65
Views
32
CrossRef citations to date
0
Altmetric
Original Article

Kinetics of Reduction of Hypervalent Iron in Myoglobin by Crocin in Aqueous Solution

, &
Pages 73-87 | Received 11 Nov 1996, Published online: 07 Jul 2009

References

  • Galaris D., Cadenas E., Hochstein P. Redox cycling of myoglobin and ascorbate: A potential protective mechanism against oxidative reperfusion injury in muscle. Archives of Biochemistry and Biophysics 1989; 273: 497–504
  • Rao S. I., Wilks A., Hamberg M., Ortiz de Montellano P. R. The lipoxygenase activity of myoglobin. Oxidation of linoleic acid by the ferryl oxygen rather than protein radical. The Journal of Biological Chemistry 1994; 269: 7210–7216
  • Mikkelsen A., Skibsted L. H. Acid-catalysed reduction of ferrylmyoglobin: product distribution and kinetics of autoreduction and reduction by NADH. Zeitschrift für Lebensmittel-Untersuchung und—Forschung 1995; 200: 171–177
  • Rice-Evans C. A., Okunade G., Khan R. The suppression of iron release from activated myoglobin by physiological electron donors and by desferrioxamine. Free Radical Research Communications 1989; 7: 45–54
  • King N. K., Winfield M. E. The mechanism of metmyoglobin oxidation. The Journal of Biological Chemistry 1963; 238: 1520–1528
  • La Mar G. N., de Ropp J. S., Latos-Grazynski L., Balch A. L., Johnson R. B., Smith K. M., Parish D. W., Cheng R. Proton NMR characterization of the ferryl group in model heme complexes and hemoproteins: Evidence for the FeIV = O group in ferryl myoglobin and compound II of horseradish peroxidase. Journal of the American Chemical Society 1983; 105: 782–787
  • Sitter A. J., Reczek C. M., Terner J. Observation of the FeIV = O stretching vibration of ferryl myoglobin by resonance Raman spectroscopy. Biochimica et Biophysica Acta 1985; 828: 229–235
  • Chance M., Powers L., Kumar C., Chance B. X-ray absorption studies of myoglobin peroxide reveal functional differences between globins and heme enzymes. Biochemistry 1986; 25: 1259–1265
  • Kelman D. J., DeGray J. A., Mason R. P. Reaction of myoglobin with hydrogen peroxide forms a peroxyl radical which oxidizes substrates. The Journal of Biological Chemistry 1994; 269: 7458–7463
  • Davies M. J. Identification of a globin free radical in equine myoglobin treated with peroxides. Biochimica et Biophysica Acta 1991; 1077: 86–90
  • Miki H., Harada K., Yamazaki I., Tamura M., Watanabe H. Electron spin resonance spectrum of Tyr-151 free radical formed in reactions of sperm whale metmyoglobin with ethyl hydroperoxide and potassium irridate. Archives of Biochemistry and Biophysics 1989; 275: 354–362
  • Cooper C. E., Green E. S. R., Rice-Evans C. A., Davies M. J., Wriggleworth J. M. A hydrogen-donating monohydroxamate scavenges ferryl myoglobin radicals. Free Radical Research 1994; 20: 219–227
  • Giulivi C., Romero F. J., Cadenas E. The interaction of Trolox C, a water-soluble vitamin E analog, with ferrylmyoglobin: Reduction of the oxoferryl moiety. Archives of Biochemistry and Biophysics 1992; 299: 302–312
  • Buffinton G., Cadenas E. Reduction of ferrylmyoglobin to metmyoglobin by quinonoid compounds. Chemical and Biological Interactions 1988; 66: 233–250
  • Davies M. J. Detection of myoglobin-derived radicals on the reaction of metmyoglobin with hydrogen peroxide and other peroxidic compounds. Free Rudical Research Communications 1990; 10: 361–370
  • Giulivi C., Cadenas E. The reaction of ascorbic acid with different heme iron redox states of myoglobin. FEBS Letters 1993; 332: 287–290
  • Kröger-Ohlsen M., Skibsted L. H. Kinetics and mechanism of reduction of ferrylmyoglobin by ascorbate and D-isoascorbate. Journal of Agricultural and Food Chemisty 1997; 45: 668–676
  • Ostdal H., Daneshvar B., Skibsted L. H. Reduction of ferrylmyoglobin by β-lactoglobulin. Free Radical Research 1996; 24: 429–438
  • Tajima G.-I., Shikama K. Decomposition of hydrogen peroxide by metmyoglobin: A cyclic formation of the ferryl intermediate. International Journal of Biochemistry 1993; 25: 101–105
  • Palozza P., Krinsky N. I. Antioxidant effects of carotenoids on biological membranes. Acta Medica Romana 1993; 31: 131–140
  • Mortensen A., Skibsted L. H. Kinetics of parallel electron transfer from β-carotene to phenoxyl radical and adduct formation between phenoxyl radical and β-carotene. Free Radical Research 1996; 25: 515–523
  • Kanner J., Harel S. Lipid peroxidation and oxidation of several compounds by H2O2 activated metmyoglobin. Lipids 1985; 20: 625–628
  • Sujata V., Ravishankar G. A., Venkataraman L. V. Methods for the analysis of the saffron metabolites crocin, crocetins, picrocrocin and safranal for the determination of the quality of the spice using thin-layer chromatography, high-performance liquid chromatography and gas chromatography. Journal of Chromatography 1992; 624: 497–502
  • Iborra J. L., Castellar M. R., Cáovas M., Manjón A. TLC preparative purification of picrocrocin, HTCC and crocin from saffron. Journal of Food Science 1992; 57: 714–716
  • Sampathu S. R., Shivashankar S., Lewis Y. S. Saffron (Crocus sativus Linn.)-cultivation, processing, chemistry and standardization. CRC Critical Reviews in Food Science and Nutrition 1984; 20: 123–157
  • Pfander H., Rychener M. Separation of cro-cetin glycosyl esters by high-performance liquid chromatography. Journal of Chromatography 1982; 234: 443–447
  • Dhingra V. K., Seshadri T. R., Mukerjee S. K. Minor carotenoid glycosides from saffron (Crocus sativus). Indian Journal of Chemistry 1975; 13: 339–341
  • Nelson D. P., Kiesow L. A. Enthalpy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solutions in the UV). Analytical Biochemistry 1972; 49: 474–478
  • Buchecker R., Eugster C. H. Absolute konfig-uration von picrocrocin. Helvetica Chimica Acta 1973; 56: 1121–1124
  • Speranza G., Dadà G., Manitto P., Monti D., Gramatica P. 13-cis-crock A new crocinoid of saffron. Gazzetta Chimica. Italians 1984; 114: 189–192
  • Frank H. A., Bolt J. D., de Costa S. M. B., Sauer K. Electron paramagnetic resonance detection of carotenoid triplet states. Journal of the American Chemical Society 1980; 102: 4893–4898
  • Bors W., Saran M., Michel C. Radical intermediates involved in the bleaching of the carotenoid crocin. Hydroxyl radicals, superoxide anions and hydrated electrons. International journal of Radiotion Biology 1982; 41: 493–501
  • George P., Irvine D. H. A possible structure for the higher oxidation state of rnetmyoglobin. Biochemical Journal 1955; 60: 596–604

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.