30
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Diethyldithiocarbamate and Nitric Oxide Synergize with Oxidants and with Membrane-Damaging Agents to Injure Mammalian Cells

, &
Pages 143-164 | Received 01 Oct 1996, Published online: 07 Jul 2009

References

  • Ginsburg I., Gibbs D. F., Schuger L., Johnson K. J., Ryan U. S., Ward P. A., Varani J. Vascular endothelial cell killing by combinations of membraneactive agents and hydrogen peroxide. Free Radical Biology & Medicine 1989; 7: 369–376
  • Varani J., Ginsburg I., Schuger L., Gibbs D. F., Bromberg J., Johnson K. J., Ryan U. S., Ward P. A. Endothelial cell killing by neutrophils: Synergistic interaction of oxygen products and proteases. American Journal of Pathology 1989; 135: 348–435
  • Ginsburg I., Misgav R., Pinson A., Varani J., Ward P. A., Koken R. Synergism amount oxidants, proteinases, phospholipases, microbial hemolysins, cationic proteins and cytokines. Inflammation 1992; 16: 519–537
  • Ginsburg I., Varani J. Interaction of viable group A, streptococci and hydrogen peroxide in killing of vascular endothelial cells. Free Radical Biological Methods 1993; 14: 495–500
  • Ginsburg I., Mitra R. S., Jr., Gibbs D. F., Varani J., Kohen R. Wing of endothelial cells and release of arachidonic acid: Synergistic effect among hydrogen peroxide, membrane-damaging agents, cationic substances and proteinases and their modulation by inhibitors. Inflammation 1993; 17: 295–319
  • Ginsburg I., Kohen R., Ligumsky M. Ethanol synergizes with hydrogen peroxide, peroxyl radical and trypsin to kill epithelial cells in culture. Free Radical Biology & Medicine 1994; 16: 264–266
  • Ginsburg I. Can hemolytic Streptococci B considered forefathers of modern phagocytes? Both cell types freely migrate in tissues and destroy host cells by a synergistic cross-talk among their secreted agonists. Comparative Biochemistry and Physiology 1994; 1091: 147–158
  • Ginsburg I., Kohen R. Synergistic effects among oxidants, membrane-damaging agents, fatty acids, proteinases and xenobiotics: Killing of epithelial cells and release of arachidonic acid. Inflammation 1995; 19: 101–118
  • Ginsburg I., Kohen R. Cell damage in inflammatory and infectious sites might involve a coordinated “cross-talk” among oxidants, microbial hemolysins and amphiphiles, cationic proteins, phospholipases, fatty acids, proteinases and cytokines (an overview). Free Radical Research 1995; 22: 489–517
  • Ginsburg I., Gibbs D. F., Tarapchac S., Varani J. A novel approach to the assessment of toxicity of hexachlorocyclohexane (lindane) and of certain organic solvents killing of cells in culture and the release of arachidonate by synergism among H2O2, membranedamaging agents, histone and trypsin. In vitro Toxicology 1996; 9: 305–313
  • Yedgar S., DM P., Dagan A., Ginsbug I., Losses I. S., Breuer R. Control of inflammatory processes by a cell-impermeable inhibitor of phospholipase A2. Agents and Actions 1995; 46: 77–84
  • Ginsburg I., Yedgar S., Varani J. Sodium nitroprusside and diethyldithiocarbamate synergize with oxidants and with membrane-damaging agents to kill mammalian cells and to release arachidonic acid: modulation of PLA2 inhibitor. 5th Regional Meeting of SFRR (Australia), Medicine, Chemistry and Biology of Free Radicals, South Australia, 1995. Wollongong
  • Heikkila R. S., Cabbat F. S., Cohen G. In vivo inhibition of superoxide dismutase in mice by diethyldithiocarbamate. Journal of Biological Chemistry 1976; 251: 2182–2185
  • Kirashi H., Terano A., Sugimoto T., Harada T., Kazandi M., Hey K. J. Role of cellular super-oxide dismutase against reactive oxygen metabolite injury in cultured aortic endothelial cells. Journal of Clinical Investigation 1992; 93: 331–338
