2,119
Views
196
CrossRef citations to date
0
Altmetric
Original Article

The Jak-Stat Pathway: Cytokine Signalling from the Receptor to the Nucleus

Pages 75-120 | Published online: 10 Jul 2009

References

  • Darnell J. E., Jr, Kerr I. M., Stark G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264: 1415–1421
  • Aguet M., Dembic Z., Merlin G. Molecular cloning and expression of the human interferon-gamma receptor. Cell 1988; 55: 273–280
  • Soh J., Donnelly R. J., Kotenko S., Mariano T. M., Cook J. R., Wang N., Emanuel S., Schwartz B., Miki T., Pestka S. Identification and sequence of an accessory factor required for activation of the human interferon gamma receptor. Cell 1994; 76: 793–802
  • Hemmi S., Bohni R., Stark G., DiMarco F., Aguet M. A novel member of the interferon receptor family complements functionality of the murine interferon gamma receptor in human cells. Cell 1994; 76: 803–810
  • Igarashi K., Garotta G., Ozmen L., Ziemiecki A., Wilks A. F., Harpur A. G., Larner A. C., Finbloom D. S. Interferon-gamma induces tyrosine phosphorylation of interferon-gamma receptor and regulated association of protein tyrosine kinases, Jak1 and Jak2, with its receptor. J. Biol. Chem. 1994; 269: 14333–14336
  • Kotenko S. V., Izotova L. S., Pollack B. P., Mariano T. M., Donnelly R. J., Mutukumaran G., Cook J. R., Garotta G., Silvennoinen O., Ihle J. N., Pestka S. Interaction Between the Components Of the Interferon Gamma Receptor Complex. J. Biol. Chem. 1995; 270: 20915–20921
  • Greenlund A. C., Farrar M. A., Viviano B. L., Schreiber R. D. Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transaction system (p91). EMBO J. 1994; 13: 1591–1600
  • Heim M. H., Kerr I. M., Stark G. R., Darnell J. E., Jr. Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. Science 1995; 267: 1347–1349
  • Shuai K., Stark G. R., Kerr I. M., Darnell J. E., Jr. A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 1993; 261: 1744–1746
  • Shuai K., Horvath C. M., Huang L. H., Qureshi S. A., Cowburn D., Darnell J. E., Jr. Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 1994; 76: 821–828
  • Darnell J. E., Jr. STATs and Gene Regulation. Science 1997; 277: 1630–1635
  • Schindler C., Shuai K., Prezioso V. R., Darnell J. E., Jr. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 1992; 257: 809–813
  • Durbin J. E., Hackenmiller R., Simon M. C., Levy D. E. Targeted disruption of the mouse statl results in compromised innate immunity to viral disease. Cell 1996; 84: 443–450
  • Meraz M. A., White J. M., Sheehan K. C. F., Bach E. A., Rodig S. J., Dighe A. S., Kaplan D. H., Riley J. K., Greenlund A. C., Campbell D., Carvermoore K., Dubois R. N., Clark R., Aguet M., Schreiber R. D. Targeted disruption of the stal1 gene in mice reveals unexpected physiologic specificity in the jak-stat signaling pathway. Cell 1996; 84: 431–442
  • Silvennoinen O., Schindler C., Schlessinger J., Levy D. E. Rasindependent growth factor signaling by transcription factor tyrosine phosphorylation. Science 1993; 261: 1736–1739
  • Bacon C. M., Tortolani P. J., Shimosaka A., Rees R. C., Longo D. L., O'Shea J. J. Thrombopoietin (TPO) induces tyrosine phosphorylation and activation of STAT5 and STAT3. FEBS Lett. 1995; 370: 63–68
  • Raz R., Durbin J. E., Levy D. E. Acute phase response factor and additional members of the interferon-stimulated gene factor 3 family integrate diverse signals from cytokines, interferons, and growth factors. J. Biol. Chem. 1994; 269: 24391–24395
  • Yamamoto K., Quelle F. W., Thierfelder W. E., Kreider B. L., Gilbert D. J., Jenkins N. A., Copeland N. G., Silvennoinen O., Ihle J. N. Stat4, a novel gamma interferon activation site-binding protein expressed in early myeloid differentiation. Mol. Cell. Biol. 1994; 14: 4342–4349
  • Yu C. R., Lin J. X., Fink D. W., Akira S., Bloom E. T., Yamauchi A. Differential utilization of janus kinase-signal transducer and activator of transcription signaling pathways in the stimulation of human natural killer cells by il-2, il-12, and ifn-alpha. J. Immunol. 1996; 157: 126–137
  • Cho S. S., Bacon C. M., Sudarshan C., Rees R. C., Finbloom D., Pine R., Oshea J. J. Activation of stat4 by il-12 and ifn-alpha - evidence for the involvement of ligand-induced tyrosine and serine phosphorylation. J. Immunol. 1996; 157: 4781–4789
  • Fasler-Kan E., Pansky A., Wiederkehr M., Battegay M., Heim M. H. IFN-a activates Stat5 and Stat6 in Daudi cells. Eur. J. Biochem. 1998, in press
  • Meinke A., Barahmandpour F., Wohrl S., Stoiber D., Decker T. Activation of different stat5 isoforms contributes to cell-type restricted signaling in response to interferons. Mol. Cell. Biol. 1996; 16: 6937–6944
  • Shuai K., Schindler C., Prezioso V. R., Darnell J. E., Jr. Activation of transcription by IFN-gamma: tyrosine phosphorylation of a 91-kD DNA binding protein. Science 1992; 258: 1808–1812
  • Heim M. H., Gamboni G., Beglinger C., Gyr K. Specific activation of AP-1 but not Stat3 in regenerating liver in mice. Eur. J. Clin. Invest 1997; 27: 948–955
  • Ruff-Jamison S., Chen K., Cohen S. Induction by EGF and interferon-gamma of tyrosine phosphorylated DNA binding proteins in mouse liver nuclei. Science 1993; 261: 1733–1736
  • Larner A. C., David M., Feldman G. M., Igarashi K., Hackett R. H., Webb D. S., Sweitzer S. M., Petricoin E. D., Finbloom D. S. Tyrosine phosphorylation of DNA binding proteins by multiple cytokines. Science 1993; 261: 1730–1733
  • Finbloom D. S., Winestock K. D. IL- 10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J. Immunol. 1995; 155: 1079–1090
  • Lai C. F., Ripperger J., Morella K. K., Jurlander J., Hawley T. S., Carson W. E., Kordula T., Caliguri M. A., Hawley R. G., Fey G. H., Baumann H. Receptors for interleukin (i1)-10 and il-6-type cytokines use similar signaling mechanisms for inducing transcription through il-6 response elements. J. Biol. Chem. 1996; 271: 13968–13975
