3,521
Views
40
CrossRef citations to date
0
Altmetric
Research Article

Advances in Pulmonary Delivery of Nanoparticles

, , &
Pages 75-96 | Published online: 02 Aug 2011

REFERENCES

  • Sung, J.C., Pulliam, B.L. and Edwards, D.A. (2007). Nanoparticles for drug delivery to the lungs. TRENDS in Biotechnology, 25: 563–570.
  • Finlay, W.H. (2005). The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction. London: Academic Press.
  • Chaudhuri, S.R. and Lukacova, V. (2010). Simulating Delivery of Pulmonary (and Intranasal) Aerosolised Drugs. Lanchester: Simulations Plus, Inc., 26–28.
  • Desai, A. (2007). Gibaldi's Drug Delivery Systems in Pharmaceutical Care. Bethesda, MD: American Society of Health System.
  • Labiris, N.R. and Dolovich, M.B. (2003). Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol., 56: 588–599.
  • Vyas, S.P. and Khar, R.K. (2002). Targeted & Controlled Drug Delivery, Novel Carrier Systems. New Delhi: CBS Publishers and Distributors.
  • Anderson, M.W., Orton, T.C., Pickett, R.D. and Eling, T.E. (1974). Accumulation of amines in the isolated perfused rabbit lung. J Pharmacol Exp. Ther189: 456–466.
  • Dollery, C.T. and Junod, A.F. (1976). Concentration of (±) proponol in isolated, perfused rabbit lung. J. Pharmacol, 57: 67–71.
  • Jorfeldt, L., Lewis, D.H., Lofstrom, J.B. and Post, C. (1979). Lung uptake of lidocaine in healthy volunteers. Acta Anaesth Scand, 23: 567–574.
  • Roerig, D.L., Kotrly, K.J., Dawson, C.A., Ahlf, S.B., Gualtieri, J.F. and Kampine, J.P. (1989). First pass uptake of verapamil, diazepam and thiopental in the human lung. Anaesth Analg, 69: 461–466.
  • Suhara, T., Sudo, Y., Yoshida, K., Okubo, Y., Fukuda, H., Obata, T., Yoshikawa, K., Suzuki, K. and Sasaki, Y., (1998). The limiting role of mucus in drug absorption: Drug permeation through mucus solution. Int J Pharm, 126: 179–187.
  • Rubin, B.K. (2010). Air and soul: The science and application of aerosol therapy. Respir Care., 55: 911–21.
  • Kalantarian, P., Najafabadi, A.R., Haririan, I., Vatanara, A., Yamini, Y., Darabi, M. and Gilani, K. (2010). Preparation of 5-fluorouracil nanoparticles by supercritical antisolvents for pulmonary delivery. Int J Nanomedicine, 5: 763–70.
  • Zeman, K.L., Wu, J. and Bennett, W.D. (2010). Targeting aerosolized drugs to the conducting airways using very large particles and extremely slow inhalations. J Aerosol Med Pulm Drug Deliv, 23: 363–9.
  • Zhang, Y., Wang, X., Lin, X., Liu, X., Tian, B. and Tang, X. (2010). High azithromycin loading powders for inhalation and their in vivo evaluation in rats. Int J Pharm, 395: 205–14.
  • Tronde, A., Norden, B., Marchner, H., Wendel, A.K., Lennernas, H., Bengtsson, U.H. (2003). Pulmonary absorption rate and bioavailability of drugs in vivo in rats: structure-absorption relationships and physicochemical profiling of inhaled drugs. J Pharm Sci, 92: 1216–1233.
  • Patton, J.S. (1996). Mechanisms of macromolecular absorption by the lungs. Adv Drug Deliv Rev, 19: 3–36.
  • Bhat, P.G., Flanagan, D.R. and Donavan, M.D. (1995). The limiting role of mucus in drug absorption: Drug permeation through mucus solution. Int J Pharm, 126: 179–187.
  • Rubin, B.K. (1996). Therapeutic aerosols and airway secretions. J. Aerosol Med, 9: 123–130.
  • Lipworth, B.J. and Clark, D.J. (1997). Effects of airway calibre on lung delivery of nebulised salbutamol. Thorax, 52: 1036–9.
