmid and bacteriophage DNA and induces single strand breaks. Biochimica et Biophysica Acta 1989; 1007: 151–157
  • Cohen M.S., Britigan B.E., Hassett D.J., Rosen G.M. Phagocytes, 02 reduction, and hydroxyl radical. Reviews in Infectious Diseases 1988; 10: 1088–1096
  • Buchmeier N.A., Heffron F. Induction of Salmonella stress proteins upon infection of macrophages. Science 1990; 248: 730–732
  • Donati Y.R.A., Slosman D.O., Polla B.S. Oxidative injury and the heat shock response. Biochemical Pharmacology 1990; 40: 2571–2577
  • Johnston R.B., Jr. Oxygen metabolism and the microbicidal activity of macrophages. Federation Proceedings 1978; 37: 2759–2764
  • Beaman L., Beaman B.L. The role of oxygen and its derivatives in microbial pathogenesis and host defense. Annual Reviews in Microbiology 1984; 38: 27–48
  • Czuprynski C.J. Bacterial evasion of cellular defense mechanisms: an overview. Virulence mechanisms of bacterial pathogens, J.A. Roth. American Society for Microbiology. 1988; 141–160
  • Horwitz M.A., Mayfield F.R. Legionella pneumophilia inhibits acidification of its phagosome in human monocytoes. Journal of Cell Biology 1984; 99: 1936–1943
  • Sibley L.D., Lawson R., Weidner E. Superoxide dismutase and catalase in Toxoplasma gondii. Molecular Biochemistry and Parasitology 1986; 19: 83–87
  • Chakraborty T., Goebel W. Recent developments in the study of virulence in Listeria monocytogenes. Current Topics in Microbiology and Immunology 1988; 138: 41–58
  • Sansonetti P.J., Ryter A., Clerc P., Maurelli A.T., Mounier J. Multiplication of Shigella flexneri within HeLa cells. Lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infection and Immunity 1986; 51: 461–469
  • Andrews N.W., Abrams C.K., Slatin S.L., Griffiths G. A T. cruzi-secreted protein immunologically related to the complement factor C9: Evidence for membrane pore-forming activity at low pH. Cell 1990; 61: 1277–1287
  • Sahney N.N., Lambe B.C., Summersgill J.T., Miller R.D. Inhibition of polymorphonuclear leukocyte function by Legionella pneumophila exoproducts. Microbial Pathogenesis 1990; 9: 117–125
  • Glew R.H., Saha A.K., Das S., Remaley A.T. Biochemistry of the Leishmania species. Microbiological Reviews 1988; 52: 412–432
  • Saha A.K., Dowling J.N., LaMarco K.L., Das S., Remaley A.T., Olomu N., Pope M.T., Glew R.H. Properties of an acid phosphatase from Legionella micdadei which blocks superoxide anion production by human neutrophils. Archives of Biochemistry and Biophysics 1985; 243: 150–160
  • Wilson C.B., Tsai V., Remington J.S. Failure to trigger the oxidative metabolic burst by normal macrophages. Journal of Experimental Medicine 1980; 151: 328–346
  • Chang H.R., Pechere J.-C. Macrophage oxidative metabolism and intracellular Toxoplasma gondii. Microbial Pathogenesis 1989; 7: 37–44
  • Tauber A.I., Pavlotsky N., Lin J.S., Rice P.A. Inhibition of human neutrophil NADPH oxidase by Chlamydia serovars E, K, and L2. Infection and Immunity 1989; 57: 1108–1112
  • Hof H. Microbial strategies for intracellular survival. Infection 1991; 19: S202–S205
  • Buchmeier N.A., Heffron F. Inhibition of macrophage phagosome-lysosome fusion by Salmonella typhimurium. Infection and Immunity 1991; 59: 2232–2238
  • Miller S.I., Kukral A.M., Mekalanos J.J. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proceedings of the National Academy of Sciences USA 1989; 86: 5054–5058
  • Chan J., Fujiwara T., Brennan P., McNeil M., Turco S.J., Sibille J.-C., Snapper M., Aisen P., Bloom B.R. Microbial glycolipids: Possible virulence factors that scavenge oxygen radicals. Proceedings of the National Academy of Sciences USA 1989; 86: 2453–2457
  • Sample A.K., Czuprynski C.J. Elimination of hydrogen peroxide by Haemophilus somnus, a catalase-negative pathogen of cattle. Infection and Immunity 1991; 59: 2239–2244
