404
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Emerging non-canonical functions for heterotrimeric G proteins in cellular signaling

&
Pages 177-183 | Received 25 Jan 2013, Accepted 11 Apr 2013, Published online: 31 May 2013

References

  • Gales C, Van Durm JJ, Schaak S, et al. Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat Struct Mol Biol 2006;13:778–86
  • Johnston CA, Siderovski DP. Receptor-mediated activation of heterotrimeric G-proteins: current structural insights. Mol Pharmacol 2007;72:219–30
  • Northup JK, Sternweis PC, Gilman AG. The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution, activity, and properties of the 35,000-dalton (beta) subunit. J Biol Chem 1983;258:11361–8
  • Sternweis PC, Northup JK, Smigel MD, Gilman AG. The regulatory component of adenylate cyclase. Purification and properties. J Biol Chem 1981;256:11517–26
  • Blumer JB, Cismowski MJ, Sato M, Lanier SM. AGS proteins: receptor-independent activators of G-protein signaling. Trends Pharmacol Sci 2005;26:470–6
  • Neves SR, Ram PT, Iyengar R. G protein pathways. Science 2002;296:1636–9
  • Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev Cancer 2007;7:79–94
  • Hurowitz EH, Melnyk JM, Chen YJ, et al. Genomic characterization of the human heterotrimeric G protein alpha, beta, and gamma subunit genes. DNA Res 2000;7:111–20
  • Downes GB, Gautam N. The G protein subunit gene families. Genomics 1999;62:544–52
  • Hildebrandt JD. Role of subunit diversity in signaling by heterotrimeric G proteins. Biochem Pharmacol 1997;54:325–39
  • Jordan JD, He JC, Eungdamrong NJ, et al. Cannabinoid receptor-induced neurite outgrowth is mediated by Rap1 activation through G(alpha)o/i-triggered proteasomal degradation of Rap1GAPII. J Biol Chem 2005;280:11413–21
  • Mochizuki N, Ohba Y, Kiyokawa E, et al. Activation of the ERK/MAPK pathway by an isoform of rap1GAP associated with G alpha(i). Nature 1999;400:891–4
  • Jordan JD, Carey KD, Stork PJ, Iyengar R. Modulation of rap activity by direct interaction of Galpha(o) with Rap1 GTPase-activating protein. J Biol Chem 1999;274:21507–10
  • Cabrera-Vera TM, Vanhauwe J, Thomas TO, et al. Insights into G protein structure, function, and regulation. Endocr Rev 2003;24:765–81
  • Cotton M, Claing A. G protein-coupled receptors stimulation and the control of cell migration. Cell Signal 2009;21:1045–53
  • Schmidt CJ, Neer EJ. In vitro synthesis of G protein beta gamma dimers. J Biol Chem 1991;266:4538–44
  • Higgins JB, Casey PJ. In vitro processing of recombinant G protein gamma subunits. Requirements for assembly of an active beta gamma complex. J Biol Chem 1994;269:9067–73
  • Sondek J, Bohm A, Lambright DG, et al. Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. Nature 1996;379:369–74
  • Wall MA, Coleman DE, Lee E, Iniguez-Lluhi JA, et al. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 1995;83:1047–58
  • Lambright DG, Sondek J, Bohm A, et al. The 2.0 A crystal structure of a heterotrimeric G protein. Nature 1996;379:311–9
  • Lambright DG, Noel JP, Hamm HE, Sigler PB. Structural determinants for activation of the alpha-subunit of a heterotrimeric G protein. Nature 1994;369:621–8
  • Muntz KH, Sternweis PC, Gilman AG, Mumby SM. Influence of gamma subunit prenylation on association of guanine nucleotide-binding regulatory proteins with membranes. Mol Biol Cell 1992;3:49–61
  • Simonds WF, Butrynski JE, Gautam N, et al. G-protein beta gamma dimers. Membrane targeting requires subunit coexpression and intact gamma C-A-A-X domain. J Biol Chem 1991;266:5363–6
  • Neer EJ. Heterotrimeric G proteins: organizers of transmembrane signals. Cell 1995;80:249–57
