12
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Is Hemin Responsible for the Susceptibility of Plasmodia to Oxidant Stress?

, , &
Pages 279-290 | Published online: 07 Jul 2009

References

  • Golenser J., Chevion M. Implications of oxidant stress and malaria. Implications of Oxygen Free Radicals, O. I. Aruoma. Harwood Academic Publ. 1992, in press
  • Marva E., Golenser J., Cohen A., Kitrossky N., Har-El R., Chevion M. The effects of ascorbate-induced free radicals on Plasmodium falciparum. Tropical Medical and Parasitology 1992; 43: 17–23
  • Schank K. Reductones. Synthesis 1972; 1972: 176–194
  • Chevion M., Navok T., Glaser G., Mager J. The chemistry of favism-inducing compounds: the properties of isouramil and divicine and their reactions with glutathione. European Journal of Biochemistry 1982; 127: 405–409
  • Clark I. A., Hunt N. H. Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria. Infections and Immunity 1983; 39: 1–6
  • Golenser J., Miller J., Spira D. T., Navok T., Chevion M. Inhibitory effect of a fava bean component on the in vitro development of Plasmodium falciparum in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Blood 1983; 61: 507–510
  • Clark I. A., Hunt N. H., Cowden W. B., Maxwell L., Mackie E. J. Radical-mediated damage to parasites and erythrocytes in Plasmodium vinckei-infected mice after injection of t-butyl hydroperoxide. Clinical and Experimental Immunity 1984; 56: 524–530
  • Marva E., Cohen A., Saltman P., Chevion M., Golenser J. Deleterious synergistic effects of ascorbate and copper on the development of Plasmodium falciparum: an in vitro study in normal and in G6PD-deficient erythrocytes. International Journal of Parasitology 1989; 19: 779–795
  • Halliwell B., Gutteridge J. M.C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemical Journal 1984; 219: 1–14
  • Chevion M. A site-specific mechanism for free radical induced biological damage: the essential role of redox-active transition metals. Free Radicals in Biology and Medicine 1988; 5: 27–37
  • Ames B. W. Endogenous oxidative DNA, damage, aging and cancer. Free Radical Research Communications 1989; 7: 121–128
  • Cutler R. G. Antioxidants, aging and longevity. Free Radicals in Biology, W. A. Pryor. Academic Press, New York 1984; Vol VI: 371–429
  • Pryor W. A. Oxyradicals and related species: their formation, life times and reactions. Annual Review of Physiology 1986; 48: 657–663
  • Sigman D. S. Nuclease activity of 1,10-phenanthroline-copper ion. Accounts of Chemical Research 1986; 19: 180–186
  • Hech S. M. The chemistry of activated bleomycin. Accounts of Chemical Research 1986; 19: 383–391
  • Samuni A., Aronovitch J., Godinger D., Chevion M., Czapski G. On the cytotoxicity of vitamin C and metal ions: A site-specific Fenton mechanism. European Journal of Biochemistry 1983; 137: 119–124
  • Samuni A., Aronovitch J., Chevion M., Czapski G. Metal-mediated hydroxyl radical damage: A site-specific mechanism. Proceedings of the EM BO workshop on “Oxidative damage and related enzymes”, G. Rotilio, J. V. Bannister. 1984; 39–47
  • Czapski G., Aronovitch J., Godinger D., Samuni A., Chevion M. On the mechanisms of cytotoxicity induced by superoxide. Oxygen Radicals in Chemistry and Biology, W. Bors, M. Saran, D. Tait. Walter de Gruyter & Co., Berlin 1984; 225–229
  • Basile L. A., Rafael A. L., Barton J. K. Metal-activated hydrolytic cleavage of DNA. Journal of the American Chemical Society 1987; 109: 7550–7551
  • Chioux S. H., Chang W. C., Jou Y. S., Chang H. M., Lo T. B. Specific cleavages of DNA by ascorbate in the presence of copper ion or copper chelates. Journal of Biochemistry 1985; 98: 1723–1726
