18
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Generation of Hydroxyl Radicals by Nucleohistone-Bound Metal–Adriamycin Complexes

, , , , &
Pages 207-220 | Received 15 Feb 1996, Published online: 07 Jul 2009

References

  • Young R. C., Ozols R. F., Myers C. E. The anthracycline antineoplastic drugs. New England Journal of Medicine 1981; 305: 139–153
  • Cullinane C., Phillips D. R. Induction of stable transcriptional blockage sites by adriamycin: GpC specificity of apparent adriamycin-DNA adducts and dependence on iron(III) ions. Biochemistry 1990; 29: 5638–5646
  • Delvaeye M., Verovski V., De Neve W., Storme G. DNA breakage, cytotoxicity, drug accumulation and retention in two human ovarian tumor cell lines AZ224 and AZ364 treated with adriamycin, modulated by verapamil. Anticancer Research 1993; 13(5A)1533–1538
  • Ollinger K., Brunmark A. Effect of different oxygen pressures and N,N-diphenyl-p-phenylenedi-amine on Adriamycin toxicity to cultured neonatal rat heart myocytes. Biochemical Pliarmacology 1994; 48: 1707–1715
  • Ferrans V. J. Overview of cardiac pathology in relation to anthracycline cardiotoxicity. Cancer Treatment Reports 1978; 62: 955–961
  • Lefrak E. A., Pitha J., Rosenheim S., Gottlieb J. A. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 1973; 32: 302–314
  • Doroshow J. H. Role of hydrogen peroxide and hydroxyl radical formation in the killing of Ehrlich tumor cells by anticancer quinones. Proceedings of the National Academy of Sciences of the United States of America 1986; 83: 4514–4518
  • Doroshow J. H. Prevention of doxorubicin-induced killing of MCF-7 human breast cancer cells by oxygen radical scavengers and iron chelating agents. Biochemical and Biophysical Research Communications 1986; 135: 330–335
  • Sinha B. K., Katki A. G., Batist G., Cowan K. H., Myers C. E. Differential formation of hydroxyl radicals by adriamycin in sensitive and resistant MCF-7 human breast tumor cells: implications for the mechanism of action. Biochemistry 1987; 26: 3776–3781
  • Beraldo H., Garnier-Suillerot A., Tosi L., Lavelle F. Iron(III)–adriamycin and iron(lll)–daunoru-bicin complexes: physicochemical characteristics, interaction with DNA, and antitumor activity. Biochemistry 1985; 24: 284–289
  • Beraldo H., Garnier-Suillerot A., Tosi L. Copper(II)–adriamycin complexes. A circular dichro-ism and resonance Raman study. Inorganic Chemistry 1983; 22: 4117–4124
  • Sugioka K., Nakano H., Nakano M., Tero-Kubota S., Ikegami Y. Generation of hydroxyl radicals during the enzymatic reductions of the Fe3+-ADP-phos-phate-adriamycin and Fe3+-ADP-EDTA systems. Biochimica et Biophysica Acta 1983; 753: 411–421
  • Sugioka K., Nakano M. Mechanism of phospholipid peroxidation induced by ferric ion-ADP-adri-amycin-co-ordination complex. Biochimica et Biophysica Acta 1982; 713: 333–343
  • Lown J. W., Sim S.-K., Majumdar K. C., Chang R.-Y. Strand scission of DNA by bound adriamycin and daunorubicin in the presence of reducing agents. Biochemical and Biophysical Research Communications 1977; 76: 705–710
  • Someya A., Tanaka N. DNA strand scission induced by adriamycin and aclacinomycin A. Journal of Antibiotics 1979; 32: 839–845
  • Azuma J., Sperelakis N., Hasegawa H., Tanimoto T., Vogel S., Ogura K., Awata N., Sawamura A., Harada H., Ishiyama T., Morita Y., Yamamura Y. Adriamycin cardiotoxicity: possible pathogenic mechanisms. Journal of Molecular and Cellular Cardiology 1981; 13: 381–397
  • Myers C. E., McGuire W. P., Liss R. H., Ifrim I., Grotzinger K., Young R. C. Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science 1977; 197: 165–167
  • Myers C. E., Gianni L., Simone C. B., Klecker R., Greene R. Oxidative destruction of erythrocyte ghost membranes catalyzed by the doxorubicin–iron complex. Biochemistry 1982; 21: 1707–1713
  • Eliot H., Gianni L., Myers C. Oxidative destruction of DNA by the adriamycin–iron complex. Biochemistry 1984; 23: 928–936
  • Muindi J. R. F., Sinha B. K., Gianni L., Myers C. E. Hydroxyl radical production and DNA damage induced by anthracycline–iron complex. FEBS Letters 1984; 172: 226–230
  • Muindi J., Sinha B. K., Gianni L., Myers C. Thiol-dependent DNA damage produced by anthracy-cline-iron complexes. The structure-activity relationships and molecular mechanisms. Molecular Pharmacology 1985; 27: 356–365
  • Bachur N. R., Gordon S. L., Gee M. V. A general mechanism for microsomal activation of quinone anticancer agents to free radicals. Cancer Research 1978; 38: 1745–1750