  • Logothetis DE, Kurachi Y, Galper J, et al. The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 1987;325:321–6
  • Logothetis DE, Kim DH, Northup JK, et al. Specificity of action of guanine nucleotide-binding regulatory protein subunits on the cardiac muscarinic K+ channel. Proc Natl Acad Sci USA 1988;85:5814–8
  • Wickman KD, Iniguez-Lluhl JA, Davenport PA, et al. Recombinant G-protein beta gamma-subunits activate the muscarinic-gated atrial potassium channel. Nature 1994;368:255–7
  • Reuveny E, Slesinger PA, Inglese J, et al. Activation of the cloned muscarinic potassium channel by G protein beta gamma subunits. Nature 1994;370:143–6
  • Huang CL, Slesinger PA, Casey PJ, et al. Evidence that direct binding of G beta gamma to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron 1995;15:1133–43
  • Rebois RV, Robitaille M, Gales C, et al. Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. J Cell Sci 2006;119:2807–18
  • Currie KP. G protein modulation of CaV2 voltage-gated calcium channels. Channels (Austin) 2010;4:497–509
  • Tang WJ, Gilman AG. Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits. Science 1991;254:1500–3
  • Stephens L, Smrcka A, Cooke FT, et al. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Cell 1994;77:83–93
  • Tang XX, Pleasure DE, Ikegaki N. cDNA cloning, chromosomal localization, and expression pattern of EPLG8, a new member of the EPLG gene family encoding ligands of EPH-related protein-tyrosine kinase receptors. Genomics 1997;41:17–24
  • Hawes BE, Luttrell LM, van Biesen T, Lefkowitz RJ. Phosphatidylinositol 3-kinase is an early intermediate in the G beta gamma-mediated mitogen-activated protein kinase signaling pathway. J Biol Chem 1996;271:12133–6
  • Luttrell LM, Hawes BE, van Biesen T, et al. Role of c-Src tyrosine kinase in G protein-coupled receptor- and Gbetagamma subunit-mediated activation of mitogen-activated protein kinases. J Biol Chem 1996;271:19443–50
  • Inglese J, Koch WJ, Touhara K, Lefkowitz RJ. G beta gamma interactions with PH domains and Ras-MAPK signaling pathways. Trends Biochem Sci 1995;20:151–6
  • Pitcher JA, Touhara K, Payne ES, Lefkowitz RJ. Pleckstrin homology domain-mediated membrane association and activation of the beta-adrenergic receptor kinase requires coordinate interaction with G beta gamma subunits and lipid. J Biol Chem 1995;270:11707–10
  • Lodowski DT, Pitcher JA, Capel WD, et al. Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science 2003;300:1256–62
  • Wu G, Benovic JL, Hildebrandt JD, Lanier SM. Receptor docking sites for G-protein betagamma subunits. Implications for signal regulation. J Biol Chem 1998;273:7197–200
  • Dupre DJ, Robitaille M, Rebois RV, Hebert TE. The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes. Annu Rev Pharmacol Toxicol 2009;49:31–56
  • Smrcka AV. G protein betagamma subunits: central mediators of G protein-coupled receptor signaling. Cell Mol Life Sci 2008;65:2191–214
  • Hewavitharana T, Wedegaertner PB. Non-canonical signaling and localizations of heterotrimeric G proteins. Cell Signal 2012;24:25–34
  • Carrington WA, Lynch RM, Moore ED, et al. Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. Science 1995;268:1483–7
  • Kirschner MW, Mitchison T. Microtubule dynamics. Nature 1986;324:621
  • Mandelkow EM, Mandelkow E, Milligan RA. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J Cell Biol 1991;114:977–91
  • Gundersen GG, Bulinski JC. Selective stabilization of microtubules oriented toward the direction of cell migration. Proc Natl Acad Sci USA 1988;85:5946–50
  • Gundersen GG, Gomes ER, Wen Y. Cortical control of microtubule stability and polarization. Curr Opin Cell Biol 2004;16:106–12