  • Meister A., Anderson M.E. Glutathione. Annual Reviews in Biochemistry 1983; 52: 711–760
  • Kelner M.J., Bagnell R. Glutathione-dependent enzymes alone can produce paraquat resistance. Free Radicals in Biology & Medicine 1990; 9: 149–153
  • Greenberg J.R., Demple B. Glutathione in Escherichia coli is dispensable for resistance to H202 and gamma radiation. Journal of Bacteriology 1986; 168: 1026–1029
  • Piccolomini R., Di Ilo C., Aceto A., Allocati N., Faraone A., Cellini L., Ravagnan G., Federici G. Glutathione transferase in bacteria: subunit composition and antigenic characterization. Journal of General Microbiology 1989; 135: 3119–3125
  • Hewitt J., Morris G. Superoxide dismutase in some obligately anaerobic bacteria. FEBS Letters 1975; 50: 315–318
  • Steinman H.M., Ely B. Copper-zinc superoxide dismutase of Caulobacter crescentus: cloning, sequencing, and mapping of the gene and periplasmic location of the enzyme. Journal of Bacteriology 1990; 172: 2901–2910
  • Touati D. Molecular genetics of superoxide dismutases. Free Radical Biology & Medicine 1988; 5: 393–402
  • Hassan H.M. Biosynthesis and regulation of superoxide dismutases. Free Radical Biology & Medicine 1988; 5: 377–385
  • Goldberg I., Hochman A. Purification and characterization of a novel type of catalase from the bacterium Klebsiella pneumoniae. Biochimica el Biophysica Acta 1989; 991: 330–336
  • Nadler V., Goldberg I., Hochman A. Comparative study of bacterial catalases. Biochimica el Biophysica Ada 1986; 882: 234–241
  • Haas A., Brehm K., Kreft J., Goebel W. Cloning, characterization, and expression in Escherichia coli of a gene encoding Listeria seeligeri catalase, a bacterial enzyme highly homologous to mammalian catalases. Journal of Bacteriology 1991; 173: 5159–5167
  • Loewen P.C., Stauffer G.V. Nucleotide sequence of katG of Salmonella typhimurium and characterization of its product, hydroperoxidase I. Molecular and General Genetics 1991; 224: 147–151
  • Wayne L.G., Diaz G.A. A double staining method for differentiation between two classes of mycobacterial catalases in polyacrylamide gel electrophoresis gels. Analytical Biochemistry 1986; 157: 89–92
  • Goerlich O., Quillardet P., Hofnung M. Induction of the SOS response by hydrogen peroxide in various Escherichia coli mutants with altered protection against oxidative DNA damage. Journal of Bacteriology 1989; 171: 6141–6147
  • Carlsson J., Carpenter V.S. The recA* gene product is more important than catalase and superoxide dismutase in protecting Escherichia coli against hydrogen peroxide toxicity. Journal of Bacteriology 1980; 142: 319–321
  • Yost F.J., Fridovich I. Superoxide radical and phagocytosis. Archives of Biochemistry and Biophysics 1974; 161: 395–401
  • Braun V., Hantke K. Genetics of siderophore biosynthesis and transport. Handbook of microbial iron chelates (siderophores), G. Winkelmann. CRC Press, Boca Raton, FL 1991, in press
  • Hoepelman I.M., Bezemer W.A., Vandenbroucke-Grauls C.M.J.E., Marx J.J.M., Verhoef J. Bacterial iron enhances oxygen radical-mediated killing of Staphylococcus aureus by phagocytes. Infection and Immunity 1990; 58: 26–31
  • Repine J.E., Fox R.B., Berger E.M. Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical. The Journal of Biological Chemistry 1981; 256: 7094–7096
  • Mandell G.L. Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. The Journal of Clinical Investigations 1975; 55: 561–566
  • Bloch C.A., Thome G.M., Ausubel F.M. General method for site-directed mutagenesis in Escherchia coli OI8ac:K1:H7: Deletion of the inducible superoxide dismutase gene, sodA, does not diminish bacteremia in neonatal rats. Infection and Immunity 1989; 57: 2141–2148
  • Smith M.W., Neidhardt F.C. Proteins induced by aerobiosis in Escherichia coli. Journal of Bacteriology 1983; 154: 344–350