  • Tronde, A., Bosquillon, C. and Forbes, B. (2008). The isolated perfused lungs for drug absorption studies. Ehrhardt, C., Kwang-Jin, K., Drug Absorption Studies: In Situ, In Vitro and In Silico Models. New York: Springer Sciences, 135–154.
  • Dandekar, P., Venkataraman, C. and Mehra, A. (2010). Pulmonary targeting of nanoparticle drug matrices. J Aerosol Med Pulm Drug Deliv, 23: 343–53.
  • Noymer, P.D., Myers, D.J., Cassella, J.V. and Timmons, R. (2011). Assessing the temperature of thermally generated inhalation aerosols. J. Aerosol Med. Pulm. Drug Del., 24: 11–15.
  • Shaikh, S., Nazim, S., Khan, T., Shaikh, A., Zameeruddin, M. and Quazi, A. (2010). Recent advances in pulmonary drug delivery system: A review. Int J of AppPharm, 2: 27–31.
  • Byron, P.R. (2004). Drug delivery devices: Issues in drug development. The Proceedings of the American Thoracic Society, 1: 321–328.
  • Nassimi, M., Schleh, C., Lauenstein, H.D., Hussein, R., Lübbers, K., Pohlmann, G., Switalla, S., Sewald, K., Müller, M., Krug, N., Müller-Goymann, C.C. and Braun, A. (2009). Low cytotoxicity of solid lipid nanoparticles in in vitro and ex vivo lung models. Inhal Toxicol, 1: 104–9.
  • Nassimi, M., Schleh, C., Lauenstein, H.D., Hussein, R., Hoymann, H.G., Koch, W., Pohlmann, G., Krug, N., Sewald, K., Rittinghausen, S., Braun, A., Müller-Goymann, C. (2010). A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung. Eur J Pharm Biopharm, 75: 107–16.
  • Xiang, Q.Y., Wang, M.T., Chen, F., Gong, T., Jian, Y.L., Zhang, Z.R. and Huang, Y. (2007). Lung-targeting delivery of dexamethasone acetate loaded solid lipid nanoparticles. Arch Pharm Res, 30: 519–25.
  • Liu, J., Gong, T., Fu, H., Wang, C., Wang, X., Chen, Q., Zhang, Q., He, Q. and Zhang, Z. (2008). Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm, 356: 333–44.
  • Yang, W., Tam, J., Miller, D.A., Zhou, J., McConville, J.T., Johnston, K.P. and Williams, R.O., 3rd (2008). High bioavailability from nebulized itraconazole nanoparticle dispersions with biocompatible stabilizers. Int J Pharm, 361: 177–88.
  • Yu, W., Liu, C., Liu, Y., Zhang, N. and Xu, W. (2010). Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages. Pharm Res, 27: 1584–96.
  • Li, Y.Z., Sun, X., Gong, T., Liu, J., Zuo, J. and Zhang, Z.R. (2010). Inhalable microparticles as carriers for pulmonary delivery of thymopentin-loaded solid lipid nanoparticles. Pharm Res, 27: 1977–86.
  • Arora, D., Goyal, A.K., Paliwal, S.R., Khurana, B. and Vyas, S.P. (2010). Oral mucosal immunization: Recent advancement and future prospects. Current Immunology Reviews, 6: 234–259.
  • Dhand, R. (2004). New frontiers in aerosol delivery drug mechanical ventilation. Respiratory Care, 49: 666–677.
  • Imran, S. and Hugh, S. (2006). Carriers in pulmonary dry powder drug delivery. Future Drug Delivery, 34–36.
  • Zaru, M., Sinico, C., De Logu, A., Caddeo, C., Lai, F., Manca, M.L. and Fadda, A.M. (2009). Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages: In vitro and in vivo evaluation. J Liposome Res, 19: 68–76.
  • Behr, J., Zimmermann, G., Baumgartner, R., Leuchte, H., Neurohr, C., Brand, P., Herpich, C., Sommerer, K., Seitz, J., Menges, G., Tillmanns, S., Keller, M. and Munich Lung Transplant Group (2009). Lung deposition of a liposomal cyclosporine A inhalation solution in patients after lung transplantation. J Aerosol Med Pulm Drug Deliv, 22: 121–30.