  • Roychowdhury S, Panda D, Wilson L, Rasenick MM. G protein alpha subunits activate tubulin GTPase and modulate microtubule polymerization dynamics. J Biol Chem 1999;274:13485–90
  • Dave RH, Saengsawang W, Yu JZ, et al. Heterotrimeric G-proteins interact directly with cytoskeletal components to modify microtubule-dependent cellular processes. Neurosignals 2009;17:100–8
  • Roychowdhury S, Rasenick MM. G protein beta1gamma2 subunits promote microtubule assembly. J Biol Chem 1997;272:31576–81
  • Montoya V, Gutierrez C, Najera O, et al. G protein betagamma subunits interact with alphabeta- and gamma-tubulin and play a role in microtubule assembly in PC12 cells. Cell Motil Cytoskeleton 2007;64:936–50
  • Roychowdhury S, Rasenick MM. Submembraneous microtubule cytoskeleton: regulation of microtubule assembly by heterotrimeric Gproteins. FEBS J 2008;275:4654–63
  • Etemad-Moghadam B, Guo S, Kemphues KJ. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 1995;83:743–52
  • Hung TJ, Kemphues KJ. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development (Cambridge, England) 1999;126:127–35
  • Tabuse Y, Izumi Y, Piano F, et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development (Cambridge, England) 1998;125:3607–14
  • Cuenca AA, Schetter A, Aceto D, et al. Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development (Cambridge, England) 2003;130:1255–65
  • Boyd L, Guo S, Levitan D, et al. PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. Development 1996;122:3075–84
  • Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 1995;81:611–20
  • Hao Y, Boyd L, Seydoux G. Stabilization of cell polarity by the C. elegans RING protein PAR-2. Dev Cell 2006;10:199–208
  • Panbianco C, Weinkove D, Zanin E, et al. A casein kinase 1 and PAR proteins regulate asymmetry of a PIP(2) synthesis enzyme for asymmetric spindle positioning. Dev Cell 2008;15:198–208
  • Galli M, Munoz J, Portegijs V, et al. aPKC phosphorylates NuMA-related LIN-5 to position the mitotic spindle during asymmetric division. Nat Cell Biol 2011;13:1132–8
  • Nguyen-Ngoc T, Afshar K, Gonczy P. Coupling of cortical dynein and G alpha proteins mediates spindle positioning in Caenorhabditis elegans. Nat Cell Biol 2007;9:1294–302
  • Grill SW, Gonczy P, Stelzer EH, Hyman AA. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 2001;409:630–3
  • Morin X, Bellaiche Y. Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev Cell 2011;21:102–19
  • Kotak S, Busso C, Gonczy P. Cortical dynein is critical for proper spindle positioning in human cells. J Cell Biol 2012;199:97–110
  • Schaefer M, Petronczki M, Dorner D, et al. Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 2001;107:183–94
  • Siegrist SE, Doe CQ. Microtubule-induced Pins/Galphai cortical polarity in Drosophila neuroblasts. Cell 2005;123:1323–35
  • Siegrist SE, Doe CQ. Extrinsic cues orient the cell division axis in Drosophila embryonic neuroblasts. Development (Cambridge, England) 2006;133:529–36
  • Homem CC, Knoblich JA. Drosophila neuroblasts: a model for stem cell biology. Development (Cambridge, England). 2012;139:4297–310
  • Schaefer M, Shevchenko A, Knoblich JA. A protein complex containing Inscuteable and the Galpha-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr Biol 2000;10:353–62
  • Wodarz A, Ramrath A, Kuchinke U, Knust E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 1999;402:544–7
  • Bowman SK, Neumuller RA, Novatchkova M, et al. The Drosophila NuMA Homolog Mud regulates spindle orientation in asymmetric cell division. Dev Cell 2006;10:731–42
  • Du Q, Macara IG. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 2004;119:503–16