  • Lutticken C., Wegenka U. M., Yuan J., Buschmann J., Schindler C., Ziemiecki A., Harpur A. G., Wilks A. F., Yasukaws K., Taga T., et al. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science 1994; 263: 89–92
  • Akira S., Nishio Y., Inoue M., Wang X. J., Wei S., Matsusaka T., Yoshida K., Sudo T., Naruto M., Kishimoto T. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 1994; 77: 63–71
  • Zhong Z., Wen Z., Darnell J. E., Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 1994; 264: 95–98
  • Baumann H., Wang Y. P., Morella K. K., Lai C. F., Dams H., Hilton D. J., Hawley R. G., Mackiewicz A. Complex of the soluble il-11 receptor and il-11 acts as il-6-type cytokine in hepatic and nonhepatic cells. J. Immunol. 1996; 157: 284–290
  • Zhao Y., Nichols J. E., Bulun S. E., Mendelson C. R., Simpson E. R. Aromatase P450 gene expression in human adipose tissue. Role of a Jak/STAT pathway in regulation of the adipose-specific promoter. J. Biol. Chem. 1995; 270: 16449–16457
  • Levy J. B., Schindler C., Raz R., Levy D. E., Baron R., Horowitz M. C. Activation of the jak-stat signal transduction pathway by oncostatin-m in cultured human and mouse osteoblastic cells. Endocrinology 1996; 137: 1159–1165
  • Boulton T. G., Zhong Z., Wen Z., Darnell J. E., Jr., Stahl N., Yancopoulos G. D. STAT3 activation by cytokines utilizing gp130 and related transducers involves a secondary modification requiring an H7-sensitive kinase. Proc. Natl. Acad. Sci. USA 1995; 92: 6915–6919
  • Auguste P., Guillet C., Fourcin M., Olivier C., Veziers J., Pouplard-Barthelaix A., Gascan H. Signaling of type II oncostatin M receptor. J. Biol. Chem. 1997; 272: 15760–15764
  • Campbell G. S., Meyer D. J., Raz R., Levy D. E., Schwartz J., Carter-Su C. Activation of acute phase response factor (APRF)/Stat3 transcription factor by growth hormone. J. Biol. Chem. 1995; 270: 3974–3979
  • Bonni A., Frank D. A., Schindler C., Greenberg M. E. Characterization of a pathway for ciliary neurotrophic factor signaling to the nucleus. Science 1993; 262: 1575–1579
  • Robledo O., Fourcin M., Chevalier S., Guillet C., Auguste P., Pouplard-Barthelaix A., Pennica D., Gascan H. Signaling of the cardiotrophin-1 receptor. Evidence for a third receptor component. J. Biol. Chem. 1997; 272: 4855–4863
  • Dekoning J. P., Dong F., Smith L., Schelen A. M., Barge R. M. Y., Vanderplas D. C., Hoefsloot L. H., Lowenberg B., Touw I. P. The membrane-distal cytoplasmic region of human granulocyte colony-stimulating factor receptor is required for stat3 but not stat1 homodimer formation. Blood 1996; 87: 1335–1342
  • Tian S. S., Tapley P., Sincich C., Stein R. B., Rosen J., Lamb P. Multiple signaling pathways induced by granulocyte colony-stimulating factor involving activation of jaks, stat5, and/or stat3 are required for regulation of three distinct classes of immediate early genes. Blood 1996; 88: 4435–4444
  • Shimoda K., Feng J., Murakami H., Nagata S., Watling D., Rogers N. C., Stark G. R., Kerr I. M., Ihle J. N. Jak1 plays an essential role for receptor phosphorylation and Stat activation in response to granulocyte colony-stimulating factor. Blood 1997; 90: 597–604
  • Szabo S. J., Jacobson N. G., Dighe A. S., Gubler U., Murphy K. M. Developmental commitment to the Th2 lineage by extinction of IL-12 signaling. Immunity 1995; 2: 665–675
  • Jacobson N. G., Szabo S. J., Weber-Nordt R. M., Zhong Z., Schreiber R. D., Darnell J. E., Jr., Murphy K. M. Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J. Exp. Med. 1995; 181: 1755–1762
  • Bacon C. M., Petricoin E. F., Ortaldo J. R., Rees R. C., Larner A. C., Johnston J. A., Oshea J. J. Interleukin 12 induces tyrosine phosphorylation and activation of Stat4 in human lymphocytes. Proc. Natl. Acad. Sci. USA 1995; 92: 7307–7311
  • Klein J. L., Fickenscher H., Holliday J. E., Biesinger B., Fleckenstein B. Herpesvirus Saimiri Immortalized Gamma-Delta T Cell Line Activated By Il-12. J. Immunol. 1996; 156: 2754–2760
  • Kaplan M. H., Sun Y. L., Hoey T., Grusby M. J. Impaired Il-12 responses and enhanced development of Th2 cells in stat4-deficient mice. Nature 1996; 382: 174–177
  • Thierfelder W. E., Vandeursen J. M., Yamamoto K., Tripp R. A., Sarawar S. R., Carson R. T., Sangster M. Y., Vignali D. A. A., Doherty P. C., Grosveld G. C., Ihle J. N. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 1996; 382: 171–174
  • Ghilardi N., Ziegler S., Wiestner A., Stoffel R., Heim M. H., Skoda R. C. Defective stat signaling by the leptin receptor in diabetic mice. Proc. Natl. Acad. Sci. USA 1996; 93: 6231–6235
  • Baumann H., Morella K. K., White D. W., Dembski M., Bailon P. S., Kim H. K., Lai C. F., Tartaglia L. A. The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc. Natl. Acad. Sci. USA 1996; 93: 8374–8378
  • Vaisse C., Halaas J. L., Horvath C. M., Darnell J. E., Stoffel M., Friedman J. M. Leptin activation of Stat3 in the hypothalamus of wildtype and ob/ob mice but not db/db mice. Nat. Genet. 1996; 14: 95–97
  • Hou J., Schindler U., Henzel W. J., Wong S. C., McKnight S. L. Identification and purification of human Stat proteins activated in response to interleukin-2. Immunity 1995; 2: 321–329
  • Beadling C., Guschin D., Witthuhn B. A., Ziemiecki A., Ihle J. N., Kerr I. M., Cantrell D. A. Activation of JAK kinases and STAT proteins by interleukin-2 and interferon alpha, but not the T cell antigen receptor, in human T lymphocytes. EMBO J. 1994; 13: 5605–5615
  • Lin J. X., Migone T. S., Tsang M., Friedmann M., Weatherbee J. A., Zhou L., Yamauchi A., Bloom E. T., Mietz J., John S. The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 1995; 2: 331–339
  • Nielsen M., Svejgaard A., Skov S., Odum N. Interleukin-2 induces tyrosine phosphorylation and nuclear translocation of stat3 in human T lymphocytes. Eur. J. Immunol. 1994; 24: 3082–3086
  • Johnston J. A., Bacon C. M., Finbloom D. S., Rees R. C., Kaplan D., Shibuya K., Ortaldo J. R., Gupta S., Chen Y. Q., Giri J. D., et al. Tyrosine phosphorylation and activation of STAT5, STAT3, and Janus kinases by interleukins 2 and 15. Proc. Natl. Acad. Sci. USA 1995; 92: 8705–8709