  • Schwartz C.E., Krall J., Norton L., McKay K., Kay D., Lynch R.E. Catalase and superoxide dismutase in Escherichia coli. Roles in resistance to killing by neutrophils. The Journal of Biological Chemistry 1983; 258: 6277–6281
  • Johnston R.B., Keele B., Misra H.P., Lehmeyer J.E., Webb L.S., Bashner R.L., Rajagopalan K.V. The role of superoxide anion generation in phagocytic bactericidal activity. Journal of Clinical Investigation 1975; 55: 1357–1372
  • Franzon V.L., Arondel J., Sansonetti P.J. Contribution of superoxide dismutase and catalase activities to Shigella flexneri pathogenesis. Infection and Immunity 1990; 58: 529–535
  • Fields P.I., Swanson R.V., Haidaris C.G., Heffron F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proceedings of the National Academy of Sciences USA 1986; 83: 5189–5193
  • Britton L., Fridovich I. Intracellular location of the superoxide dismutases of Escherichia coli: a reevaluation. Journal of Bacteriology 1977; 131: 815–820
  • Beaman B.L., Scates S.M., Moring S.E., Deem R., Misra H.P. Purification and properties of a unique superoxide dismutase from Nocardia asteroides. The Journal of Biological Chemistry 1983; 258: 91–96
  • Beaman L., Beaman B.L. Monoclonal antibodies demonstrate that superoxide dismutase contributes to protection of Nocardia asteroides within the intact host. Infection and Immunity 1990; 58: 3122–3128
  • Jackett P.S., Aber V.R., Lowrie D.B. Virulence and resistance to superoxide, low pH and hydrogen peroxide among strains of Mycobacterium tuberculosis. Journal of General Microbiology 1978; 104: 37–45
  • Yamada Y., Saito H., Tomioka H., Jidoi J. Susceptibility of micro-organisms to active oxygen species: sensitivity to the xanthine-oxidase-mediated antimicrobial system. Journal of General Microbiology 1987; 133: 2007–2014
  • Zhang Y., Lathigra R., Garbe T., Catty D., Young D. Genetic analysis of superoxide dismutase, the 23 kilodalton antigen of Mycobacterium tuberculosis. Molecular Microbiology 1991; 5: 381–391
  • Thangaraj H.S., Lamb F.I., Davis E.O., Jenner PJ., Jeyakumar L.H., Colston M.J. Identification, sequencing, and expression of Mycobacterium leprae superoxide dismutase, a major antigen. Infection and Immunity 1990; 58: 1937–1942
  • Bricker B.J., Tabatabai L.B., Judge B.A., Deyoe B.L., Mayfield J.E. Cloning, expression, and occurrence of the Brucella Cu-Zn superoxide dismutase. Infection and Immunity. 1990; 58: 2935–2939
  • Kusunose E., Ichihara K., Noda Y., Kusunose M. Superoxide dismutase from Mycobacterium tuberculosis. Journal of Biochemistry 1976; 80: 1343–1352
  • Welch D.F., Sword C.P., Brehm S., Dusanic D. Relationship between superoxide dismutase and pathogenic mechanisms of Listeria monocytogenes. Infection and Immunity 1980; 23: 863–872
  • Brehm K., Haas A., Kreft J., Goebel W. A gene encoding a superoxide dismutase of the facultative intracellular bacterium Listeria monocytogenes. Manuscript 1992, submitted
  • Welch D.F. Role of catalase and superoxide dismutase in the virulence of Listeria monocytogenes. Annales Microbiologie (Institut Pasteur) 1987; 138: 265–268
  • Bortolussi R., Vandenbroucke-Grauls C.M.J.E., van Asbeck B.S., Verhoef J. Relationship of bacterial growth phase to killing of Listeria monocytogenes by oxidative agents generated by neutrophils and enzyme systems. Infection and Immunity 1987; 55: 3197–3203
  • Leblond-Francillard M., Gaillard J.-L., Berche P. Loss of catalase activity in Tn1545-induced mutants does not reduce growth of Listeria monocytogenes in vivo. Infection and Immunity 1989; 57: 2569–2573
  • DiGuiseppi J., Fridovich I. Oxygen toxicity in Streptococcus sanguis. The Journal of Biological Chemistry 1982; 257: 4046–4051
  • Archibald F.S., Duong M.N. Superoxide dismutase and oxygen toxicity defenses in the genus. Neisseria. Infection and Immunity 1986; 51: 631–641