  • Bachur N. R., Gee M. V., Friedman R. D. Nuclear catalyzed antibiotic free radical formation. Cancer Research 1982; 42: 1078–1081
  • Akman S. A., Doroshow J. H., Burke T. G., Dizdaroglu M. DNA base modifications induced in isolated human chromatin by NADH dehydrogenase-catalyzed reduction of doxorubicin. Biochemistry 1992; 31: 3500–3506
  • Pryor W. A. Why is the hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: it has a rare combination of high electrophilicity, high thermo-chemical reactivity, and a mode of production that can occur near DNA. Free Radical Biology and Medicine 1988; 4: 219–223
  • Makrigiorgos G. M., Baranowska-Kortylewicz J., Bump E., Sahu S. K., Berman R. M., Kassis A. I. A method for detection of hydroxyl radicals in the vicinity of biomolecules using radiation-induced fluorescence of coumarin. International Journal of Radiation Biology 1993; 63: 445–458
  • Makrigiorgos G. M., Folkard M., Huang C., Bump E., Baranowska-Kortylewicz J., Sahu S. K., Michael B. D., Kassis A. I. Quantification of radiation-induced hydroxyl radicals within nucleohistones using a molecular fluorescent probe. Radiation Research 1994; 138: 177–185
  • Makrigiorgos G. M., Bump E., Huang C., Baranowska-Kortylewicz J., Kassis A. I. A fluorimetric method for the detection of copper-mediated hydroxyl free radicals in the immediate proximity of DNA. Free Radical Biology and Medicine 1995; 18: 669–678
  • Chaires J. B., Dattagupta N., Crothers D. M. Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: equilibrium binding studies on interaction of daunomycin with deoxyribonucleic acid. Biochemistry 1982; 21: 3933–3940
  • Kawanishi S., Inoue S., Yamamoto K. Hydroxyl radical and singlet oxygen production and DNA damage induced by carcinogenic metal compounds and hydrogen peroxide. Biological and Trace Element Research 1989; 21: 367–372
  • Kalyanaraman B., Ramanujam S., Singh R. J., Joseph J., Feix J. B. Formation of 2,5-dihydroxybenzoic acid during the reaction between 1O2 and salicylic acid: analysis by ESR oximetry and HPLC with electrochemi- cal detection. Journal of American Chemical Society 1993; 115: 4007–4012
  • Briviba K., Devasagayam T. P., Sies H., Steenken S. Selective para hydroxylation of phenol and aniline by singlet molecular oxygen. Chemical Research in Toxicology 1993; 6: 548–553
  • Lindig B. A., Rodgers M. A. J., Schaap A. P. Determination of the lifetime of singlet oxygen in D2O using 9,10-anthracenedipropionic acid, a water-soluble probe. Journal of American Chemical Society 1980; 102: 5590–5593
  • Halliwell B., Gutteridge J. M. C. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Archives of Biochemistry and Biophysics 1986; 246: 501–514
  • Kassis A. I., Sastry K. S. R., Adelstein S. J. Kinetics of uptake, retention, and radiotoxicity of 125IUdR in mammalian cells: implications of localized energy deposition by Auger processes. Radiation Research 1987; 109: 78–89
  • Makrigiorgos G. M., Kassis A. I., Baranowska-Kortylewicz J., McElvany K. D., Welch M. J., Sastry K. S. R., Adelstein S. J. Radiotoxicity of 5-[125I]iodo-2′-deoxyuridine in V79 cells: a comparison with 5-[125I]iodo-2′-deoxyuridine. Radiation Research 1989; 118: 532–544
  • Dorfman L. M., Adams G. E. Reactivity of the hydroxyl radical in aqueous solutions. US Government Printing Office, Washington, DC 1973, US Department of Commerce, National Bureau of Standards Report NSRDS-NBS 46
  • Chakrabarti S., Makrigiorgos G. M., O'Brien K., Bump E., Kassis A. I. Measurement of hydroxyl radicals catalyzed in the immediate vicinity of DNA by metal-bleomycin complexes. Free Radical Biology and Medicine 1996; 20: 777–783
  • Collins A. K., Makrigiorgos G. M., Svensson G. K. Coumarin chemical dosimeter for radiation therapy. Medical Physics 1994; 21: 1741–1747
  • Enright H. U., Miller W. J., Hebbel R. P. Nucleosomal histone protein protects DNA from iron-mediated damage. Nucleic Acids Research 1992; 20: 3341–3346
  • Makrigiorgos G. M., Bump E., Huang C., Baranowska-Kortylewicz J., Kassis A. I. Accessibility of nucleic acid-complexed biomolecules to hydroxyl radicals correlates with their conformation: a fluorescence polarization spectroscopy study. International Journal of Radiation Biology 1994; 66: 247–257
  • Ando S., Kamiya K., Yoshimura T., Tsutani H., Ueda T., Uchida M., Nakamura T., Uchino H. DNA-binding characteristics of aclarubicin as compared with daunorubicin and doxorubicin. Anticancer Research 1988; 8: 409–415

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.