  • Quelle F. W., Shimoda K., Thierfelder W., Fischer C., Kim A., Ruben S. M., Cleveland J. L., Pierce J. H., Keegan A. D., Nelms K., et al. Cloning of murine Stat6 and human Stat6, Stat proteins that are tyrosine phosphorylated in responses to IL-4 and IL-3 but are not required for mitogenesis. Mol. Cell. Biol. 1995; 15: 3336–3343
  • Gilmour K. C., Pine R., Reich N. C. Interleukin 2 activates STAT5 transcription factor (mammary gland factor) and specific gene expression in T lymphocytes. Proc. Natl. Acad. Sci. USA 1995; 92: 10772–10776
  • Nakajima H., Liu X. W., Wynshaw-Boris A., Rosenthal L. A., Imada K., Finbloom D. S., Hennighausen L., Leonard W. J. An indirect effect of Stat5a in IL-2-induced proliferation: a critical role for Stat5a in IL-2-mediated IL-2 receptor alpha chain induction. Immunity 1997; 7: 691–701
  • Yin T., Keller S. R., Quelle F. W., Witthuhn B. A., Tsang M. L., Lienhard G. E., Ihle J. N., Yang Y. C. Interleukin-9 induces tyrosine phosphorylation of insulin receptor substrate-1 via JAK tyrosine kinases. J. Biol. Chem. 1995; 270: 20497–20502
  • Hou J., Schindler U., Henzel W. J., Ho T. C., Brasseur M., McKnight S. L. An interleukin-4-induced transcription factor: IL-4 Stat. Science 1994; 265: 1701–1706
  • Palmercrocker R. L., Hughes C. C. W., Pober J. S. Il-4 and Il-13 activate the Jak2 tyrosine kinase and Stat6 in cultured human vascular endothelial cells through a common pathway that does not involve the gamma(c) chain. J. Clin. Invest 1996; 98: 604–609
  • Kaplan M. H., Schindler U., Smiley S. T., Grusby M. J. Stat6 is required for mediating responses to Il-4 and for the development of Th2 cells. Immunity 1996; 4: 313–319
  • Takeda K., Tanaka T., Shi W., Matsumoto M., Minami M., Kashiwamura S., Nakanishi K., Yoshida N., Kishimoto T., Akira S. Essential role of Stat6 in Il-4 signalling. Nature 1996; 380: 627–630
  • Shimoda K., Vandeursen J., Sangster M. Y., Sarawar S. R., Carson R. T., Tripp R. A., Chu C., Quelle F. W., Nosaka T., Vignali D. A. A., Doherty P. C., Grosveld G., Paul W. E., Ihle J. N. Lack of Il-4-induced Th2 response and ige class switching in mice with disrupted Stat6 gene. Nature 1996; 380: 630–633
  • Demoulin J. B., Uyttenhove C., Vanroost E., Delestre B., Donckers D., Vansnick J., Renauld J. C. A single tyrosine of the interleukin-9 (Il-9) receptor is required for Stat activation, antiapoptotic activity, and growth regulation by Il-9. Mol. Cell. Biol. 1996; 16: 4710–4716
  • Tagaya Y., Burton J. D., Miyamoto Y., Waldmann T. A. Identification of a novel receptor signal transduction pathway for Il-15/T in mast cells. EMBO J. 1996; 15: 4928–4939
  • Murata T., Noguchi P. D., Puri R. K. Il-13 induces phosphorylation and activation of Jak2 janus kinase in human colon carcinoma cell lines - similarities between Il-4 and Il-13 signaling. J. Immunol. 1996; 156: 2972–2978
  • Malabarba M. G., Rui H., Deutsch H. H. J., Chung J., Kalthoff F. S., Farrar W. L., Kirken R. A. Interleukin-13 is a potent activator of jak3 and stat6 in cells expressing interleukin-2 receptor-gamma and interleukin-4 receptor-alpha. Biochem. J. 1996; 319: 865–872
  • Takeda K., Kamanaka M., Tanaka T., Kishimoto T., Akira S. Impaired Il-13-mcdiated functions of macrophages in stat6-deficient mice. J. Immunol. 1996; 157: 3220–3222
  • Azam M., Erdjument-Bromage H., Kreider B. L., Xia M., Quelle F., Basu R., Saris C., Tempst P., Ihle J. N., Schindler C. Interleukin-3 signals through multiple isoforms of Stat5. EMBO J. 1995; 14: 1402–1411
  • Mui A. L., Wakao H. M. O. F. A., Harada N., Miyajima A. Interleukin 3, granulocyte macrophage colony stimulating factor and interleukin 5 transduce signals through two STAT5 homologs. EMBO J. 1995; 14: 1166–1175
  • Heim M. H. 1998, unpublished observation
  • van Caldenhoven E. D. T., Raaijmakers J. A., Lammers J. W., Koenderman L., De G. R. P. Activation of the STAT3/acute phase response factor transcription factor by interleukin-5. J. Biol. Chem. 1995; 270: 25778–25784
  • Gouilleux F., Pallard C., Dusanter-Fourt I., Wakao H., Haldosen L. A., Norstedt G., Levy D., Groner B. Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity. EMBO J. 1995; 14: 2005–2013
  • Rosen R. L., Winestock K. D., Chen G., Liu X. W., Hennighausen L., Finbloom D. S. Granulocyte-Macrophage Colony-Stimulating Factor Preferentially Activates the 94-Kd Stat5a and an 80-Kd Stat5a Isoform In Human Peripheral Blood Monocytes. Blood 1996; 88: 1206–1214
  • Penta K., Sawyer S. T. Erythropoietin induces the tyrosine phosphorylation, nuclear translocation, and DNA binding of STAT1 and STAT5 in erythroid cells. J. Biol. Chem. 1995; 270: 31282–31287
  • Quelle F. W., Wang D., Nosaka T., Thierfelder W. E., Stravopodis D., Weinstein Y., Ihle J. N. erythropoietin induces activation of stat5 through association with specific tyrosines on the receptor that are not required for a mitogenic response. Mol. Cell. Biol. 1996; 16: 1622–1631
  • Miyakawa Y., Oda A., Druker B. J., Miyazaki H., Handa M., Ohashi H., Ikeda Y. Thrombopoietin induces tyrosine phosphorylation of stat3 and stat5 in human blood platelets. Blood 1996; 87: 439–446
  • Ram P. A., Park S. H., Choi H. K., Waxman D. J. Growth hormone activation of stat 1, slat 3, and stat 5 in rat liver - differential kinetics of hormone desensitization and growth hormone stimulation of both tyrosine phosphorylation and serine/threonine phosphorylation. J. Biol. Chem. 1996; 271: 5929–5940
  • Udy G. B., Towers R. P., Snell R. G., Wilkins R. J., Park S. H., Ram P. A., Waxman D. J., Davey H. W. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA 1997; 94: 7239–7244
  • Wakao H., Gouilleux F., Groner B. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J. 1994; 13: 2182–2191
  • Liu X. W., Robinson G. W., Wagner K. U., Garrett L., Wynshawboris A., Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997; 11: 179–186