  • McCaffrey LM, Macara IG. Widely conserved signaling pathways in the establishment of cell polarity. Cold Spring Harb Perspect Biol 2009;1:a001370
  • Goldstein B, Macara IG. The PAR proteins: fundamental players in animal cell polarization. Dev Cell 2007;13:609–22
  • Werts AD, Goldstein B. How signaling between cells can orient a mitotic spindle. Semin Cell Dev Biol 2011;22:842–9
  • Hess HA, Roper JC, Grill SW, Koelle MR. RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in C. elegans. Cell 2004;119:209–18
  • David NB, Martin CA, Segalen M, et al. Drosophila Ric-8 regulates Galphai cortical localization to promote Galphai-dependent planar orientation of the mitotic spindle during asymmetric cell division. Nat Cell Biol 2005;7:1083–90
  • Hampoelz B, Hoeller O, Bowman SK, et al. Drosophila Ric-8 is essential for plasma-membrane localization of heterotrimeric G proteins. Nat Cell Biol 2005;7:1099–105
  • Wang H, Ng KH, Qian H, et al. Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins. Nat Cell Biol 2005;7:1091–8
  • Gabay M, Pinter ME, Wright FA, et al. Ric-8 proteins are molecular chaperones that direct nascent G protein alpha subunit membrane association. Sci Signal 2011;4:ra79
  • Van Haastert PJ, Devreotes PN. Chemotaxis: signalling the way forward. Nat Rev Mol Cell Biol 2004;5:626–34
  • Gong H, Shen B, Flevaris P, et al. G protein subunit Galpha13 binds to integrin alphaIIbbeta3 and mediates integrin “outside-in” signaling. Science 2010;327:340–3
  • Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110:673–87
  • Huttenlocher A, Horwitz AR. Integrins in cell migration. Cold Spring Harb Perspect Biol 2011;3:a005074
  • Huttenlocher A, Sandborg RR, Horwitz AF. Adhesion in cell migration. Curr Opin Cell Biol 1995;7:697–706
  • Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 2007;7:678–89
  • Garcia-Marcos M, Ghosh P, Farquhar MG. GIV is a nonreceptor GEF for G alpha i with a unique motif that regulates Akt signaling. Proc Natl Acad Sci U S A 2009;106:3178–83
  • Ghosh P, Garcia-Marcos M, Farquhar MG. GIV/Girdin is a rheostat that fine-tunes growth factor signals during tumor progression. Cell Adh Migr 2011;5:237–48
  • Ghosh P, Garcia-Marcos M, Bornheimer SJ, Farquhar MG. Activation of Galphai3 triggers cell migration via regulation of GIV. J Cell Biol 2008;182:381–93
  • Ohara K, Enomoto A, Kato T, et al. Involvement of Girdin in the determination of cell polarity during cell migration. PLoS One. 2012;7:e36681
  • Camps M, Carozzi A, Schnabel P, et al. Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma-subunits. Nature 1992;360:684–6
  • Camps M, Hou C, Sidiropoulos D, et al. Stimulation of phospholipase C by guanine-nucleotide-binding protein beta gamma subunits. Eur J Biochem 1992;206:821–31
  • Illenberger D, Walliser C, Nurnberg B, et al. Specificity and structural requirements of phospholipase C-beta stimulation by Rho GTPases versus G protein beta gamma dimers. J Biol Chem 2003;278:3006–14
  • Razzini G, Brancaccio A, Lemmon MA, et al. The role of the pleckstrin homology domain in membrane targeting and activation of phospholipase Cbeta(1). J Biol Chem 2000;275:14873–81
  • Stoyanov B, Volinia S, Hanck T, et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 1995;269:690–3
  • Suire S, Condliffe AM, Ferguson GJ, et al. Gbetagammas and the Ras binding domain of p110gamma are both important regulators of PI(3)Kgamma signalling in neutrophils. Nat Cell Biol 2006;8:1303–9
  • Faure M, Voyno-Yasenetskaya TA, Bourne HR. cAMP and beta gamma subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J Biol Chem 1994;269:7851–4
  • Crespo P, Xu N, Simonds WF, Gutkind JS. Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits. Nature 1994;369:418–20