  • Thurman R. G., Leyland H. G., Schultz R. Hepatic microsomal hydrogen peroxide formation, ethanol oxidation and the role of catalyse. European Journal of Biochemistry 1972; 24: 420–430
  • Ginsburg I., Boriski R., Lahav M., Matzner Y., Eliason P., Christensen P., Malamud D. Poly-L-arginine and N-formylated chemotactic peptide act synergistically with lectins and calcium ionophore to induce intense chemiluminescence and superoxide production by human blood leukocytes: modulation by metabolic inhibitors, sugars and poly-electrolytes. Inflammation 1984; 88: 1–26
  • Yamamoto Y., Ninik E., Guchi J. R, Kamiya Y., Shigamaski H. Oxidation of biological membranes and its inhibition. Free radical chain oxidation of erythrocyte ghost membranes and its inhibition. Biochimica et Biophysica Acta 1985; 819: 29–36
  • Green L. C., Wagner D. A., Gogowski L., Skipprer P. L., Wishnok L., Tennenbaum S. Analysis of nitrate, nitrile and (15N) nitrate, in biological fluids. Analytical Biochemistry 1982; 126: 131–138
  • Agar N. S., Mahoney J. R., Eaton J. W. Hemolytic and microbicidal action diethyldithiocarbamate. Biochemical Pharmacology 1911; 41: 985–99
  • Tsunawaki S., Nathan C. F. Release of arachdonic acid and reduction of oxygen: Independent metabolic burst of mouse peritoneal macrophages. Journal of Biological Chemistry 1986; 261: 11563–11570
  • Parker C. W., Kelly J. P., Falkenheim S. F., Huber M. G. Release of arachidonic acid from human mononuclear cells and lymphocytes by mitogenic lectins. Journal of Immunology 1982; 128: 393–397
  • Parker C. W. Pharmacological modulation of release of arachidonic acid from human mononuclear cells and lymphocytes by mitogenic lectins. Journal of Immunology 1982; 128: 393–397
  • Halliwell B., Gutterige J. M. C. Free Radical Biology and Medicine. Clarendon Press, Oxford 1989
  • Varani J., Bendelow D. E., Sealy S. L., Kunkel S. L., Gannon D. E., Ryan U. S., Ward P. A. Tumor necrosis factor enhances susceptibility of vascular endothelial cells to neutrophil-mediated killing. Laboratory Investigation 1988; 59: 292–295
  • Soumalainen K., Sorsa T., Golub L. M., Rarnamurthy N., Lee H. M., Uitto V. J., Saari H., Konttinnen Y. T. Specificity of anti-collagenase action of tetracycline: Relevance of their anti-inflammatory potential. Antimicrobial. Agents and Chemotherapy, 36: 227–229
  • Seymour R. H., Hassman P. A. Tetracycline in the treatment of periodontal disease: A review. Journal of Clinical Periodontics 1995; 22: 22–35
  • Feldman P. L., Griffith M. O. W., Stuehr D. J. The surprising life of nitric oxide. Chemistry and Engineering News 1993; 20: 26–38
  • Halliwell B., Hoult J. R., Blake D. R. Oxidation, inflammation and anti-inflammatory drugs. FASEB Journal 1990; 2: 2867–2873
  • Jestis A. J., Quinn M. T., Mukhejee G., Ward A., Dratz E. A. Death by oxygen. The New Biologist 1991; 3: 644–651
  • Orrhenius S. Mechanisms of oxidative cell damage. In Free Radicals: from Basic Sciences to Medicine, P. S. Albano, M. U. Diazani. Birkhauser Verlag, BaselSwitzerland 1993; 47–64
  • Varani J., Ward P. A. Mechanisms of neutrophil-dependent and neutrophil-independent endothelial cell injury. Biological Signals 1994; 3: l-14
  • Varani J., Phan S. H., Gibbs D. F., Ryan U. S., Ward P. A. H2O2-mediated cytotoxicity of rat pulmonary endothelial cells: Changes in adenosine triphosphatase and purine products and effect of protective intermediates. Laboratory Investigation 1990; 63: 683–689
  • Sprag R. G. DNA strand break formation following exposure to bovine pulmonary artery aortic cells to reactive oxygen products. American Journal of Respiratory and Cell and Molecular Biology 1991; 4: 4–10
  • Rubayny G. M., Vanhoutte D. M. Oxygenderived free radicals, endothelium and responsiveness to vascular smooth muscle. American Journal of Physiology 1986; 240: H815–H21