  • Tronde, A., Norden, B., Marchner, H., Wendel, A.K., Lennernas, H., Bengtsson, U.H. (2003). Pulmonary absorption rate and bioavailability of drugs in vivo in rats: Structure-absorption relationships and physicochemical profiling of inhaled drugs. J Pharm Sci, 92: 1216–1233.
  • Monforte, V., Ussetti, P., López, R., Gavaldà, J., Bravo, C., de Pablo, A., Pou, L., Pahissa, A., Morell, F. and Román, A. (2009). Nebulized liposomal amphotericin B prophylaxis for Aspergillus infection in lung transplantation: Pharmacokinetics and safety. J Heart Lung Transplant, 28: 170–5.
  • Latimer, P., Menchaca, M., Synder, R.M., Yu, W., Gilbert, B.E., Sanders, B.G. and Kline, K. (2009). Aerosol delivery of liposomal formulated paclitaxel and vitamin E analog reduces murine mammary tumor burden and metastases. Exp Biol Med (Maywood), 234: 1244–52.
  • Zakharian, T.Y., Seryshev, A., Sitharaman, B., Gilbert, B.E. and Knight, V. (2004). A fullerene- paclitaxel chemotherapeutic: Synthesis, characterization and study of biological activity in tissue culture. J Am Chem Soc, 127: 12508–9.
  • Bai, S., Gupta, V. and Ahsan, F. (2009). Cationic liposomes as carriers for aerosolized formulations of an anionic drug safety. Eur J Pharm Sci, 38: 165–71.
  • Pitt, C.G. (1990). Poly-ε caprolactone and its copolymers. Langer, R. Biodegradable Polymers as Drug Delivery Systems. New York: Marcel Dekker, 71.
  • Ohashi, K., Kabasawa, T., Ozeki, T. and Okada, H. (2009). One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J Control Release, 135: 19.
  • Beck-Broichsitter, M., Gauss, J., Gessler, T., Seeger, W., Kissel, T. and Schmehl, T. (2010). Pulmonary targeting with biodegradable salbutamol-loaded nanoparticles. J Aerosol Med Pulm Drug Deliv, 23: 47–57.
  • Doan, T.V. and Oliver, J.C. (2009). Preparation of rifampicin-loaded PLGA microspheres for lung delivery as aerosol by premix membrane homogenization. Int J Pharm, 382: 61–6.
  • Kaye, R.S., Purewal, T.S. and Alpar, H.O. (2009). Simultaneously manufactured nano-in-micro (SIMANIM) particles for dry-powder modified-release delivery of antibodies. J Pharm Sci, 98: 4055–68.
  • Pandey, R., Sharma, A., Zahoor, A., Sharma, S., Khuller, G.K. and Prasad, B. (2003). Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother, 52: 981–6.
  • Arnold, M.M., Gorman, E.M., Schieber, L.J., Munson, E.J. and Berkland, C. (2007). NanoCipro encapsulation in monodisperse large porous PLGA microparticles. J Control Release, 121: 100–9.
  • Ungaro, F., d'Emmanuele di Villa Bianca, R., Giovino, C., Miro, A., Sorrentino, R., Quaglia, F. and La Rotonda, M.I. (2009). Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: In vivo deposition and hypoglycaemic activity after delivery to rat lungs. J Control Release, 135: 25–34.
  • Yamamoto, H., Kuno, Y., Sugimoto, S., Takeuchi, H. and Kawashima, Y. (2005). Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release, 102: 373–81.
  • Niwa, T., Takeuchi, H., Hino, T. and Kawashima, Y. (1995). Aerosolization of lactide/glycolide copolymer (PLGA) nanospheres for pulmonary delivery of peptide-drugs. Yakugaku Zasshi., 115: 732–41
  • Bharatwaj, B., Wu, L., Whittum-Hudson, J.A. and da Rocha, S.R. (2010). The potential for the noninvasive delivery of polymeric nanocarriers using propellant-based inhalers in the treatment of Chlamydial respiratory infections. Biomaterials, 31: 7376–85.
  • Ely, L., Roa, W., Finlay, W.H. and Löbenberg, R. (2007). Effervescent dry powder for respiratory drug delivery. Eur J Pharm Biopharm, 65: 346–53.
