1,934
Views
13
CrossRef citations to date
0
Altmetric
Original Article

In vivo brain microdialysis to evaluate FITC-dextran encapsulated immunopegylated nanoparticles

, &
Pages 298-306 | Received 26 Apr 2012, Accepted 19 Jul 2012, Published online: 28 Aug 2012

References

  • Abbott NJ. (2005). Physiology of the blood brain barrier and its consequences for drug transport to the brain. Int Congr Ser 1277:3–18.
  • Aktas Y, Yemisci M, Andrieux K, Gürsoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quiñoá E, Riguera R, Sargon MF, Celik HH, Demir AS, Hincal AA, Dalkara T, Capan Y, Couvreur P. (2005). Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem 16:1503–1511.
  • Aliautdin RN, Petrov VE, Ivanov AA, Kreuter J, Kharkevich DA. (1996). [Transport of the hexapeptide dalargin across the hemato-encephalic barrier into the brain using polymer nanoparticles]. Eksp Klin Farmakol 59:57–60.
  • Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J. (1997). Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 14:325–328.
  • Ballabh P, Braun A, Nedergaard M. (2004). The blood–brain barrier: an overview: Structure, regulation, and clinical implications. Neurobiol Dis 16:1–13.
  • Béduneau A, Saulnier P, Hindré F, Clavreul A, Leroux JC, Benoit JP. (2007). Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab’ fragments. Biomaterials 28:4978–4990.
  • Blackburn-Munro G, Jensen BS. (2003). The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur J Pharmacol 460:109–116.
  • Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C.. (2007). Solid lipid nanoparticles for targeted brain drug delivery Adv Drug Deliv Rev 59:454–477.
  • Boschi G, Scherrmann J.. (2000). Microdialysis in mice for drug delivery research Adv Drug Deliv Rev 45:271–281.
  • Das D, Lin S. (2005). Double-coated poly (butylcynanoacrylate) nanoparticulate delivery systems for brain targeting of dalargin via oral administration. J Pharm Sci 94:1343–1353.
  • Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. (2005). Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm 298:274–292.
  • Gelperina S, Maksimenko O, Khalansky A, Vanchugova L, Shipulo E, Abbasova K, Berdiev R, Wohlfart S, Chepurnova N, Kreuter J. (2010). Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm 74:157–163.
  • Giustini AJ, Ivkov R, Hoopes PJ. (2011). Magnetic nanoparticle biodistribution following intratumoral administration. Nanotechnology 22:345101.
  • Hoffmann A, Bredno J, Wendland M, Derugin N, Ohara P, Wintermark M. (2011). High and Low Molecular Weight Fluorescein Isothiocyanate (FITC)-Dextrans to Assess Blood-Brain Barrier Disruption: Technical Considerations. Transl Stroke Res 2:106–111.
  • Kim HR, Gil S, Andrieux K, Nicolas V, Appel M, Chacun H, Desmaële D, Taran F, Georgin D, Couvreur P. (2007). Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell Mol Life Sci 64:356–364.
  • Kirthivasan B, Singh D, Bommana MM, Raut SL, Squillante E, Sadoqi M. (2012). Active brain targeting of a fluorescent P-gp substrate using polymeric magnetic nanocarrier system. Nanotechnology 23:255102.
  • Kreuter J. (2001). Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47:65–81.
  • Kreuter J. (2005). Application of nanoparticles for the delivery of drugs to the brain. Int Congr Ser 1277:85–94.
  • Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. (1995). Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 674:171–174.
  • Kreuter J, Petrov VE, Kharkevich DA, Alyautdin RN. (1997). Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood brain barrier using surfactant-coated nanoparticles. J Control Release 49:81–87.
  • Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, Alyautdin R. (2002). Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 10:317–325.
  • Moos T, Morgan EH. (2001). Restricted transport of anti-transferrin receptor antibody (OX26) through the blood-brain barrier in the rat. J Neurochem 79:119–129.
  • Olivier JC. (2005). Drug transport to brain with targeted nanoparticles. NeuroRx 2:108–119.
  • Olivier JC, Huertas R, Lee HJ, Calon F, Pardridge WM. (2002). Synthesis of pegylated immunonanoparticles. Pharm Res 19:1137–1143.
  • Pardridge WM. (2005). The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14.
  • Parikh T, Bommana MM, Squillante E 3rd. (2010). Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain. Eur J Pharm Biopharm 74:442–450.
  • Paxinos G, Watson C. (1986). The rat brain in stereotaxic coordinates Sydney; Orlando: Academic Press.
  • Raut SL, Kirthivasan B, Bommana MM, Squillante E, Sadoqi M. (2010). The formulation, characterization and in vivo evaluation of a magnetic carrier for brain delivery of NIR dye. Nanotechnology 21:395102.
  • Storm G, Belliot SO, Daemen T, Lasic DD. (1995). Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv. Drug Deliv. Rev. 17:31–48.
  • Ulbrich K, Hekmatara T, Herbert E, Kreuter J. (2009). Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 71:251–256.
  • Vaka SR, Sammeta SM, Day LB, Murthy SN. (2009). Delivery of nerve growth factor to brain via intranasal administration and enhancement of brain uptake. J Pharm Sci 98:3640–3646.
  • van Rooy I, Cakir-Tascioglu S, Hennink WE, Storm G, Schiffelers RM, Mastrobattista E. (2011). In vivo methods to study uptake of nanoparticles into the brain. Pharm Res 28:456–471.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.