  • Drachman J. G., Sabath D. F., Fox N. E., Kaushansky K. Thrombopoietin signal transduction in purified murine megakaryocytes. Blood 1997; 89: 483–492
  • Matsumura I., Ishikawa J., Nakajima K., Oritani K., Tomiyama Y., Miyagawa J., Kato T., Miyazaki H., Matsuzawa Y., Kanakura Y. Thrombopoietin-induced differentiation of a human megakaryoblastic leukemia cell line, CMK, involves transcriptional activation of p21(WAFl/Cip1) by STAT5. Mol. Cell. Biol. 1997; 17: 2933–2943
  • Sattler M., Durstin M. A., Frank D. A., Okuda K., Kaushansky K., Salgia R., Griffin J. D. The thrombopoietin receptor c-MPL activates JAK2 and TYK2 tyrosine kinases. Exp. Hematol. 1995; 23: 1040–1048
  • Brizzi M. F., Battaglia E., Rosso A., Strippoli P., Montrucchio G., Camussi G., Pegoraro L. Regulation of polymorphonuclear cell activation by thrombopoietin. J. Clin. Invest 1997; 99: 1576–1584
  • Pallard C., Gouilleux F., Benit L., Cocault L., Souyri M., Levy D., Groner B., Gisselbrecht S., Dusanter-Fourt I. Thrombopoietin activates a STAT5-like factor in hematopoietic cells. EMBO J. 1995; 14: 2847–2856
  • Sadowski H. B., Shuai K., Darnell J. E., Jr., Gilman M. Z. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 1993; 261: 1739–1744
  • Chin Y. E., Kitagawa M., Su W. C. S., You Z. H., Iwamoto Y., Fu X. Y. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21(waf1/cip1) mediated by Stat1. Science 1996; 272: 719–722
  • Shuai K., Ziemiecki A., Wilks A. F., Harpur A. G., Sadowski H. B., Gilman M. Z., Darnell J. E., Jr. Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. Nature 1993; 366: 580–583
  • Mellitzer G., Wessely O., Decker T., Meinke A., Hayman M. J., Beug H. Activation of stat 5b in erythroid progenitors correlates with the ability of erbb to induce sustained cell proliferation. Proc. Natl. Acad. Sci. USA 1996; 93: 9600–9605
  • Ruff-Jamison S., Zhong Z., Wen Z., Chen K., Darnell J. E., Jr., Cohen S. Epidermal growth factor and lipopolysaccharide activate Stat3 transcription factor in mouse liver. J. Biol. Chem. 1994; 269: 21933–21935
  • Ruff-Jamison S., Chen K., Cohen S. Epidermal growth factor induces the tyrosine phosphorylation and nuclear translocation of Stat5 in mouse liver. Proc. Natl. Acad. Sci. USA 1995; 92: 4215–4218
  • Novak U., Harpur A. G., Paradiso L., Kanagasundaram V., Jaworowski A., Wilks A. F., Hamilton J. A. Colony-stimulating factor 1-induced STAT1 and STAT3 activation is accompanied by phosphorylation of Tyk2 in macrophages and Tyk2 and JAK1 in fibroblasts. Blood 1995; 86: 2948–2956
  • Vignais M. L., Sadowski H. B., Watling D., Rogers N. C., Gilman M. Platelet-derived growth factor induces phosphorylation of multiple jak family kinases and stat proteins. Mol. Cell. Biol. 1996; 16: 1759–1769
  • Novak U., Mui A., Miyajima A., Paradiso L. Formation of stat5-containing dna binding complexes in response to colony-stimulating factor-1 and platelet-derived growth factor. J. Biol. Chem. 1996; 271: 18350–18354
  • Patel B. K. R., Wang L. M., Lee C. C., Taylor W. G., Pierce J. H., Larochelle W. J. Stat6 and jak1 are common elements in platelet-derived growth factor and interleukin-4 signal transduction pathways in nih 3t3 fibroblasts. J. Biol. Chem. 1996; 271: 22175–22182
  • Megeney L. A., Perry R. L. S., Lecouter J. E., Rudnicki M. A. Bfgf and Lif signaling activates stat3 in proliferating myoblasts. Developmental Genetics 1996; 19: 139–145
  • Deberry C., Mou S., Linnekin D. Stat1 associates with c-kit and is activated in response to stem cell factor. Biochem. J. 1997; 327: 73–80
  • Chen J., Sadowski H. B., Kohanski R. A., Wang L. H. Stat5 is a physiological substrate of the insulin receptor. Proc. Natl. Acad. Sci. USA 1997; 94: 2295–2300
  • Boccaccio C., Ando M., Tamagnone L., Bardelli A., Michieli P., Battistini C., Comoglio P. M. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature 1998; 391: 285–288
  • Marrero M. B., Schieffer B., Paxton W. G., Heerdt L., Berk B. C., Delafontaine P., Bernstein K. E. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 1995; 375: 247–250
  • Bhat G. J., Thekkumkara T. J., Thomas W. G., Conrad K. M., Baker K. M. Activation of the stat pathway by angiotensin ii in t3cho/at(1a) cells - cross-talk between angiotensin ii and interleukin-6 nuclear signaling. J. Biol. Chem. 1995; 270: 19059–19065
  • Guillet-Deniau I., Burnol A. F., Girard J. Identification and localization of a skeletal muscle secrotonin 5-HT2A receptor coupled to the Jak/STAT pathway. J. Biol. Chem. 1997; 272: 14825–14829
  • Bhat G. J., Abraham S. T., Singer H. A., Baker K. M. Alpha-thrombin stimulates sis-inducing factor-A DNA binding activity in rat aortic smooth muscle cells. Hypertension 1997; 29: 356–360
  • Karras J. G., Wang Z. H., Coniglio S. J., Frank D. A., Rothstein T. L. Antigen-receptor engagement in b cells induces nuclear expression of stat5 and stat6 proteins that bind and transactivate an ifn-gamma activation site. J. Immunol. 1996; 157: 39–47
  • Karras J. G., Wang Z., Huo L., Frank D. A., Rothstein T. L. Induction of STAT protein signaling through the CD40 receptor in B lymphocytes: distinct STAT activation following surface Ig and CD40 receptor engagement. J. Immunol. 1997; 159: 4350–4355
  • Leaman D. W., Pisharody S., Flickinger T. W., Commane M. A., Schlessinger J., Kerr I. M., Levy D. E., Stark G. R. Roles of JAKs in activation of STATs and stimulation of c-fos gene expression by epidermal growth factor. Mol. Cell. Biol. 1996; 16: 369–375
  • David M., Wong L., Flavell R., Thompson S. A., Wells A., Larner A. C., Johnson G. R. Stat activation by epidermal growth factor (egf) and amphiregulin - requirement for the egf receptor kinase but not for tyrosine phosphorylation sites or jak1. J. Biol. Chem. 1996; 271: 9185–9188
  • Coffer P. J., Kruijer W. Egf receptor deletions define a region specifically mediating stat transcription factor activation. Biochem. Bioph. Res. Co. 1995; 210: 74–81
