3,380
Views
116
CrossRef citations to date
0
Altmetric
Research Article

Nanomaterials as Matrices for Enzyme Immobilization

, , &
Pages 98-109 | Published online: 19 Oct 2010

REFERENCES

  • Gupta, M.N. (1992). Enzyme function in organic solvents. Eur J Biochem, 203:25–32.
  • Gupta, M.N. (2000). Methods in Non-aqueous Enzymology. Switzerland: Birkhauser Verlag.
  • Khmelnitsky, Y.L., Levashov, A.V., Klyachko, N.L., Martinek, K. (1988). Engineering biocatalytic systems in organic media with low water content. Enzyme Microb Technol, 10:710–724.
  • Mattiasson, B., Holst, O. (1991). Extractive Bioconversions. New York: Marcel Dekker Inc.
  • Dandavate, V., Keharia, H., Madamwar, D. (2009). Ethyl isovalerate synthesis using Candida rugosa lipase immobilized on silica nanoparticles prepared in nonionic reverse micelles. Process Biochem, 44:349–152.
  • Shah, S., Gupta, M. N. (2007). Kinetic resolution of (±)-1-phenylethanol in [Bmim][PF6] using high activity preparations of lipases. Bioorg Med Chem Lett, 17:921–924.
  • Lamare, S., Legoy, M.D. (1993). Biocatalysis in the gas phase. Trends Biotechnol, 11:413–418.
  • Halling, P.J. (2006). Understanding enzyme action at solid surfaces. Biochem Soc Trans, 34:309–311.
  • Schloss, P. D., Handelsman, J. (2003). Biotechnological prospects from metagenomics. Curr Opin Biotechnol, 14:303–310.
  • Marco, D. (2010). Metagenomics: Theory, Methods and Applications. Caister Academic Press.
  • Bornscheuer, U. T., Kazlauskas, R. J. (2004). Catalytic promiscuity in biocatalysis: Using old enzymes to form new bonds and follow new pathways. Angew Chem Int Ed, 43:6032–6040.
  • Khersonsky, O., Tawfik, D.S. (2010). Enzyme promiscuity: A mechanistic and evolutionary perspective. Annu Rev Biochem, 79:11.1–11.35.
  • Gupta, M.N., Mattiasson, B. (1992). Unique applications of immobilized proteins in bioanalytical systems. Bioanalytical Applications of Enzymes. Suelter, C.H., Kricka, L. New York: John Wiley & Sons Inc., 36:1–34.
  • Gusain, M.J. (2006). Immobilization of Enzymes and Cells. New York: Humana Press Inc.
  • Broun, G. B. (1976). Chemically aggregated enzymes. Methods Enzymol, 44:263–280.
  • Cao, L., Langen, L.V., Sheldon, R.A. (2003). Immobilized enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol, 14:387–394.
  • Sheldon, R.A Schoevaart, R., Van Langen, L.M. (2005). Cross-linked enzyme aggregates (CLEAs). Biocatal Biotransform, 23: 141–147.
  • Schoevaart, R., Wolbers, M. W., Golubovic, M., Ottens, M., Kieboom, A.P.G., Rantwijk, F.V., van der Wielen, L. A., Sheldon, R. A. (2004). Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol Bioeng, 87:754–762.
  • Sowdhamini, R., Balaram, P. (1993). Protein structure and stability. Thermostability of Enzymes. Gupta, M.N. Berlin: Springer-Verlag, 2–21.
  • Wold, F. (1972). Bifunctional reagents. Methods Enzymol, 25:623–651.
  • Gupta, M.N. (1993). Applications of crosslinking techniques to enzyme/protein stabilization and bioconjugate preparation. Biocatalyst Design for Stability and Specificity. Himmel, M.E., Georgiou, G. Washington, DC: ACS Symposium Series Am. Chem. Soc., 307–324.
  • Tyagi, R., Gupta, M. N. (1998) Chemical modification and chemical crosslinking for protein/enzyme stabilization. Biochemistry (Mosc), 63:334–344.
  • Tischer, W., Kasche V. (1999). Immobilized enzymes: crystals or carriers? Trends Biotechnol, 17:326–335.
  • Roy, I., Sharma, S., Gupta, M. N. (2004) Smart biocatalysts: design and applications. Advances in Biochemical Engineering and Biotechnology, Scheper, T. Berlin: Springer-Verlag, 86:159–189.
  • Roy, I., Gupta, M.N. (2006) Design of smart biocatalysts: Immobilization of enzymes on smart polymers. Immobilization of Enzymes & Cells, Guisan, J.M. Humana Press Inc., New York, 22:87–95.
