247
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Identification of residues involved in homodimer formation located within a β-strand region of the N-terminus of a Yeast G protein-coupled receptor

, , , &
Pages 65-75 | Received 20 Oct 2011, Accepted 04 Dec 2011, Published online: 24 Jan 2012

References

  • Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature 2009, 459, 356–363.
  • Lundstrom K. An overview on GPCRs and drug discovery: structure-based drug design and structural biology on GPCRs. Methods Mol Biol 2009, 552, 51–66.
  • Williams C, Hill SJ. GPCR signaling: understanding the pathway to successful drug discovery. Methods Mol Biol 2009, 552, 39–50.
  • De Amici M, Dallanoce C, Holzgrabe U, Tränkle C, Mohr K. Allosteric ligands for G protein-coupled receptors: a novel strategy with attractive therapeutic opportunities. Med Res Rev 2010, 30, 463–549.
  • Lappano R, Maggiolini M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 2011, 10, 47–60.
  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000, 289, 739–745.
  • Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 2008, 322, 1211–1217.
  • Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 2010, 330, 1066–1071.
  • Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 2010, 330, 1091–1095.
  • Warne T, Moukhametzianov R, Baker JG, Nehmé R, Edwards PC, Leslie AG, Schertler GF, Tate CG. The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor. Nature 2011, 469, 241–244.
  • Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 2008, 454, 486–491.
  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 2007, 318, 1258–1265.
  • Ratnala VR, Kobilka B. Understanding the ligand-receptor-G protein ternary complex for GPCR drug discovery. Methods Mol Biol 2009, 552, 67–77.
  • Hauser M, Kauffman S, Lee BK, Naider F, Becker JM. The first extracellular loop of the Saccharomyces cerevisiae G protein-coupled receptor Ste2p undergoes a conformational change upon ligand binding. J Biol Chem 2007, 282, 10387–10397.
  • Javitch JA, Shi L, Liapakis G. Use of the substituted cysteine accessibility method to study the structure and function of G protein-coupled receptors. Meth Enzymol 2002, 343, 137–156.
  • Karlin A, Akabas MH. Substituted-cysteine accessibility method. Meth Enzymol 1998, 293, 123–145.
  • Marsh L. Substitutions in the hydrophobic core of the alpha-factor receptor of Saccharomyces cerevisiae permit response to Saccharomyces kluyveri α-factor and to antagonist. Mol Cell Biol 1992, 12, 3959–3966.
  • Umanah GK, Huang L, Ding FX, Arshava B, Farley AR, Link AJ, Naider F, Becker JM. Identification of residue-to-residue contact between a peptide ligand and its G protein-coupled receptor using periodate-mediated dihydroxyphenylalanine cross-linking and mass spectrometry. J Biol Chem 2010, 285, 39425–39436.
  • Son CD, Sargsyan H, Naider F, Becker JM. Identification of ligand binding regions of the Saccharomyces cerevisiae α-factor pheromone receptor by photoaffinity cross-linking. Biochemistry 2004, 43, 13193–13203.
  • Turcatti G, Nemeth K, Edgerton MD, Meseth U, Talabot F, Peitsch M, Knowles J, Vogel H, Chollet A. Probing the structure and function of the tachykinin neurokinin-2 receptor through biosynthetic incorporation of fluorescent amino acids at specific sites. J Biol Chem 1996, 271, 19991–19998.
  • Sherman F. Getting started with yeast. Meth Enzymol 1991, 194, 3–21.
  • Huang LY, Umanah G, Hauser M, Son C, Arshava B, Naider F, Becker JM. Unnatural amino acid replacement in a Yeast G protein-coupled receptor in its native environment. Biochemistry 2008, 47, 5638–5648.
  • Slauch JM, Mahan MJ, Mekalanos JJ. Measurement of transcriptional activity in pathogenic bacteria recovered directly from infected host tissue. BioTechniques 1994, 16, 641–644.
  • Raths SK, Naider F, Becker JM. Peptide analogues compete with the binding of alpha-factor to its receptor in Saccharomyces cerevisiae. J Biol Chem 1988, 263, 17333–17341.
  • David NE, Gee M, Andersen B, Naider F, Thorner J, Stevens RC. Expression and purification of the Saccharomyces cerevisiae α-factor receptor (Ste2p), a 7-transmembrane-segment G protein-coupled receptor. Faseb J 1997, 11(9), 2805.