  • Valgeirsdottir S., Paukku K., Silvennoinen O., Heldin C. H., Claesson-Welsh L. Activation of Stat5 by platelet-derived growth factor (PDGF) is dependent on phosphorylation sites in PDGF beta-receptor juxtamembrane and kinase insert domains. Oncogene 1998; 16: 505–515
  • Novak U., Nice E., Hamilton J. A., Paradiso L. Requirement for Y706 of the murine (or Y708 of the human) csf-1 receptor for stat1 activation in response to csf-1. Oncogene 1996; 13: 2607–2613
  • Sawka-Verhelle D., Filloux C., Tartare-Deckert S., Mothe I., Van Obberghen E. Identification of Stat 5B as a substrate of the insulin receptor. Eur. J. Biochem. 1997; 250: 411–417
  • Bazan J. F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. USA 1990; 87: 6934–6938
  • Tanaguchi T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 1995; 268: 251–255
  • Cosman D. The hematopoietin receptor superfamily. Cytokine 1993; 5: 95–106
  • Kishimoto T., Taga T., Akira S. Cytokine signal transduction. Cell 1994; 76: 253–262
  • Yamasaki K., Taga T., Hirata Y., Yawata H., Kawanishi Y., Seed B., Taniguchi T., Hirano T., Kishimoto T. Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science 1988; 241: 825–828
  • Murakami M., Hibi M., Nakagawa N., Nakagawa T., Yasukawa K., Yamanishi K., Taga T., Kishimoto T. IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 1993; 260: 1808–1810
  • Gearing D. P., Thut C. J., VandeBos T., Gimpel S. D., Delaney P. B., King J., Price V., Cosman D., Beckmann M. P. Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130. EMBO J. 1991; 10: 2839–2848
  • Pennica D., Shaw K. J., Swanson T. A., Moore M. W., Shelton D. L., Zioncheck K. A., Rosenthal A., Taga T., Paoni N. F., Wood W. I. Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gp130 signaling complex. J. Biol. Chem. 1995; 270: 10915–10922
  • Mosley B., De Imus C., Friend D., Boiani N., Thoma B., Park L. S., Cosman D. Dual Oncostatin M (OSM) Receptors. Cloning and characterization of an alternative signaling subunit conferring osm-specific receptor activation. J. Biol. Chem. 1996; 271: 32635–32643
  • Davis S., Aldrich T. H., Valenzuela D. M., Wong V. V., Furth M. E., Squinto S. P., Yancopoulos G. D. The receptor for ciliary neurotrophic factor. Science 1991; 253: 59–63
  • Davis S., Aldrich T. H., Stahl N., Pan L., Taga T., Kishimoto T., Ip N. Y., Yancopoulos G. D. LIFR beta and gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor. Science 1993; 260: 1805–1808
  • Hilton D. J., Hilton A. A., Raicevic A., Rakar S., Harrison-Smith M., Gough N. M., Begley C. G., Metcalf D., Nicola N. A., Willson T. A. Cloning of a murine IL-11 receptor alpha-chain; requirement for gp130 for high affinity binding and signal transduction. EMBO J. 1994; 13: 4765–4775
  • Yin T., Taga T., Tsang M. L., Yasukawa K., Kishimoto T., Yang Y. C. Involvement of IL-6 signal transducer gp130 in IL-11-mediated signal transduction. J. Immunol. 1993; 151: 2555–2561
  • Chua A. O., Chizzonite R., Desai B. B., Truitt T. P., Nunes P., Minetti L. J., Warrier R. R., Presky D. H., Levine J. F., Gately M. K. Expression cloning of a human IL-12 receptor component. A new member of the cytokine receptor superfamily with strong homology to gp130. J. Immunol. 1994; 153: 128–136
  • Fukunaga R., Ishizaka-Ikeda E., Seto Y., Nagata S. Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell 1990; 61: 341–350
  • Tartaglia L. A., Dembski M., Weng X., Deng N. H., Culpepper J., Devos R., Richards G. J., Campfield L. A., Clark F. T., Deeds J., Muir C., Sanker S., Moriarty A., Moore K. J., Smutko J. S., Mays G. G., Woolf E. A., Monroe C. A., Tepper R. I. Identification and expression cloning of a leptin receptor, Ob-R. Cell 1995; 83: 1263–1271
  • Stahl N., Farruggella T. J., Boulton T. G., Zhong Z., Darnell J. E., Jr., Yancopoulos G. D. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 1995; 267: 1349–1353
  • Nicholson S. E., Novak U., Ziegler S. F., Layton L. E. Distinct regions of the granulocyte colony-stimulating factor receptor are required for tyrosine phosphorylation of the signaling molecules jak2, stat3, and p42, p44(mapk). Blood 1995; 86: 3698–3704
  • Presky D. H., Yang H., Minetti L. J., Chua A. O., Nabavi N., Wu C. Y., Gately M. K., Gubler U. A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc. Natl. Acad. Sci. USA 1996; 93: 14002–14007
  • Hatakeyama M., Tsudo M., Minamoto S., Kono T., Doi T., Miyata T., Miyasaka M., Tanaguchi T. Interleukin-2 receptor beta chain gene: generation of three receptor forms by cloned human alpha and beta cDNA's. Science 1989; 244: 551–556
  • Takeshita T., Asao H., Ohtani K., Ishii N., Kumaki S., Tanaka N., Munakata H., Nakamura M., Sugamura K. Cloning of the gamma chain of the human IL-2 receptor. Science 1992; 257: 379–382
  • Giri J. G., Kumaki S., Ahdieh M., Friend D. J., Loomis A., Shanebeck K., DuBose R., Cosman D., Park L. S., Anderson D. M. Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J. 1995; 14: 3654–3663
  • Anderson D. M., Kumaki S., Ahdieh M., Bertles J., Tometsko M., Loomis A., Giri J., Copeland N. G., Gilbert D. J., Jenkins N. A., et al. Functional characterization of the human interleukin-15 receptor alpha chain and close linkage of IL15RA and IL2RA genes. J. Biol. Chem. 1995; 270: 29862–29869
  • Giri J. G., Ahdieh M., Eisenmann J., Shanebeck K., Grabstein K., Kumaki S., Namen A., Park L. S., Cosman D., Anderson D. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 1994; 13: 2822–2830
  • Kondo M., Takeshita T., Higuchi M., Nakamura M., Sudo T., Nishikawa S.-I., Sugamura K. Functional participation of the IL-2 receptor gamma chain in IL-7 receptor complexes. Science 1994; 263: 1453–1454
  • Miyazaki T., Kawahara A., Fujii H., Nakagawa Y., Minami Y., Liu Z. J., Oishi I., Silvennoinen O., Witthuhn B. A., Ihle J. N. Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science 1994; 266: 1045–1047
  • Russell S. M., Johnston J. A., Noguchi M., Kawamura M., Bacon C. M., Friedmann M., Berg M., McVicar D. W., Witthuhn B. A., Silvennoinen O. Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science 1994; 266: 1042–1045