  • Haas A., Goebel W. Cloning of a superoxide dismutase gene from Listeria ivanovii by functional complementation in Escherichia coli and characterization of the gene product. Molecular and General Genetics 1992, in press
  • Dallmier A.W., Martin S.E. Catalase, superoxide dismutase, and hemolysin activities and heat susceptibility of Listeria monocytogenes after growth in media containing sodium chloride. Applied and Environmental Microbiology 1990; 56: 2807–2810
  • Hassett D.J., Charniga L., Cohen M.S. recA and catalase in H2o2 mediated toxicity in Neisseria gonorrhoeae. Journal of Bacteriology 1990; 172: 7293–7295
  • Schiavone J.R., Hassan H.M. Biosynthesis of superoxide dismutase in eight prokaryotes: effects of oxygen, paraquat and an iron chelator. FEMS Microbiology Letters 1987; 42: 33–38
  • Davies W.A. Kinetics of killing Listeria monocytogenes by macrophages: rapid killing accompanying phagocytosis. RES: Journal of the Reticuloendothelial Society 1983; 34: 131–141
  • Peck R. Gamma interferon induces monocyte killing of Listeria monocytogenes by an oxygen-dependent pathway; alpha- or beta-interferons by oxygen-independent pathways. Journal of Leukocyte Biology 1989; 46: 434–440
  • Czuprynski C.J., Campbell P. A., Henson P.M. Killing of Listeria monocytogenes by human neutrophils and monocytes, but not by monocyte-derived macrophages. RES: Journal of the Reticuloendothelial Society 1983; 34: 29–44
  • Kossack R.E., Guerrant R.I., Densen P., Schadelin J., Mandell G.I. Diminished neutrophil oxidative metabolism after phagocytosis of virulent Salmonella typhi. Infection and Immunity 1981; 31: 674–678
  • Johnston K., Charles I., Dougan D., Pickard D., O'Gaora P., Costa G., AH T., Miller I., Hormaecke C. The role of a stress-response protein in Salmonella typhimurium virulence. Molecular Microbiology 1991; 5: 401–407
  • Camilli A., Paynton C.R., Portnoy D.A. Intracellular methicillin selection of Listeria monocytogenes mutants unable to replicate in a mouse macrophage cell line. Proceedings of the National Academy of Sciences USA 1989; 86: 5522–5526
  • Godfrey R.W., Wilder M.S. Generation of oxygen species and virulence of Listeria monocytogenes. Infection and Immunity 1985; 47: 837–839
  • Storz G., Tartaglia L.A., Farr S.B., Ames B.N. Bacterial defenses against oxidative stress. Trends in Genetics. 1990; 6: 363–368
  • Storz G., Tartaglia L.A., Ames B.N. Transcriptional regulator of oxidative stress-inducible genes: Direct activation by oxidation. Science 1990; 248: 189–194
  • Tsaneva L.R., Weiss B. soxR, a locus governing a superoxide response regulon in Escherichia coli K-12. Journal of Bacteriology 1990; 172: 4197–4205
  • Amabile-Cuevas C.F., Demple B. Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon,. Nucleic Acids Research 1991; 19: 4479–4484
  • Spiro S., Guest J.R. Adaptive responses to oxygen limitation in Escherichia coli. Trends in Biochemical Sciences 1991; 16: 310–314
  • Tardat B., Touati D. Two global regulators repress the anaerobic expression of MnSOD in Escherichia coli: Fur (ferric uptake regulation) and Arc (aerobic respiration control). Molecular Microbiology 1991; 5: 455–465
  • Niederhoffer E.C., Naranjo CM., Bradley K.L., Fee J.A. Control of Escherichia coli superoxide dismutase (sodA and sodB) genes by the ferric uptake regulon (fur) locus. Journal of Bacteriology 1990; 172: 1930–1938
  • Bowen S.W., Hassan H.M. Induction of the manganese-containing superoxide dismutase in Escherichia coli is independent of the oxidative stress (oxyR-controlled) regulon. The Journal of Biological Chemistry 1988; 263: 14808–14811
  • Touati D. Transcriptional and posttranscriptional regulation of manganese superoxide dismutase biosynthesis in Escherichia coli, studied with operon and protein fusions. Journal of Bacteriology 1988; 170: 2511–2520
  • Storz G., Christman M.F., Sies H., Ames B.N. Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. Proceedings of the National Academy of Sciences USA 1987; 84: 8917–8921