  • Pinson B, Chevallier J, Urban-Grimal D. Only one of the charged amino acids located in membrane-spanning regions is important for the function of the Saccharomyces cerevisiae uracil permease. Biochem J 1999, 339 (Pt 1), 37–42.
  • Choi Y, Konopka JB. Accessibility of cysteine residues substituted into the cytoplasmic regions of the α-factor receptor identifies the intracellular residues that are available for G protein interaction. Biochemistry 2006, 45, 15310–15317.
  • Shi C, Kaminskyj S, Caldwell S, Loewen MC. A role for a complex between activated G protein-coupled receptors in yeast cellular mating. Proc Natl Acad Sci USA 2007, 104, 5395–5400.
  • Shi C, Kendall SC, Grote E, Kaminskyj S, Loewen MC. N-terminal residues of the yeast pheromone receptor, Ste2p, mediate mating events independently of G1-arrest signaling. J Cell Biochem 2009, 107, 630–638.
  • Akal-Strader A, Khare S, Xu D, Naider F, Becker JM. Residues in the first extracellular loop of a G protein-coupled receptor play a role in signal transduction. J Biol Chem 2002, 277, 30581–30590.
  • Martin NP, Celic A, Dumont ME. Mutagenic mapping of helical structures in the transmembrane segments of the yeast α-factor receptor. J Mol Biol 2002, 317, 765–788.
  • Shah A, Marsh L. Role of Sst2 in modulating G protein-coupled receptor signaling. Biochem Biophys Res Commun 1996, 226, 242–246.
  • Kim H, Lee BK, Naider F, Becker JM. Identification of specific transmembrane residues and ligand-induced interface changes involved in homo-dimer formation of a Yeast G protein-coupled receptor. Biochemistry 2009, 48, 10976–10987.
  • Stefan CJ, Overton MC, Blumer KJ. Mechanisms governing the activation and trafficking of Yeast G protein-coupled receptors. Mol Biol Cell 1998, 9, 885–899.
  • Lin JC, Duell K, Konopka JB. A microdomain formed by the extracellular ends of the transmembrane domains promotes activation of the G protein-coupled α-factor receptor. Mol Cell Biol 2004, 24, 2041–2051.
  • Overton MC, Blumer KJ. The extracellular N-terminal domain and transmembrane domains 1 and 2 mediate oligomerization of a Yeast G protein-coupled receptor. J Biol Chem 2002, 277, 41463–41472.
  • Reneke JE, Blumer KJ, Courchesne WE, Thorner J. The carboxy-terminal segment of the yeast α-factor receptor is a regulatory domain. Cell 1988, 55, 221–234.
  • Yesilaltay A, Jenness DD. Homo-oligomeric complexes of the yeast α-factor pheromone receptor are functional units of endocytosis. Mol Biol Cell 2000, 11, 2873–2884.
  • Li JH, Hamdan FF, Kim SK, Jacobson KA, Zhang X, Han SJ, Wess J. Ligand-specific changes in M3 muscarinic acetylcholine receptor structure detected by a disulfide scanning strategy. Biochemistry 2008, 47, 2776–2788.
  • Li JH, Han SJ, Hamdan FF, Kim SK, Jacobson KA, Bloodworth LM, Zhang X, Wess J. Distinct structural changes in a G protein-coupled receptor caused by different classes of agonist ligands. J Biol Chem 2007, 282, 26284–26293.
  • Ward SD, Hamdan FF, Bloodworth LM, Siddiqui NA, Li JH, Wess J. Use of an in situ disulfide cross-linking strategy to study the dynamic properties of the cytoplasmic end of transmembrane domain VI of the M3 muscarinic acetylcholine receptor. Biochemistry 2006, 45, 676–685.
  • Yu H, Kono M, McKee TD, Oprian DD. A general method for mapping tertiary contacts between amino acid residues in membrane-embedded proteins. Biochemistry 1995, 34, 14963–14969.
  • Yu H, Kono M, Oprian DD. State-dependent disulfide cross-linking in rhodopsin. Biochemistry 1999, 38, 12028–12032.
  • Guo W, Shi L, Filizola M, Weinstein H, Javitch JA. Crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. Proc Natl Acad Sci USA 2005, 102, 17495–17500.
  • Mancia F, Assur Z, Herman AG, Siegel R, Hendrickson WA. Ligand sensitivity in dimeric associations of the serotonin 5HT2c receptor. EMBO Rep 2008, 9, 363–369.