  • Raghava, S., Mondal, K., Pareek, P., Kuckling, D., Gupta. M. N. (2006). Preparation and properties of thermo sensitive bioconjugates of trypsin. Artif Cells Blood Substit Immobil Biotechnol, 34:323–336.
  • Raghava, S., Gupta, M.N. (2009). Stimuli-responsive polymers in biotechnology, Advances in Fermentation Technology: Current Topics on Bioprocesses in Food Industry. Pandey, A., Larroche, C., Soccol, C.R., Dussap, C.G. Delhi: Asiatech New Publishers Inc., 14–26.
  • Teotia, S., Gupta, M. N. (2001). Purification of α-amylase using magnetic alginate beads. Appl Biochem Biotechnol, 90:211–220.
  • Teotia, S., Gupta, M. N. (2002). Magnetite-alginate beads for purification of some starch-degrading enzymes. Mol Biotechnol, 20:231–237.
  • Safarikova, M., Roy, I., Gupta, M. N., Safarik, I. (2003). Magnetic alginate microparticles for purification of α-amylases. J Biotechnol, 105:255–260.
  • Safarik, I., Safarikova, M. (2009). Magnetic nano and microparticles in biotechnology. Chem Papers, 63:497–505.
  • Roy, I., Gupta, M.N. (2006) Use of immobilized biocatalysts in fluidized bed format. Immobilization of Enzymes & Cells, Guisan, J.M. Humana Press Inc., New York, 311–320.
  • Engasser, J.M., Horvath, C. (1976). Diffusion and kinetics with immobilized enzymes. Applied Biochemistry and Bioengineering. Wingard, L.B., Katzir, E.K., Goldstein, L. London: Academic Press, 1:127–220.
  • Bommarius, A.S., Riebel, B.R. (2004). Enzyme reaction engineering. Biocatalysis. Verlag: Wiley-VCH, 91–131.
  • Halling, P. J. (2002). Enzymatic conversions in organic and other low water media. Enzyme Catalysis in Organic Synthesis. Drauz, K., Waldman, H. Weinheim: Wiley-VCH, 259–285.
  • Chang, T.M.S. (2007). Artificial Cells – Biotechnology, Nanomedicine, Regenerative Medicine, Blood Substitutes, Bioencapsulation and Cell/Stem Cell Therapy. Singapore: World Scientific Publishing Co. Pte. Ltd.
  • Wang, P. (2006). Nanoscale biocatalyst systems. Curr Opin Biotechnol, 17:574–579.
  • Bosley, J.A., Peilow, A.D. (2000). Immobilization of lipases for use in non-aqueous reaction systems. Methods in Nonaqueous Enzymology. Gupta, M.N. Switzerland: Birkhauser Verlag, 52–69.
  • Chiang, C.L., Sung, C.S. (2006). Purification of transfection-grade plasmid DNA from bacterial cells with superparamagnetic nanoparticles. J Magn Magn Mater, 302:7–13.
  • Mikhaylova, M., Kim, D.K, Berry, C.C., Zagorodni, A., Toprak, M., Curtis, A.S.G., Muhammed, M. (2004). BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem Mater, 16:2344–2354.
  • Kim, D.K., Mikhaylova, M., Zhang, Y., Muhammed, M. (2003). Protective coating of superparamagnetic iron oxide nanoparticles. Chem Mater, 15:1617–1627.
  • Gao, X., Yu, K.M.K., Tam, K.Y., Tsang, S.C. (2003). Colloidal stable silica encapsulated nano-magnetic composite as a novel bio-catalyst carrier. Chem Commun, 2998–2999.
  • Dyal, A., Loos, K., Noto, M., Chang, S.W., Spagnoli, C., Shafi, K.V.P.M., Ulman, A., Cowman, M., Gross, R.A. (2003). Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J Am Chem Soc, 125:1684–1685.
  • Gardimalla, H.M.R., Mandal, D., Stevens, P.D., Yenb, M., Gao, Y. (2005). Superparamagnetic nanoparticle-supported enzymatic resolution of racemic carboxylates. Chem Commun, 35:4432–4434.
  • Zhang, Y., Li, J., Han, D., Zhang, H., Liu, P., Li, C. (2008). An efficient resolution of racemic secondary alcohols on magnetically separable biocatalyst. Biochem Biophys Res Commun, 365: 609–613.
  • Wang, W., Xu, Y., Wang, D.I.C., Li, Z. (2009). Recyclable nanobiocatalyst for enantioselective sulfoxidation: Facile fabrication and high performance of chloroperoxidase coated magnetic nanoparticles with iron oxide core and polymer shell. J Am Chem Soc, 139:12892–12893.
  • Lee, J., Lee, Y., Youn, J.K., Na, H.B., Yu, T., Kim, H., Lee, S.M., Koo, Y.M., Kwak, J.H., Park, H.G., Chang, H.N., Hwang, M., Park, J.G., Kim, J., Hyeon, T. (2008). Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small, 4:143–52.