  • Katz A, Wu D, Simon MI. Subunits beta gamma of heterotrimeric G protein activate beta 2 isoform of phospholipase C. Nature 1992;360:686–9
  • Thomason PA, James SR, Casey PJ, Downes CP. A G-protein beta gamma-subunit-responsive phosphoinositide 3-kinase activity in human platelet cytosol. J Biol Chem 1994;269:16525–8
  • Kranenburg O, Verlaan I, Hordijk PL, Moolenaar WH. Gi-mediated activation of the Ras/MAP kinase pathway involves a 100 kDa tyrosine-phosphorylated Grb2 SH3 binding protein, but not Src nor Shc. EMBO J 1997;16:3097–105
  • Kranenburg O, Verlaan I, Moolenaar WH. Gi-mediated tyrosine phosphorylation of Grb2 (growth-factor-receptor-bound protein 2)-bound dynamin-II by lysophosphatidic acid. Biochem J 1999;339:11–4
  • Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci 2004;117:4619–28
  • Carragher NO, Frame MC. Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol 2004;14:241–9
  • Illenberger D, Schwald F, Pimmer D, et al. Stimulation of phospholipase C-beta2 by the Rho GTPases Cdc42Hs and Rac1. EMBO J 1998;17:6241–9
  • van Rheenen J, Jalink K. Agonist-induced PIP(2) hydrolysis inhibits cortical actin dynamics: regulation at a global but not at a micrometer scale. Mol Biol Cell 2002;13:3257–67
  • Afonso PV, Parent CA. PI3K and chemotaxis: a priming issue? Sci Signal 2011;4:pe22
  • Sham RL, Phatak PD, Ihne TP, et al. Signal pathway regulation of interleukin-8-induced actin polymerization in neutrophils. Blood 1993;82:2546–51
  • Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines–CXC and CC chemokines. Adv Immunol 1994;55:97–179
  • Campbell JJ, Qin S, Bacon KB, et al. Biology of chemokine and classical chemoattractant receptors: differential requirements for adhesion-triggering versus chemotactic responses in lymphoid cells. J Cell Biol 1996;134:255–66
  • Mackay CR. Chemokine receptors and T cell chemotaxis. J Exp Med 1996;184:799–802
  • D'Apuzzo M, Rolink A, Loetscher M, et al. The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4. Eur J Immunol 1997;27:1788–93
  • Moser B, Wolf M, Walz A, Loetscher P. Chemokines: multiple levels of leukocyte migration control. Trends Immunol 2004;25:75–84
  • Neptune ER, Iiri T, Bourne HR. Galphai is not required for chemotaxis mediated by Gi-coupled receptors. J Biol Chem 1999;274:2824–8
  • Arai H, Tsou CL, Charo IF. Chemotaxis in a lymphocyte cell line transfected with C-C chemokine receptor 2B: evidence that directed migration is mediated by betagamma dimers released by activation of Galphai-coupled receptors. Proc Natl Acad Sci USA 1997;94:14495–9
  • Jin T, Zhang N, Long Y, et al. Localization of the G protein betagamma complex in living cells during chemotaxis. Science 2000;287:1034–6
  • Jin T, Amzel M, Devreotes PN, Wu L. Selection of gbeta subunits with point mutations that fail to activate specific signaling pathways in vivo: dissecting cellular responses mediated by a heterotrimeric G protein in Dictyostelium discoideum. Mol Biol Cell 1998;9:2949–61
  • Zhang N, Long Y, Devreotes PN. Ggamma in dictyostelium: its role in localization of gbetagamma to the membrane is required for chemotaxis in shallow gradients. Mol Biol Cell 2001;12:3204–13
  • Hwang JI, Fraser ID, Choi S, et al. Analysis of C5a-mediated chemotaxis by lentiviral delivery of small interfering RNA. Proc Natl Acad Sci USA 2004;101:488–93
  • Lehmann DM, Seneviratne AM, Smrcka AV. Small molecule disruption of G protein beta gamma subunit signaling inhibits neutrophil chemotaxis and inflammation. Mol Pharmacol 2008;73:410–8
  • Faivre S, Regnauld K, Bruyneel E, et al. Suppression of cellular invasion by activated G-protein subunits Galphao, Galphai1, Galphai2, and Galphai3 and sequestration of Gbetagamma. Mol Pharmacol 2001;60:363–72