  • Quillen, D.A. and Rosenwasser, G.O. (1994). Aerosol application of cyanoacrylate adhesive. J Refract Corneal Surg, 10: 149–50.
  • Zhang, Q., Shen, N.T. (2001). Prolonged hypoglycaemic effect of insulin loaded polybutyl cyanoacrylate nanoparticles after pulmonary administration to normal rats. Int. J. Pharm, 218: 78–80.
  • Kamal, M.H., Shirzad, A., Anwar, A., Wilson, H. and Raimar, L. (2010). Secondary cytotoxicity mediated by alveolar macrophages: A contribution to the total efficacy of nanoparticles in lung cancer therapy? European Journal of Pharmaceutics and Biopharmaceutics, 76: 112–119.
  • Harush-Frenkel, O., Bivas-Benita, M., Nassar, T., Springer, C., Sherman, Y., Avital, A., Altschuler, Y., Borlak, J. and Benita, S. (2010). A safety and tolerability study of differently-charged nanoparticles for local pulmonary drug delivery. Toxicol Appl Pharmacol, 246: 83–90.
  • Muttil, P., J. Kaur, K. Kumar, A.B. Yadav, R. Sharma, and A. Misra. (2007). Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur. J. Pharm. Sci., 32: 140–150.
  • Gadermann, M., Kular, S., Al-Marzouqi, A.H. and Signorell, R. (2009). Formation of naproxen-polylactic acid nanoparticles from supercritical solutions and their characterization in the aerosol phase. Phys Chem Chem Phys, 11: 7861–8.
  • Shoyele, S.A. and Slowey, A. (2006). Prospects of formulating proteins/peptides as aerosols for pulmonary drug delivery. Int J.of Pharmaceutics, 314: 1–8.
  • Wright, I.K., Higginbotham, A., Baker, S.M. and Donnelly, T.D. (2010). Generation of nanoparticles of controlled size using ultrasonic piezoelectric oscillators in solution. ACS Appl Mater Interfaces, 2: 2360–4.
  • Albasarah, Y.Y., Somavarapu, S. and Taylor, K.M. (2010). Stabilizing protein formulations during air-jet nebulization. Int J Pharm, 402: 140–5.
  • Grenha, A., Seijo, B. and Remuñán-López, C. (2005). Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci, 25: 427–37.
  • Hagenaars, N., Mastrobattista, E., Verheul, R.J., Mooren, I., Glansbeek, H.L., Heldens, J.G., van den Bosch, H., Jiskoot, W. (2009). Physicochemical and immunological characterization of N,N,N-trimethyl chitosan-coated whole inactivated influenza virus vaccine for intranasal administration. Pharm Res, 26: 1353–64.
  • Jin, H., Xu, C.X., Kim, H.W., Chung, Y.S., Shin, J.Y., Chang, S.H., Park, S.J., Lee, E.S., Hwang, S.K., Kwon, J.T., Minai-Tehrani, A., Woo, M., Noh, M.S., Youn, H.J., Kim, D.Y., Yoon, B.I., Lee, K.H., Kim, T.H., Cho, C.S. and Cho, M.H. (2008). Urocanic acid-modified chitosan-mediated PTEN delivery via aerosol suppressed lung tumorigenesis in K-ras(LA1) mice. Cancer Gene Ther, 15: 275–83.
  • Gilani, K., Moazeni, E., Ramezanli, T., Amini, M., Fazeli, M.R. and Jamalifar, H. (2011). Development of respirable nanomicelle carriers for delivery of amphotericin B by jet nebulization. J Pharm. Sci, 100: 252–9.
  • Learoyd, T.P., Burrows, J.L., French, E., Seville, P.C. (2009). Sustained delivery by leucine-modified chitosan spray-dried respirable powders. Int J Pharm., 372: 97–104.
  • Naikwade, S.R., Bajaj, A.N., Gurav, P., Gatne, M.M. and Singh, P. (2009). Development of budesonide microparticles using spray-drying technology for pulmonary administration: design, characterization, in vitro evaluation, and in vivo efficacy study. AAPS Pharm Sci Tech, 10: 993–1012.
  • Ahmad, Z. and Khuller, G.K. (2008). Alginate-based sustained release drug delivery systems for tuberculosis. Expert Opin Drug Deliv, 5: 1323–34.
