4
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Functional Domains of the Gs α Subunit: Role of the C-Terminus in the Receptor-Dependent and Receptor-Independent Activation

&
Pages 591-608 | Published online: 26 Sep 2008

References

  • Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 1990; 348: 125–132
  • Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 1991; 349: 117–127
  • de Vos A. M., Tong L., Milburn M. V., Matias P. M., Jancarik J., Noguchi S., Nishimura S., Miura K., Ohtsuka E., Kim S.-H. Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21. Science 1988; 239: 888–893
  • Pai E. F., Kabsch W., Krengel U., Holmes K. C., John J., Wittingholfer A. Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 1989; 341: 209–214
  • Milburn M. V., Tong L., de Vos A. M., Brünger A., Yamaizumi Z., Nishimura S., Kim S.-H. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 1990; 247: 939–945
  • Pai E. F., Krengel U., Petsko G. A., Goody R. S., Kabsch W., Wittingholfer A. Refined crystal structure of the triphosphate conformation of Ha-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 1990; 9: 2351–2359
  • Jurnak F. Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins. Science 1985; 230: 32–36
  • La Cour T. F. M., Nyborg J., Thirup S., Clark B. F. C. Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography. EMBO J. 1985; 4: 2385–2388
  • van Dop C., Yamanaka G., Steinberg F., Sekura R., Manclark C. R., Stryer L., Bourne H. R. ADP-ribosylation of transducin by pertussis toxin blocks the light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors. J. Biol. Chem. 1984; 259: 23–26
  • Milligan G. Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine nucleotide binding proteins. Biochem. J. 1988; 255: 1–13
  • Palm D., Munch G., Malek D., Dees C., Hekman M. Identification of a Gs-protein coupling domain to the β-adrenoreceptor using site-specific synthetic peptides. FEBS Lett. 1990; 261: 294–298
  • Simonds W. F., Goldsmith P. K., Woodard C. J., Unson C. G., Spiegel A. M. Receptor and effector interactions of Gs. FEBS Lett. 1989; 249: 189–194
  • Cerione R. A., Kroll S., Rajaram R., Unson C. G., Goldsmith P. K., Spiegel A. M. An antibody directed against the carboxyl-termnal decapeptide of the α subunit of the retinal GTP-binding protein, transducin. J. Biol. Chem. 1988; 263: 9345–9352
  • Hamm H. E., Deretic D., Arendt A., Hargrave P. A., Koenig B., Hofmann K. P. Site of G protein binding to rhodopsin mapped with synthetic peptides from the α subunit. Science 1988; 241: 832–835
  • Masters S. B., Sullivan K. A., Miller R. T., Beiderman B., Lopez N. G., Ramachandran J., Bourne H. R. Carboxyl terminal domain of Gsα specifies coupling of receptors to stimulation of adenylyl cyclase. Science 1988; 241: 448–451
  • Rall T., Harris B. A. Identification of the lesion in the stimulatory GTP-binding protein of the uncoupled S49 lymphoma. FEBS Lett. 1987; 224: 365–371
  • Sullivan K. A., Miller R. T., Masters S. B., Beiderman B., Heideman W., Bourne H. R. Identification of receptor contact site involved in receptor-G protein coupling. Nature 1987; 330: 758–760
  • Olate J., Mattera R., Codina J., Birnbaumer L. Reticulocyte lysates synthesize an active α subunit of the stimulatory G protein Gs. J. Biol. Chem. 1988; 263: 10394–10400
  • Journot L., Bockaert J., Audigier Y. Reconstitution of cyc-membranes by in vitro translated Gsα: membrane anchorage and functional implications. FEBS Lett. 1989; 21: 230–236
  • Audigier Y., Journot L., Pantaloni C., Bockaert J. The carboxy-terminal domain of Gsα is necessary for anchorage of the activated form in the plasma membrane. J. Cell Biol. 1990; 111: 1427–1435
  • Journot L., Pantaloni C., Bockaert J., Audigier Y. Deletion within the amino-terminal region of Gsα impairs its ability to interact with βγ subunits and to activate adenylyl cyclase. J. Biol. Chem. 1991; 266: 9009–9015
  • Bockaert J., Deterre P., Pfister C., Guillon G., Chabre M. Inhibition of hormonally regulated adenylyl cyclase by the βγ subunit of transducin. EMBO J. 1985; 4: 1413–1417
  • Salomon J., Londos C., Rodbell M. A highly sensitive adenylyl cyclase assay. Anal. Biochem. 1974; 58: 541–548
  • Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685
  • Berlot C. H., Bourne H. R. Identification of effector-activating residues of Gsα. Cell 1992; 68: 911–922

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.