  • Tao K., Makino K., Yonei S., Nakata A., Shinagawa H. Molecular cloning and nucleotide sequencing of oxyR, the positive regulatory gene of a regulon for adaptive response to oxidative stress in Escherichia coli: homologies between OxyR protein and a family of bacterial activator proteins. Molecular and General Genetics 1989; 218: 371–376
  • Dowds B.C.A., Hoch J.A. Regulation of the oxidative stress response by the hpr gene in Bacillus subtilis. Journal of General Microbiology 1991; 137: 1121–1125
  • Keller R., Kerst R., Erb P., Aebischer T., de Libero G., Balzer M., Groscurth P., Keller H.U. Expression of cellular effector functions and production of reactive nitrogen intermediates: a comparative study including T-lymphocytes, T-like cells, neutrophil granulocytes, and mononuclear phagocytes. Cellular Immunology 1990; 131: 398–403
  • Keller R., Gehrl R., Keist R., Huf E., Kayser F.H. The interaction of macrophages and bacteria: a comparative study of the induction of tumoricidal activity and of reactive nitrogen intermediates. Cellular Immunology 1991; 134: 249–256
  • Granger D.L., Hibbs J.B., Jr., Perfect J.R., Durack D.T. Specific amino acid (L-arginine) requirement for the microbiostatic activity of murine macrophages. Journal of Clinical Investigations 1988; 81: 1129–1136
  • Alspaugh J.A., Granger D.L. Inhibition of Cryptococcus neoformans by nitrogen oxides supports the role of these molecules as effectors of macrophage-mediated cytostasis. Infection and Immunity 1991; 59: 2291–2296
  • Buchmeier N.A., Heffron F. Intracellular survival of wild-type Salmonella typhimurium and macrophage-sensitive mutants in diverse populations of macrophages. Infection and Immunity 1989; 57: 1–7
  • Christman M.F., Morgan R.W., Jacobson F.S., Ames B.N. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 1985; 41: 753–762
  • Clark R.A. Oxidative inactivation of pneumolysin by the myeloperoxidase system and stimulated human neutrophils. The Journal of Immunology 1986; 136: 4617–4622
  • Nakayama K. The superoxide dismutase-encoding gene of the obligately anaerobic bacterium Bacteroides gingivalis. Gene 1990; 96: 149–150
  • Choi J.-I., Takahashi N., Kato T., Kuramitsu H.K. Isolation, expression, and nucleotide sequence of the sod gene from Porphyromonas gingivalis. Infection and Immunity 1991; 59: 1564–1566
  • Heinzen R.A., Frazier ME., Mallavia LP. Nucleotide sequence of Coxiella burnetti superoxide dismutase. Nucleic Acids Research 1990; 18: 6437
  • Nettleton C.J., Bull C., Baldwin TO., Fee J.A. Isolation of the Escherichia coli iron superoxide dismutase gene: evidence that intracellular superoxide concentration does not regulate oxygen-dependent synthesis of the manganese superoxide dismutase. Proceedings of the National Academy of Sciences USA 1984; 81: 4970–4973
  • Carlioz A., Ludwig M.L., Stalling W.L., Fee J.A., Steinman H.M., Touati D. Iron superoxide dismutase. Nucleotide sequence of the gene from Escherichia coli K12 and correlations with crystal structures. The Journal of Biological Chemistry 1988; 263: 1555–1562
  • Touati D. Cloning and mapping of the manganese superoxide dismutase gene (sodA) of Escherichia coli K-12. Journal of Bacteriology 1983; 155: 1078–1085
  • Takeda Y., Avila H. Structure and gene expression of the E. coli Mn superoxide dismutase gene. Nucleic Acids Research 1986; II: 4577–4589
  • Triggs-Raine B.L., Doble B.W., Mulvey M.R., Sorby P.A., Loewen P.C. Nucleotide sequence of katG, encoding catalase HPI of Escherichia coli. Journal of Bacteriology 1988; 170: 4415–4419
  • von Ossowski I., Mulvey M.R., Leco P.A., Borys A., Loewen P.C. Nucleotide sequence of Escherichia coli katE, which encodes catalase HPI. Journal of Bacteriology 1991; 173: 514–520

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.