  • Alipour, S., Montaseri, H. and Tafaghodi, M. (2010). Preparation and characterization of biodegradable paclitaxel loaded alginate microparticles for pulmonary delivery. Colloids Surf B Biointerfaces, 81: 521–9.
  • El-Sherbiny, I.M. and Smyth, H.D. (2010). Biodegradable nano-micro carrier systems for sustained pulmonary drug delivery: (I) self-assembled nanoparticles encapsulated in respirable/swellable semi-IPN microspheres. Int J Pharm, 395: 132–41.
  • Frasher, J.R.E., Laurent, T.C., Laurent, U.B.G. (1997). Hyaluronan: Its nature, distribution, functions and turnover. Journal of Internal Medicine, 242: 27–33.
  • Liao, Y.H., Jones, S.A., Forbes, B., Martin, G.P. and Brown, M.B. (2005). Hyaluronan pharmaceutical characterization and drug delivery. Drug Deliv, 12: 327–42.
  • Hwang, S.M., Kim, D.D., Chung, S.J. and Shim, C.K. (2008). Delivery of ofloxacin to the lung and alveolar macrophages via hyaluronan microspheres for the treatment of tuberculosis. J Control Release, 129: 100–6.
  • Surendrakumar, K., Martyn, G.P., Hodgers, E.C., Jansen, M. and Blair. J.A. (2003). Sustained release of insulin from sodium hyaluronate based dry powder formulations after pulmonary delivery to beagle dogs. J Control Release, 91: 385–94.
  • Morimoto, K., Metsugi, K., Katsumata, H., Iwanaga, K. and Kakemi, M. (2001). Effects of low-viscosity sodium hyaluronate preparation on the pulmonary absorption of rh-insulin in rats. Drug Dev Ind Pharm, 27: 365–71.
  • Kumar, A., Sahoo, B., Montpetit, A., Behera, S., Lockey, R.F. and Mohapatra, S.S. (2007). Development of hyaluronic acid-Fe2O3 hybrid magnetic nanoparticles for targeted delivery of peptides. Nanomedicine, 3: 132–7.
  • Lee, E.S., Kwon, M.J., Na, K. and Bae, J.H. (2007). Protein release behavior from porous microparticle with lysozyme/hyaluronate ionic complex. Colloids Surf B Biointerfaces, 55: 125–30.
  • Li, H.Y., Song, X. and Seville, P.C. (2010). The use of sodium carboxymethylcellulose in the preparation of spray-dried proteins for pulmonary drug delivery. Eur J Pharm Sci, 40:56–61.
  • Griesenbach, U., Meng, C., Farley, R., Wasowicz, M.Y., Munkonge, F.M., Chan, M., Stoneham, C., Sumner-Jones, S.G., Pringle, I.A., Gill, D.R., Hyde, S.C., Stevenson, B., Holder, E., Ban, H., Hasegawa, M., Cheng, S.H., Scheule, R.K., Sinn, P.L., McCray, P.B. Jr. and Alton, E.W. (2010). The use of carboxymethylcellulose gel to increase non-viral gene transfer in mouse airways. Biomaterials, 31: 2665–72.
  • Dailey, L.A., Kleemann, E., Wittmar, M., Gessler, T., Schmehl, T., Roberts, C., Seeger, W., Kissel, T. (2003). Surfactant-free, biodegradable nanoparticles for aerosol therapy based on the branched polyesters, DEAPA-PVAL-g-PLGA. Pharm Res, 20: 2011–20.
  • Li, H.Y. and Seville, P.C. (2009). Novel pMDI formulations for pulmonary delivery of proteins. Int J Pharm, 385: 73–8.
  • Yang, W., Chow, K.T., Lang, B., Wiederhold, N.P., Johnston, K.P. and Williams, R.O. (2010). In vitro characterization and pharmacokinetics in mice following pulmonary delivery of itraconazole as cyclodextrin solubilized solution. Eur J Pharm Sci, 39: 336–47.
  • Thi, T.H., Azaroual, N., Flament and M.P. (2009). Characterization and in vitro evaluation of the formoterol/cyclodextrin complex for pulmonary administration by nebulization. Eur J Pharm Biopharm, 72: 214–8.