  • Eichner R. D., Warings P., Gene A. M., Braithwaite A. W., Mullbacher A. Gliotoxin causes oxidative damage to plasmid and cellular DNA. Journal of Biological Chemistry 1988; 263: 3772–3778
  • Tullius T. D., Dombrovski B. A. Hydroxyl radical “footprinting”. Proceeding of the National Academy of Sciences, USA 1986; 83: 5469–5473
  • Messing J. New M13 vectors for cloning. Methods in Enzymology 1983; 101: 20–78
  • Trager W., Jensen J. N. Human malaria parasites in continuous culture. Science 1976; 193: 673–675
  • Lambros C., Vandenberg J. Synchronization of Plasmodium falciparum erythrocytic stages in culture. Journal of Parasitology 1979; 66: 418–420
  • Shreier P. H., Cortese R. A fast and simple method for sequencing DNA cloned in the single stranded bacteriophage M13. Journal of Molecular Biology 1979; 129: 169–172
  • Felsenstein K. N. A modified protocol for p-2523 spin columns, a legitimate purification alternative for plasmid DNA. BioTechniques 1988; 6(9): 847–848
  • Chevion M., Navok T. A novel method for quantitation of favism-inducing agents in legumes. Annals of Biochemistry 1983; 128: 152–158
  • Davis L. G., Dibner M. D., Battey J. F. Basic Methods in Molecular Biology. Elsevier, Amsterdam 1986; 44
  • Friedman M. J. Oxidant damage mediated variant red cell resistant to malaria. Nature (London) 1979; 280: 245–247
  • Allison A. C., Eugui E. M. A radical interpretation of immunity to malaria parasites. Lancet 1982; 11: 1431–1433
  • Stocker R., Hunt N. H., Buffinton G. D., Weidemann M. J. Oxidative stress and protective mechanisms in erythrocytes in relation to Plasmodium vinckei load. Proceeding of the National Academy of Sciences, USA 1985; 82: 548–551
  • Golenser J., Chevion M. Oxidant stress and malaria: host-parasite interrelationships in normal and abnormal erythrocytes. Seminars in Hematology 1989; 26: 313–325
  • Hunt N. H., Stocker R. Oxidative stress and the redox status of the malaria-infected erythrocytes. Blood Cells 1990; 16: 499–526
  • Aust S. D., Morehouse L. A., Thomas E. C. Role of metals in oxygen radical reactions. Free Radical Biology and Medicine 1985; 1: 3–25
  • Etkin N. L., Eaton J. W. Malaria-induced erythrocytes oxidant sensitivity. Erythrocyte structure and function, G. J. Brewer. Liss, New York 1975; 219–232
  • Goldberg D. E., Slater A. F.G., Cerami A., Henderson G. B. Hemoglobin degradation in the malaria parasite P. falciparum: an ordered process in a unique organelle. Proceeding of the National Academy of Sciences, USA 1990; 87: 2931–2935
  • Yamada K. A., Sherman I. W. Plasmodium lophurae: composition and properties of hemozoin, the malarial pigment. Experiments in Parasitology 1979; 48: 61–74
  • Hebbel R. P., Eaton J. W. Pathobiology of heme interaction with the erythrocyte membrane. Seminars in Hematology 1989; 26: 136–149
  • Blake D. R., Hall N. D., Bacon P. A., Dieppe P. A., Halliwell B., Gutteridge J. M.C. Effect of a specific iron chelating agent on animal models of inflammation. Annals of Rheumatic Diseases 1983; 42: 89–93
  • Orjih A. U., Banyal H. S., Chevli R., Fitch C. D. Hemin lyses malaria parasites. Science 1981; 214: 667–669
  • Meshnick S. R., Thomas A., Ranz A., Xu C., Pan H. Z. Artemisimin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. Molecular Biology and Parasitology 1991; 49: 181–190
  • Slater A. F.G., Cerami A. Inhibition by chloroquine of a novel heme polymerase enzyme activity in malaria trophozoites. Nature 1992; 355: 167–169

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.