  • Netto, C.G.C.M., Andrade, L.H., Toma, H.E. (2009). Enantioselective transesterification catalysis by Candida antarctica lipase immobilized on superparamagnetic nanoparticles. Tetrahedron: Asymmetry, 20:2299–2304.
  • Dussan, K.J., Giraldo, O. H., Cardona, C. A. (2007). Application of magnetic nanostructures in biotechnological processes: Biodiesel production using lipase immobilized on magnetic carriers. Proceedings of European Congress of Chemical Engineering (ECCE-6).
  • Weber, H. K., Faber, K. (1997). Stabilization of lipases against deactivation by acetaldehyde formed in acyl transfer reactions. Meth Enzymol, 206:509–518.
  • Weber, H.K., Zuegg, J., Faber, K., Pleissb, J. (1997). Molecular reasons for lipase sensitivity against acetaldehyde. J Mol Catal B Enzy, 3:131–138.
  • Johnson, A. K., Zawadzka, A.M., Deobald, L.A., Crawford, R.L., Paszczynski, A.J. (2008). Novel method for immobilization of enzymes to magnetic nanoparticles. J Nanopart Res, 10:1009–1025.
  • Kim, J., Lee, J., Na, H. B., Kim, B. C., Youn, B. C., Kwak, B. C., Moon, K., Lee, E., Kim, J., Park, J., Dohnalkova, A., Park, B. C., Gu, B. C., Chang, B. C., Grate, B. C., Hyeon, T. (2005). A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. Small, 1:1203–1207.
  • Kim, J., Grate, J.W. (2003). Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett, 3:1219–1222.
  • Wang, Y., Caruso, F. (2004). Enzyme encapsulation in nanoporous silica spheres. Chem Commun, 1528–1529.
  • Wang, P., Dai, S., Waezsada, S.D. Tsao, A., Davison, B.H. (2001). Enzyme stabilization by covalent binding in nonporous sol-gel glass for nonaqueous biocatalysis. Biotechnol Bioeng, 74: 249–255.
  • Klibanov, A.M. (1979). Enzyme stabilization by immobilization. Anal Biochem, 93:1–25.
  • Mozhaev, V. V., Martinek, K., (1990). Structure-stability relationships in proteins: a guide to approaches to stabilizing enzymes. Adv Drug Deliv Rev, 4:387–419.
  • Kula, M. R., Kragl, U. (2000). Dehydrogenases in the synthesis of chiral compounds. Stereoselective Biocatalysis, Patel, R. N. New York: Marcel Dekker, 839–866.
  • Asuri, P., Karajanagi, S.S. Sellitto, E., Kim, D.Y. Kane, R.S., Dordick, J.S. (2006). Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol Bioeng, 95:804–811.
  • Shah, S., Solanki, K., Gupta, M.N. (2007). Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes. Chem Cent J, 1:30.
  • Shah, S., Gupta, M.N. (2008). Simultaneous refolding, purification and immobilization of xylanase with multi-walled carbon nanotubes. Biochim Biophys Acta, 1784:363–367.
  • Asuri, P., Bale, S.S. Karajanagi, S.S., Kane, R.S. (2006). The protein–nanomaterial interface. Curr Opin Biotechnol, 17:562–568.
  • Huang, W., Lin, Y., Taylor, S., Gaillard, J., Rao, A.M., Sun, Y.P. (2002). Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Lett, 2:231–234.
  • Shim, M., Kam, N.W.S., Chem, R.J. Li, Y., Dai, H. (2002). Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett, 2:285–288.
  • Chen, R.J. Bangsaruntip, S., Drouvalakais, K.A. Kam, N.W.S., Shim, M., Li, Y., Kim, W., Utz, P.J., Dai, H. (2003). Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci, 100:4984–4989.
  • Azamian, B.R. Cavis, J.J. Coleman, K.S. Bagshaw, C.B., Green, M.L.H. (2002). Biochemical single walled carbon nanotubes. J Am Chem Soc, 124:12664–12665.
  • Karajanagi, S.S. Vertegel, A.A. Kane, R.S., Dordick, J.S. (2004). Structures and functions of enzymes adsorbed onto single walled carbon nanotubes. Langmuir, 20: 11594–11599.
  • Jia, H., Zhu, G., Wang, P. (2003). Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol Bioeng, 84:406–414.
  • Chen, Y.Z. Yang, C.T. Ching, C.B., Xu, R. (2008). Immobilization of lipases on hydrophobilized zirconia nanoparticles: Highly enantioselective and reusable biocatalysts. Langmuir, 24:8877–8884.