  • Wu AL, Wang J, Zheleznyak A, Brown EJ. Ubiquitin-related proteins regulate interaction of vimentin intermediate filaments with the plasma membrane. Mol Cell 1999;4:619–25
  • N'Diaye EN, Brown EJ. The ubiquitin-related protein PLIC-1 regulates heterotrimeric G protein function through association with Gbetagamma. J Cell Biol 2003;163:1157–65
  • Chen S, Spiegelberg BD, Lin F, et al. Interaction of Gbetagamma with RACK1 and other WD40 repeat proteins. J Mol Cell Cardiol 2004;37:399–406
  • Chen S, Dell EJ, Lin F, et al. RACK1 regulates specific functions of Gbetagamma. J Biol Chem 2004;279:17861–8
  • Chen S, Lin F, Shin ME, et al. RACK1 regulates directional cell migration by acting on G betagamma at the interface with its effectors PLC beta and PI3K gamma. Mol Biol Cell 2008;19:3909–22
  • Ueda H, Itoh H, Yamauchi J, et al. G protein betagamma subunits induce stress fiber formation and focal adhesion assembly in a Rho-dependent manner in HeLa cells. J Biol Chem 2000;275:2098–102
  • Hansen CA, Schroering AG, Carey DJ, Robishaw JD. Localization of a heterotrimeric G protein gamma subunit to focal adhesions and associated stress fibers. J Cell Biol 1994;126:811–9
  • Ueda H, Saga S, Shinohara H, et al. Association of the gamma12 subunit of G proteins with actin filaments. J Cell Sci 1997;110:1503–11
  • Ueda H, Yamauchi J, Itoh H, et al. Phosphorylation of F-actin-associating G protein gamma12 subunit enhances fibroblast motility. J Biol Chem 1999;274:12124–8
  • Yan J, Mihaylov V, Xu X, et al. A Gbetagamma effector, ElmoE, transduces GPCR signaling to the actin network during chemotaxis. Dev Cell 2012;22:92–103
  • Brugnera E, Haney L, Grimsley C, et al. Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol. 2002;4:574–82
  • Ahmed SM, Daulat AM, Meunier A, Angers S. G protein betagamma subunits regulate cell adhesion through Rap1a and its effector Radil. J Biol Chem 2010;285:6538–51
  • Smolen GA, Schott BJ, Stewart RA, et al. A Rap GTPase interactor, RADIL, mediates migration of neural crest precursors. Genes Dev 2007;21:2131–6
  • Liu L, Aerbajinai W, Ahmed SM, et al. Radil controls neutrophil adhesion and motility through beta2-integrin activation. Mol Biol Cell 2012;23:4751–65
  • Ahmed SM, Theriault BL, Uppalapati M, et al. KIF14 negatively regulates Rap1a-Radil signaling during breast cancer progression. J Cell Biol 2012;199:951–67
  • Tang X, Sun Z, Runne C, et al. A critical role of Gbetagamma in tumorigenesis and metastasis of breast cancer. J Biol Chem 2011;286:13244–54
  • Kirui JK, Xie Y, Wolff DW, et al. Gbetagamma signaling promotes breast cancer cell migration and invasion. J Pharmacol Exp Ther 2010;333:393–403
  • Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009;10:468–77
  • Liu T, Liu X, Wang H, et al. Activation of rat frizzled-1 promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via pathways that require Galpha(q) and Galpha(o) function. J Biol Chem 1999;274:33539–44
  • Katanaev VL, Ponzielli R, Semeriva M, Tomlinson A. Trimeric G protein-dependent frizzled signaling in Drosophila. Cell 2005;120:111–22
  • Liu T, DeCostanzo AJ, Liu X, et al. G protein signaling from activated rat frizzled-1 to the beta-catenin-Lef-Tcf pathway. Science 2001;292:1718–22
  • Koval A, Katanaev VL. Wnt3a stimulation elicits G-protein-coupled receptor properties of mammalian Frizzled proteins. Biochem J 2011;433:435–40
  • Jernigan KK, Cselenyi CS, Thorne CA, et al. Gbetagamma activates GSK3 to promote LRP6-mediated beta-catenin transcriptional activity. Sci Signal 2010;3:ra37

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.