  • Eilers M, Hornak V, Smith SO, Konopka JB. Comparison of class A and D G protein-coupled receptors: common features in structure and activation. Biochemistry 2005, 44, 8959–8975.
  • Karnik SS, Gogonea C, Patil S, Saad Y, Takezako T. Activation of G-protein-coupled receptors: a common molecular mechanism. Trends Endocrinol Metab 2003, 14, 431–437.
  • Naider F, Becker JM. The α-factor mating pheromone of Saccharomyces cerevisiae: a model for studying the interaction of peptide hormones and G protein-coupled receptors. Peptides 2004, 25, 1441–1463.
  • Celic A, Connelly SM, Martin NP, Dumont ME. Intensive mutational analysis of G protein-coupled receptors in yeast. Methods Mol Biol 2004, 237, 105–120.
  • Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ. Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem 1991, 60, 653–688.
  • Ho HH, Du D, Gershengorn MC. The N terminus of Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor is necessary for high affinity chemokine binding but not for constitutive activity. J Biol Chem 1999, 274, 31327–31332.
  • Hawtin SR, Wesley VJ, Parslow RA, Simms J, Miles A, McEwan K, Wheatley M. A single residue (arg46) located within the N-terminus of the V1a vasopressin receptor is critical for binding vasopressin but not peptide or nonpeptide antagonists. Mol Endocrinol 2002, 16, 600–609.
  • Hagemann IS, Narzinski KD, Floyd DH, Baranski TJ. Random mutagenesis of the complement factor 5a (C5a) receptor N terminus provides a structural constraint for C5a docking. J Biol Chem 2006, 281, 36783–36792.
  • Gurevich VV, Gurevich EV. How and why do GPCRs dimerize? Trends Pharmacol Sci 2008, 29, 234–240.
  • Dong C, Wu G. Regulation of anterograde transport of α2-adrenergic receptors by the N termini at multiple intracellular compartments. J Biol Chem 2006, 281, 38543–38554.
  • Mentesana PE, Konopka JB. Mutational analysis of the role of N-glycosylation in alpha-factor receptor function. Biochemistry 2001, 40, 9685–9694.
  • Akabas MH, Stauffer DA, Xu M, Karlin A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 1992, 258, 307–310.
  • Javitch JA. Probing structure of neurotransmitter transporters by substituted-cysteine accessibility method. Meth Enzymol 1998, 296, 331–346.
  • Mueckler M, Makepeace C. Analysis of transmembrane segment 8 of the GLUT1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility. J Biol Chem 2004, 279, 10494–10499.
  • Stauffer DA, Karlin A. Electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding-site cysteines with charged methanethiosulfonates. Biochemistry 1994, 33, 6840–6849.
  • Prévost M, Vertongen P, Raussens V, Roberts DJ, Cnudde J, Perret J, Waelbroeck M. Mutational and cysteine scanning analysis of the glucagon receptor N-terminal domain. J Biol Chem 2010, 285, 30951–30958.
  • Lemaire K, Van de Velde S, Van Dijck P, Thevelein JM. Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Mol Cell 2004, 16, 293–299.
  • Chen S, Lin F, Xu M, Graham RM. Phe(303) in TMVI of the alpha(1B)-adrenergic receptor is a key residue coupling TM helical movements to G-protein activation. Biochemistry 2002, 41, 588–596.
  • Xu W, Li J, Chen C, Huang P, Weinstein H, Javitch JA, Shi L, de Riel JK, Liu-Chen LY. Comparison of the amino acid residues in the sixth transmembrane domains accessible in the binding-site crevices of μ, δ, and κ opioid receptors. Biochemistry 2001, 40, 8018–8029.
  • Sen M, Marsh L. Noncontiguous domains of the α-factor receptor of yeasts confer ligand specificity. J Biol Chem 1994, 269, 968–973.
  • Wang HX, Konopka JB. Identification of amino acids at two dimer interface regions of the α-factor receptor (Ste2). Biochemistry 2009, 48, 7132–7139.
  • Falke JJ, Dernburg AF, Sternberg DA, Zalkin N, Milligan DL, Koshland DE Jr. Structure of a bacterial sensory receptor. A site-directed sulfhydryl study. J Biol Chem 1988, 263, 14850–14858.
  • Srinivasan N, Sowdhamini R, Ramakrishnan C, Balaram P. Conformations of disulfide bridges in proteins. Int J Pept Protein Res 1990, 36(2), 147–155.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.