  • Raghava, S., Singh, P.K. Rao, A.R. Dutta, V., Gupta, M.N. (2009). Nanoparticles of unmodified titanium dioxide facilitate protein refolding. Mater Chem, 19:2830–2834.
  • Vertegel, A.A. Siegel, R.W., Dordick, J.S. (2004). Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir, 20:6800–6807.
  • Herricks, T.E. Kim, S.H. Kim, J., Li, D., Kwak, J.H. Grate, J.W. Kim, S.H., Xia, Y. (2005). Direct fabrication of enzyme-carrying polymer nanofibers by electrospinning. J Mater Chem, 14:3241–3245.
  • Hutten, A., Sudfeld, D., Ennen, I., Reiss, G., Hachmann, W., Heinzmann, U., Wojczykowski, K., Jutzi, P., Saikaly, W., Thomas, G. (2004). New magnetic nanoparticles for biotechnology. J Biotechnol, 112:47–63.
  • Medintz, I.L. Uyeda, H.T. Goldman, E.R., Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater, 4:435–446.
  • Hotz, C.Z. (2005). Applications of quantum dots in biology. Nanobiotechnology Protocols. Rosenthal, S.J., Wright, D.W.. New York: Humana Press Inc.
  • Cleland, J.L. Hedgepeth, C., Wang, D.I. (1992). Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model. J. Biol Chem, 267: 13327–13334.
  • Mondal, K., Bohidar, H.B. Roy, R.P., Gupta, M.N. (2006). Alginate-chaperoned facile refolding of Chromobacterium viscosum lipase. Biochim Biophys Acta (Proteins and Proteomics), 1764:877–886.
  • De, M., Rotello, M.V. (2008). Synthetic “chaperones”: nanoparticle-mediated refolding of thermally denatured proteins. Chem Commun, 3504–3506.
  • O'Shannessy, D.J., Hoffman, W.L. (1987). Site-directed immobilization of glycoproteins on hydrazide-containing supports, Biotech Appl Biochem, 9:488–496.
  • Sardar, M., Gupta M.N. (2005). Immobilization of tomato pectinase on Con A-Seralose 4B by bioaffinity layering. Enzyme Microb Technol, 37:355–359.
  • Dalal, S., Gupta, M.N. (2007). Treatment of phenolic wastewater by horseradish peroxidase immobilized by bioaffinity layering. Chemosphere, 67:741–747.
  • Wu, L.Q., Payne, G.F. (2004). Biofabrication: using biological materials and biocatalysts to construct nanostructured assemblies. Trends Biotechnol, 22:593–599.
  • Kim, J., Grate, J.W., Wang, P. (2008). Nanobiocatalysis and its potential applications. Trends Biotechnol, 26:639–646.
  • Sharma, S., Teotia, S., Gupta, M. N. (2003). Bioconversion in an aqueous two phase system using a smart biocatalyst: Casein hydrolysis by alpha chymotrypsin. Enzyme Microb Technol, 32:337–339.
  • Zhu, G., Wang, P. (2004). Polymer-enzyme conjugates can self-assemble at oil/water interfaces and effect interfacial biotransformations. J Am Chem Soc, 126:11132–11133.
  • Sheldon, R.A. (2007). Enzyme immobilization: The quest for optimum performance. Adv Synth Catal, 349: 1289–1307.
  • Miyazaki, M., Maeda, H. (2006). Microchannel enzyme reactors and their applications for processing. Trends Biotechnol, 24:463–470.
  • Honda, T., Miyazaki, M., Nakamura, H., Maeda, H. (2005). Facile preparation of an enzyme-immobilized microreactor using a cross-linking enzyme membrane on a microchannel. Adv Synth Catal, 348:2163–2171.
  • Li, H., Liu, S., Dai, Z., Bao, J., and Yang, X. (2009). Applications of nanomaterials in electrochemical enzyme biosensors. Sensors, 9:8547–8561.
  • Yun, Y.H. Eteshola, E., Bhattacharya, A., Dong, Z., Shim, J.S. Conforti, L., Kim, D., Schulz, M.J. Ahn, C.H., Watts, N. (2009). Tiny medicine: nanomaterial-based biosensors. Sensors, 9:9275–9299.
  • Somorjai, G.A. Frei, H., Park, J.Y. (2009). Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am Chem Soc, 131:16589–16605.
  • Xiao, Y., Patolsky, F., Kate, E., Hainfeld, J.F., Willner I. (2003). “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticles. Science, 299:1877–1881.
  • Grunes, J., Zhu, J., Somorjai, G.A. (2003). Catalysis and nanoscience. Chem Commun, 2257–2260.
  • Lynch, I., Dawson, K.A. (2008). Protein-nanoparticle interactions. Nano Today, 3:40–47.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.