  • Tolman, J.A., Nelson, N.A., Son, Y.J., Bosselmann, S., Wiederhold, N.P., Peters, J.I., McConville, J.T. and Williams, R.O. (2009). Characterization and pharmacokinetic analysis of aerosolized aqueous voriconazole solution. Eur J Pharm Biopharm, 72: 199–205.
  • Jalalipour, M., Najafabadi, A.R., Gilani, K., Esmaily, H. and Tajerzadeh, H. (2008). Effect of dimethyl- beta-cyclodextrin concentrations on the pulmonary delivery of recombinant human growth hormone dry powder in rats. J Pharm Sci, 97: 5176–85.
  • Bonacucina, G., Martelli, S. and Palmieri, G.F. (2004). Rheological, mucoadhesive and release properties of Carbopol gels in hydrophilic cosolvents. Int. J. Pharm, 282: 115–130.
  • Doan, T.V. and Oliver, J.C. (2009). Preparation of rifampicin-loaded PLGA microspheres for lung delivery as aerosol by premix membrane homogenization. Int J Pharm, 382: 61–6.
  • Anais, J.P., Razzouq, N., Carvalho, M., Fernandez, C., Astier, A., Paul, M., Astier, A., Fessi, H. and Lorino, A.M. (2009). Development of alpha-tocopherol acetate nanoparticles: Influence of preparative processes. Drug Dev Ind Pharm, 35: 216–23.
  • Sommerville, M.L. and Hickey, A.J. (2003). Aerosol generation by metered-dose inhalers containing dimethyl ether/propane inverse microemulsions. AAPS PharmSciTech, 4: E58.
  • Butz, N., Porté, C., Courrier, H., Krafft, M.P. and Vandamme, T.F. (2002). Reverse water-in-fluorocarbon emulsions for use in pressurized metered-dose inhalers containing hydrofluoroalkane propellants. Int J Pharm, 238: 257–69.
  • Sommerville, M.L., Cain, J.B., Johnson, C.S. Jr. and Hickey A.J. (2000). Lecithin inverse microemulsions for the pulmonary delivery of polar compounds utilizing dimethylether and propane as propellants. Pharm Dev Technol, 5: 219–30.
  • Makidon, P.E., Nigavekar, S.S., Bielinska, A.U., Mank, N., Shetty, A.M., Suman, J., Knowlton, J., Myc, A., Rook, T. and Baker, J.R., Jr. (2010). Characterization of stability and nasal delivery systems for immunization with nanoemulsion-based vaccines. J Aerosol Med Pulm Drug Deliv, 23: 77–89.
  • Dickinson, P.A., Howells, S.W. and Kellaway, I.W. (2001). Novel nanoparticles for pulmonary drug administration. J Drug Target, 9: 295–302.
  • Wu, L., Bharatwaj, B., Panyam, J. and da Rocha, S.R. (2008). Core-shell particles for the dispersion of small polar drugs and biomolecules in hydrofluoroalkane propellants. Pharm Res, 25: 289–301.
  • Tian, Y., Klegerman, M.E. and Hickey, A.J. (2004). Evaluation of microparticles containing doxorubicin suitable for aerosol delivery to the lungs. PDA J Pharm Sci Technol, 58: 266–75.
  • Cañete, M., Soriano, J., Villanueva, A., Roca, A.G., Veintemillas, S., Serna, C.J., Miranda, R. and Del Puerto Morales, M. (2010). The endocytic penetration mechanism of iron oxide magnetic nanoparticles with positively charged cover: A morphological approach. Int J Mol Med, 26: 533–9.
  • Zhu, M.T., Feng, W.Y., Wang, B., Wang, T.C., Gu, Y.Q., Wang, M., Wang, Y., Ouyang, H., Zhao, Y.L., Chai, Z.F. (2008). Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology, 247: 102–11.
  • Martin, A.R., Thompson, R.B. and Finlay, W.H. (2008). MRI measurement of regional lung deposition in mice exposed nose-only to nebulized superparamagnetic iron oxide nanoparticles. J Aerosol Med Pulm Drug Deliv, 21: 335–42.
  • Dames, P., Gleich, B., Flemmer, A., Hajek, K., Seidl, N., Wiekhorst, F., Eberbeck, D., Bittmann, I., Bergemann, C., Weyh, T., Trahms, L., Rosenecker, J. and Rudolph, C. (2007). Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol, 2: 495–9.