  • Boussiotis V. A., Barber D. L., Nakarai T., Freeman G. J., Gribben J. G., Bernstein G. M., D'Andrea A. D., Ritz J., Nadler L. M. Prevention of T cell anergy by signaling through the gamma c chain of the IL-2 receptor. Science 1994; 266: 1039–1042
  • Aman M. J., Tayebi N., Obiri N. I., Puri R. K., Modi W. S., Leonard W. J. cDNA cloning and characterization of the human interleukin 13 receptor alpha chain. J. Biol. Chem. 1996; 271: 29265–29270
  • Hilton D. J., Zhang J. G., Metcalf D., Alexander W. S., Nicola N. A., Willson T. A. Cloning and characterization of a binding subunit of the interleukin 13 receptor that is also a component of the interleukin 4 receptor. Proc. Natl. Acad. Sci. USA 1996; 93: 497–501
  • Fujiwara H., Hanissian S. H., Tsytsykova A., Geha R. S. Homodimerization of the human interleukin 4 receptor alpha chain induces Cepsilon germline transcripts in B cells in the absence of the interleukin 2 receptor gamma chain. Proc. Natl. Acad. Sci. USA 1997; 94: 5866–5871
  • Russell S. M., Tayebi N., Nakajima H., Riedy M. C., Roberts J. L., Aman M. J., Migone T. S., Noguchi M., Markert M. L., Buckley R. H., Oshea J. J., Leonard W. J. Mutation of jak3 in a patient with scid - essential role of jak3 in lymphoid development. Science 1995; 270: 797–800
  • Murata T., Noguchi P. D., Puri R. K. Receptors for interleukin (IL)-4 do not associate with the common gamma chain, and IL-4 induces the phosphorylation of JAK2 tyrosine kinase in human colon carcinoma cells. J. Biol. Chem. 1995; 270: 30829–30836
  • Friedman M. C., Migone T. S., Russell S. M., Leonard W. J. Different interleukin 2 receptor beta-chain tyrosines couple to at least two signaling pathways and synergistically mediate interleukin 2-induced proliferation. Proc. Natl. Acad. Sci. USA 1996; 93: 2077–2082
  • Gaffen S. L., Lai S. Y., Xu W. D., Gouilleux F., Groner B., Goldsmith M. A., Greene W. C. Signaling through the interleukin 2 receptor beta chain activates a stat-5-like dna-binding activity. Proc. Natl. Acad. Sci. US A 1995; 92: 7192–7196
  • Gaffen S. L., Lai S. Y., Ha M., Liu X. W., Henninghausen L., Greene W. C., Goldsmith M. A. Distinct tyrosine residues within the interleukin-2 receptor beta chain drive signal transduction specificity, redundancy, and diversity. J. Biol. Chem. 1996; 271: 21381–21390
  • Itoh N., Yonehara S., Schreurs J., Gorman D. M., Maruyama K., Ishii A., Yahara I., Arai K., Miyajima A. Cloning of an interleukin-3 receptor gene: a member of a distinct receptor gene family. Science 1990; 247: 324–327
  • Murata Y., Takaki S., Migita M., Kikuchi Y., Tominaga A., Takatsu K. Molecular cloning and expression of the human interleukin 5 receptor. J. Exp. Med. 1992; 175: 341–351
  • Gearing D. P., King J. A., Gough N. M., Nicola N. A. Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor. EMBO J. 1989; 8: 3667–3676
  • Hayashida K., Kitamura T., Gorman D. M., Arai K., Yokota T., Miyajima A. Molecular cloning of a second subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF): reconstitution of a high-affinity GM-CSF receptor. Proc. Natl. Acad. Sci. USA 1990; 87: 9655–9659
  • van Dijk T. B., Caldenhoven E., Raaijmakers J. A., Lammers J. W., Koenderman L., de Groot R. P. Multiple tyrosine residues in the intracellular domain of the common beta subunit of the interleukin 5 receptor are involved in activation of STAT5. FEES Lett. 1997; 412: 161–164
  • Hansen L. H., Wang X. Z., Kopchick J. J., Bouchelouche P., Nielsen J. H., Galsgaard E. D., Billestrup N. Identification of tyrosine residues in the intracellular domain of the growth hormone receptor required for transcriptional signaling and stat5 activation. J. Biol. Chem. 1996; 271: 12669–12673
  • Klingmuller U., Bergelson S., Hsiao J. G., Lodish H. F. Multiple tyrosine residues in the cytosolic domain of the erythropoietin receptor promote activation of stat5. Proc. Natl. Acad. Sci. USA 1996; 93: 8324–8328
  • Uze G., Lutfalla G., Gresser I. Genetic transfer of a functional human interferon alpha receptor into mouse cells: cloning and expression of its cDNA. Cell 1990; 60: 225–234
  • Novick D., Cohen B., Rubinstein M. The human interferon alpha/beta receptor: characterization and molecular cloning. Cell 1994; 77: 391–400
  • Lutfalla G., Holland S. J., Cinato E., Monneron D., Reboul J., Rogers N. C., Smith J. M., Stark G. R., Gardiner K., Mogensen K. E. Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster. EMBO J. 1995; 14: 5100–5108
  • Colamonici O. R., Uyttendaele H., Domanski P., Yan H., Krolewski J. J. p135tyk2, an interferon-alpha-activated tyrosine kinase, is physically associated with an interferon-alpha receptor. J. Biol. Chem. 1994; 269: 3518–3522
  • Abramovich C., Shulman L. M., Ratovitski E., Harroch S., Tovey M., Eid P., Revel M. Differential tyrosine phosphorylation of the IFNAR chain of the type I interferon receptor and of an associated surface protein in response to IFN-alpha and IFN-beta. EMBO J. 1994; 13: 5871–5877
  • Domanski P., Fish E., Nadeau O. W., Witte M., Platanias L. C., Yan H., Krolewski J., Pitha P., Colamonici O. R. A region of the beta subunit of the interferon alpha receptor different from box 1 interacts with Jak1 and is sufficient to activate the Jak- Stat pathway and induce an antiviral state. J. Biol. Chem. 1997; 272: 26388–26393
  • Liu Y., Wei S. H., Ho A. S., de Waal Malefyt R., Moore K. W. Expression cloning and characterization of a human IL 10 receptor. J. Immunol. 1994; 152: 1821–1829
  • Lutfalla G., Gardiner K., Uze G. A new member of the cytokine receptor gene family maps on chromosome 21 at less than 35 kb from IFNAR. Genomics 1993; 16: 366–373
  • Kotenko S. V., Izotova L. S., Pollack B. P., Muthukumaran G., Paukku K., Silvennoinen O., Ihle J. N., Pestka S. Other kinases can substitute for jak2 in signal transduction by interferon-gamma. J. Biol. Chem. 1996; 271: 17174–17182