  • Koppernol W. H., Moreno J. I., Pryor W. A., Ischoropolos H., Beckman J. S. Peroxynitrite, an oxidant formed by nitric oxide and superoxide. Chemical Research in Toxicology 1992; 5: 834–842
  • Beckman S., Beckman T. W., Marshall P. A., Freeman P. A. Apparent hydroxyl radical production by peroxynitrite. Implication for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences (USA) 1990; 98: 1620–1624
  • Loanides I., DeGroot H. Cytoxicity of nitric oxide in Fu5 rat hepatoma: Evidence for cooperative action with hydrogen peroxide. Biochemical Journal 1993; 296: 341–345
  • Ronche K. D., Brenner H. H., Rodriguez M. L., Etzkom K., Nopack E. A., Kolb H., Kolb-Bachofen V. Pancreatic islet cells are highly susceptible towards the cytotoxic effects of chemically-generated nitric oxide. Biochimica et Biophysica Acta 1993; 1182: 221–229
  • Campbell J. M., McCrae M., Reglinski J., Willson R., Smith W. E., Surrock R. D. The reaction of sodium nitroprusside with peripheral blood cells in vivo: A rationale for cyanide release in vivo. Biochimica et Biophysica Acta 1993; 1156: 317–333
  • Buckingham L., Duncan J. L. Approximate dimensions of membrane lesions produced by streptolysin S and streptolysin O. Biochimica et Biophysica Acta 1983; 729: 115–122
  • Ginsburg I., Ward P. Lysophosphatides enhance superoxide generation by stimulated neutrophils. Inflammation 1989; 13: 163–174
  • Muunkhetorn S. M., Abdenzadeh Z., Houee-Levin C. Antioxidant action of diethyldithiocarbamate reaction with hydrogen peroxide and superoxide. Free Radical Biology and Medicine 1989; 17: 517–527
  • Trombetta L. D., Toulon M., Jamall I. S. Protective effect of glutathione on diethyldithiocarbamate (DDC) cytotoxicity: A possible mechanism. Toxicology: Applications in Pharmacology 1988; 93: 4–161
  • Tzeng W. F., Chiou T. J., Wang C. P., Lee J. L., Chen Y. H. Cellular thiols as determinants of responsiveness to menadione in cardiomyocytes. Journal of Molecular and Cellular Cardiology 1994; 26: 889–897
  • Pritsos C. A., Keyes S. R., Sartorelli A. C. Effect of the superoxide dismutase inhibitor, diethyldithiocarbamate on the cytotoxicity of mitomycin antibiotics. Cancer Biochemistry and Biophysics 1989; 10: 289–298
  • Lin P. S., Kwock L., Goodchild N. T. Chelator enhancement of bleomycin cytotoxicity. Cancer 1988; 46: 2360–2364
  • Sarvazyan M. A., Askari A., Klevay L. M., Askari A., Huang W. H. Role of intracellular SOD in oxidant-induced injury, to normal and comer depleted myocytes. American Journal of Physiology 1995; 268: H1115–1121
  • Lauriaut V. V. Disulfiram may mediate erythrocyte hemolysis by diethylditluocarbamate and 1,4, naph-thoquinone-2-sulfonate. Archives of Biochemistry and Biophysics 1991; 284: 207–214
  • Kumar K. S., Sancho A. M., Weiss J. F. A novel interaction of dithyldithiocarbamate with glutathione/glutathione system. International Journal of Radiation, Oncology and Biological Physics 1986; 12: 1463–1467
  • Zannoco A. L., Pavez R., Videla L. A., Lies E. E. Antioxidant capacity of diethyldithiocarbamate in metal independent lipid peroxidative process. Free Radical Biology & Medicine 1989; 7: 151–156
  • Liw J. L., Shigenaga M. K., Yan L. J., Mori A., Ames 8. M. Antioxidant activity of diethyldithiocarbamate. Free Radical Research 1996; 24: 461–472
  • Volk T., Ioannidis I., Hensel M., deGroot H., Knox W. J. Endothelial damage by nitric oxide synergism with reactive oxygen species. Biochemical and Biophysical Research Communications 1995; 213: 196–203
  • Dan P., Nitzan D. W., Dagan A., Ginsburg I., Yedgar S. H2O2 renders cells accessible to lysis by exogenous phospholipase A2: A novel mechanism for cell damage in inflammatory processes. FEBS Letters 1996; 385: 75–78

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.