  • Xie, Y., Longest, P.W., Xu, Y.H., Wang, J.P. and Wiedmann, T.S. (2010). In vitro and in vivo lung deposition of coated magnetic aerosol particles. J Pharm Sci, 99: 4658–68.
  • Kessinger, C.W., Khemtong, C., Togao, O., Takahashi, M., Sumer, B.D. and Gao, J. (2010). In vivo angiogenesis imaging of solid tumors by alpha(v)beta(3)-targeted, dual- modality micellar nanoprobes. Exp Biol Med (Maywood), 235: 957–65.
  • Guthi, J.S., Yang, S.G., Huang, G., Li, S., Khemtong, C., Kessinger, C.W., Peyton, M., Minna, J.D., Brown, K.C. and Gao, J. (2010). MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm, 7: 32–40.
  • Gosens, I., Post, J.A., de la Fonteyne, L.J., Jansen, E.H., Geus, J.W., Cassee, F.R. and de Jong, W.H. (2010). Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol, 7: 37.
  • Sadauskas, E., Jacobsen, N.R., Danscher, G., Stoltenberg, M., Vogel, U., Larsen, A., Kreyling, W. and Wallin, H. (2009). Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation. Chem Cent J, 3:16.
  • Lipka, J., Semmler-Behnke, M., Sperling, R.A., Wenk, A., Takenaka, S., Schleh, C., Kissel, T., Parak, W.J. and Kreyling, W.G. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials, 31: 6574–81.
  • Brown, S.D., Nativo, P., Smith, J.A., Stirling, D., Edwards, P.R., Venugopal, B., Flint, D.J., Plumb, J.A., Graham, D. and Wheate, N.J. (2010). Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc, 132: 4678–84.
  • Warheit, D.B., Sayes, C.M. and Reed, K.L. (2009). Nanoscale and fine zinc oxide particles: Can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol, 43: 7939–45.
  • Tong, Y., Zhang, G., Li, Y., Tan, M., Wang, W., Chen, J., Hwu, Y., Hsu, P.C., Je, J.H., Margaritondo, G., Song, W., Jiang, R. and Jiang, Z. (2006). Synchrotron microradiography study on acute lung injury of mouse caused by PM (2.5) aerosols. Eur J Radiol58: 266–72.
  • Pauluhn, J. and Rosenbruch, M. (2003). Inhalation toxicity of propineb. Part I: Results of subacute inhalation exposure studies in rats. Inhal Toxicol, 15: 411–34.
  • Langenback, E.G., Davis, J.M., Robbins, C., Sahgal, N., Perry, R.J. and Simon, S.R. (1999). Improved pulmonary distribution of recombinant human Cu/Zn superoxide dismutase, using a modified ultrasonic nebulizer. Pediatr Pulmonol, 27: 124–9.
  • Amdur, M.O and Chen, L.C. (1989). Furnace-generated acid aerosols: Speciation and pulmonary effects. Environ Health Perspect, 79: 147–50.
  • Igor, L., Satterstrom, F. and Corey, L. (2008). Nanotoxicology and nanomedicine: Making hard decisions. Nanomedicine: Nanotechnology, Biology and Medicine, 4: 167–171.
  • Suh, W.H., Suslick, K.S., Stucky, G.D. and Suh, Y.H. (2009). Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol, 87: 133–70.
  • Shvedova, A., Valerian, E.K. and Bengt, F. (2010). Close encounters of the small kind: Adverse effects of man made material interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol, 50: 63–88.
  • Stone, V., Johnston, H. and Clift, M.J. (2007). Air pollution, ultrafine and nanoparticle toxicology: Cellular and molecular interactions. IEEE Trans Nanobioscience, 6: 331–40.
  • Tsytsikova, L. (2009). Global List of Organizations and Efforts Related to Nanotechnology, Nanoscience, Nanomaterials, and Food and Agriculture Products. Available at: http://www.ilsi.org/NorthAmerica/Documents/FOOD%20CHEMICAL%20SAFETY/Global%20List%20of%20Organizations%20and%20Efforts%20Related%20to%20Nanotechnology.pdf. Accessed on 18 March 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.