  • Muller M., Briscoe J., Laxton C., Guschin D., Ziemiecki A., Silvennoinen O., Harpur A. G., Barbieri G., Witthuhn B. A., Schindler C. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature 1993; 366: 129–135
  • Watling D., Guschin D., Muller M., Silvennoinen O., Witthuhn B. A., Quelle F. W., Rogers N. C., Schindler C., Stark G. R., Ihle J. N. Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-gamma signal transduction pathway. Nature 1993; 366: 166–170
  • Velazquez L., Fellous M., Stark G. R., Pellegrini S. A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 1992; 70: 313–322
  • Yan H., Krishnan K., Greenlund A. C., Gupta S., Lim J. T. E., Schreiber R. D., Schindler C. W., Krolewski J. J. Phosphorylated interferon-alpha receptor 1 subunit (ifnar1) acts as a docking site for the latent form of the 113 kda stat2 protein. EMBO J. 1996; 15: 1064–1074
  • Li X., Leung S., Kerr I. M., Stark G. R. Functional subdomains of STAT2 required for preassociation with the alpha interferon receptor and for signaling. Mol. Cell. Biol. 1997; 17: 2048–2056
  • Webernordt R. M., Riley J. K., Greenlund A. C., Moore K. W., Darnell J. E., Schreiber B. D. Stat-3 recruitment by two distinct ligand-induced, tyrosine-phosphorylated docking sites in the interleukin-10 receptor intracellular domain. J. Biol. Chem. 1996; 271: 27954–27961
  • Heim M. H., Unpublished observation
  • Feng J., Witthuhn B. A., Matsuda T., Kohlhuber F., Kerr I. M., Ihle J. N. Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol. Cell. Biol. 1997; 17: 2497–2501
  • Luo H., Rose P., Barber D., Hanratty W. P., Lee S., Roberts T. M., D'Andrea A. D., Dearolf C. R. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol. Cell. Biol. 1997; 17: 1562–1571
  • Gauzzi M. C., Barbieri G., Richter M. F., Uze G., Ling L., Fellous M., Pellegrini S. The amino-terminal region of Tyk2 sustains the level of interferon alpha receptor 1, a component of the interferon alpha/beta receptor. Proc. Natl. Acad. Sci, USA 1997; 94: 11839–11844
  • Chen M., Cheng A., Chen Y. Q., Hymel A., Hanson E. P., Kimmel L., Minami Y., Taniguchi T., Changelian P. S., O'Shea J. J. The amino terminus of JAK3 is necessary and sufficient for binding to the common gamma chain and confers the ability to transmit interleukin 2-mediated signals. Proc. Natl. Acad. Sci. USA 1997; 94: 6910–6915
  • van Nosaka T. D. J. M., Tripp R. A., Thierfelder W. E., Witthuhn B. A., McMickle A. P., Doherty P. C., Grosveld G. C., Ihle J. N. Defective lymphoid development in mice lacking Jak3. Science 1995; 270: 800–802
  • Thomis D. C., Gurniak C. B., Tivol E., Sharpe A. H., Berg L. J. Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 1995; 270: 794–797
  • Candotti F., Oakes S. A., Johnston J. A., Giliani S., Schumacher R. F., Mella P., Fiorini M., Ugazio A. G., Badolato R., Notarangelo L. D., Bozzi F., Macchi P., Strina D., Vezzoni P., Blaese R. M., O'Shea J. J., Villa A. Structural and functional basis for JAK3-deficient severe combined immunodeficiency. Blood 1997; 90: 3996–4003
  • Macchi P., Villa A., Giliani S., Sacco M. G., Frattini A., Porta F., Ugazio A. G., Johnston J. A., Candotti F., Oshea J. J., Vezzoni P., Notarangelo L. D. Mutations of jak-3 gene in patients with autosomal severe combined immune deficiency (scid). Nature 1995; 377: 65–68
  • Copeland N. G., Gilbert D. J., Schindler C., Zhong Z., Wen Z., Darnell J. E., Mui A. L. F., Miyajima A., Quelle F. W., Ihle J. N., Jenkins N. A. Distribution of the mammalian stat gene family in mouse chromosomes. Genomics 1995; 29: 225–228
  • Vinkemeier U., Cohen S. L., Moarefi I., Chait B. T., Kuriyan J., Darnell J. E. Dna binding of in vitro activated stat1-alpha, stat1-beta and truncated stat1 - interaction between nh2-terminal domains stabilizes binding of two dimers to tandem dna sites. EMBO J. 1996; 15: 5616–5626
  • Vinkemeier U., Moarefi I., Darnell J. E., Jr., Kuriyan J. Structure of the amino-terminal protein interaction domain of STAT-4. Science 1998; 279: 1048–1052
  • Guyer N. B., Severns C. W., Wong P., Feghali C. A., Wright T. M. Ifn-. J. Immunol. 1995; 155: 3472–3480
  • Bergad P. L., Shih H. M., Towle H. C., Schwarzenberg S. J., Berry S. A. Growth hormone induction of hepatic serine protease inhibitor 2.1 transcription is mediated by a Stat5-related factor binding synergistically to two gamma-activated sites. J. Biol. Chem. 1995; 270: 24903–24910
  • Shuai K., Liao J. Y., Song M. M. Enhancement of antiproliferative activity of gamma interferon by the specific inhibition of tyrosine dephosphorylation of stat1. Mol. Cell. Biol. 1996; 16: 4932–4941
  • Zhang J. J., Vinkemeier U., Gu W., Chakravarti D., Horvath C. M., Darnell J. E. Two contact regions between stat1 and cbp/p300 in interferon gamma signaling. Proc. Natl. Acad. Sci. USA 1996; 93: 15092–15096
  • Veals S. A., Schindler C., Leonard D., Fu X. Y., Aebersold R., Darnell J. E., Jr., Levy D. E. Subunit of an alpha-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA-binding proteins. Mol. Cell. Biol. 1992; 12: 3315–3324
  • Horvath C. M., Wen Z. L., Darnell J. E. A stat protein domain that determines dna sequence recognition suggests a novel dna-binding domain. Genes Dev. 1995; 9: 984–994
  • Bluyssen H. A., Muzaffar R., Vlieststra R. J., van M. A. C., Leung S., Stark G. R., Kerr I. M., Trapman J., Levy D. E. Combinatorial association and abundance of components of interferon-stimulated gene factor 3 dictate the selectivity of interferon responses. Proc. Natl. Acad. Sci. USA 1995; 92: 5645–5649
  • Bhattacharya S., Eckner R., Grossman S., Oldread E., Arany Z., Dandrea A., Livingston D. M. Cooperation of stat2 and p300/cbp in signalling induced by interferon-alpha. Nature 1996; 383: 344–347
  • Takeda K., Noguchi K., Shi W., Tanaka T., Matsumoto M., Yoshida N., Kishimoto T., Akira S. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl. Acad. Sci. USA 1997; 94: 3801–3804
  • Levy D. E., Lew D. J., Decker T., Kessler D. S., Darnell J. E., Jr. Synergistic interaction between interferon-alpha and interferon-gamma through induced synthesis of one subunit of the transcription factor ISGF3. EMBO J. 1990; 9: 1105–1111
  • Decker T., Lew D. J., Cheng Y. S., Levy D. E., Darnell J. E., Jr. Interactions of alpha- and gamma-interferon in the transcriptional regulation of the gene encoding a guanylate-binding protein. EMBO J. 1989; 8: 2009–2014
  • Yoshimura A., Ohkubo T., Kiguchi T., Jenkins N. A., Gilbert D. J., Copeland N. G., Hara T., Miyajima A. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J. 1995; 14: 2816–2826
  • Endo T. A., Masuhara M., Yokouchi M., Suzuki R., Sakamoto H., Mitsui K., Matsumoto A., Tanimura S., Ohtsubo M., Misawa H., Miyazaki T., Leonor N., Taniguchi T., Fujita T., Kanakura Y., Komiya S., Yoshimura A. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 1997; 387: 921–924
  • Starr R., Willson T. A., Viney E. M., Murray L. J., Rayner J. R., Jenkins B. J., Gonda T. J., Alexander W. S., Metcalf D., Nicola N. A., Hilton D. J. A family of cytokine-inducible inhibitors of signalling. Nature 1997; 387: 917–921
  • Naka T., Narazaki M., Hirata M., Matsumoto T., Minamoto S., Aono A., Nishimoto N., Kajita T., Taga T., Yoshizaki K., Akira S., Kishimoto T. Structure and function of a new STAT-induced STAT inhibitor. Nature 1997; 387: 924–929
  • Chung C. D., Liao J., Liu B., Rao X., Jay P., Berta P., Shuai K. Specific inhibition of Stat3 signal transduction by PIAS3. Science 1997; 278: 1803–1805
  • Reich N., Evans B., Levy D., Fahey D., Knight E. J., Darnell J. E., Jr. Interferon-induced transcription of a gene encoding a 15-kDa protein depends on an upstream enhancer element. Proc. Natl. Acad. Sci. USA 1987; 84: 6394–6398
  • Levy D. E., Kessler D. S., Pine R., Reich N., Darnell J. E., Jr. Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. Genes Dev. 1988; 2: 383–393
  • Lew D. J., Decker T., Strehlow I., Darnell J. E., Jr. Overlapping elements in the guanylate-binding protein gene promoter mediate transcriptional induction by alpha and gamma interferons. Mol. Cell. Biol. 1991; 11: 182–191
  • Jacobson N. G., Szabo S. J., Webernordt R. M., Zhong Z., Schreiber R. D., Darnell J. E., Murphy K. M. Interleukin 12 signaling in t helper type 1 (th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (stat)3 and stat4. J. Exp. Med. 1995; 181: 1755–1762
  • Seidel H. M., Milocco L. H., Lamb P., Darnell J. E., Jr., Stein R. B., Rosen J. Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity. Proc. Natl. Acad. Sci. USA 1995; 92: 3041–3045
  • Gao J., Morrison D. C., Parmely T. J., Russell S. W., Murphy W. J. An interferon-gamma-activated site (GAS) is necessary for full expression of the mouse iNOS gene in response to interferon-gamma and lipopolysaccharide. J. Biol. Chem. 1997; 272: 1226–1230
  • Caldenhoven E., Coffer P., Yuan J., Van de Stolpe A., Horn F., Kruijer W., Van der Saag P. T. Stimulation of the human intercellular adhesion molecule-1 promoter by interleukin-6 and interferon-gamma involves binding of distinct factors to a palindromic response element. J. Biol. Chem. 1994; 269: 21146–21154
  • Sims S. H., Cha Y., Romine M. F., Gao P. Q., Gottlieb K., Deisseroth A. B. A novel interferon-inducible domain: structural and functional analysis of the human interferon regulatory factor 1 gene promoter. Mol. Cell. Biol. 1993; 13: 690–702
  • Pine R., Canova A., Schindler C. Tyrosine phosphorylated p91 binds to a single element in the ISGF2/IRF- 1 promoter to mediate induction by IFN alpha and IFN gamma, and is likely to autoregulate the p91 gene. EMBO J. 1994; 13: 158–167
  • Harada H., Takahashi E., Itoh S., Harada K., Hori T. A., Taniguchi T. Structure and regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes: implications for a gene network in the interferon system. Mol. Cell. Biol. 1994; 14: 1500–1509
  • Wright T. M., Farber J. M. 5' regulatory region of a novel cytokine gene mediates selective activation by interferon gamma. J. Exp. Med. 1991; 173: 417–422
  • Wong P., Severns C. W., Guyer N. B., Wright T. M. A unique palindromic element mediates gamma interferon induction of mig gene expression. Mol. Cell. Biol. 1994; 14: 914–922
  • Wegenka U. M., Buschmann J., Lutticken C., Heinrich P. C., Horn F. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol. Cell. Biol. 1993; 13: 276–288
  • Fujitani Y., Nakajima K., Kojima H., Nakae K., Takeda T., Hirano T. Transcriptional activation of the IL-6 response element in the junB promoter is mediated by multiple Stat family proteins. Biochem. Bioph. Res. Co. 1994; 202: 1181–1187
  • Coffer P., van Lutticken C. P. A., Klop-De J. M., Horn F., Kruijer W. Transcriptional regulation of the junB promoter: analysis of STAT-mediated signal transduction. Oncogene 1995; 10: 985–994
  • Zhang D. X., Sun M., Samols D., Kushner I. Stat3 participates in transcriptional activation of the c-reactive protein gene by interleukin-6. J. Biol. Chem. 1996; 271: 9503–9509
  • Bugno M., Graeve L., Gatsios P., Koj A., Heinrich P. C., Travis J., Kordula T. Identification of the interleukin-6 oncostatin m response element in the rat tissue inhibitor of metalloproteinases-1 (timp-1) promoter. Nucleic Acids Res. 1995; 23: 5041–5047
  • Korzus E., Nagase H., Rydell R., Travis J. The mitogen-activated protein kinase and JAK-STAT signaling pathways are required for an oncostatin M-responsive element-mediated activation of matrix metalloproteinase 1 gene expression. J. Biol. Chem. 1997; 272: 1188–1196
  • Yoshimura A., Ichihara M., Kinjyo I., Moriyama M., Copeland N. G., Gilbert D. J., Jenkins N. A., Hara T., Miyajima A. Mouse oncostatin M: an immediate early gene induced by multiple cytokines through the JAK-STAT5 pathway. EMBO J. 1996; 15: 1055–1063
  • Galsgaard E. D., Gouilleux F., Groner B., Serup P., Nielsen J. H., Billestrup N. Identification of a growth hormone-responsive stat5-binding element in the rat insulin 1 gene. Mol. Endocrinol. 1996; 10: 652–660
  • Matsumoto A., Masuhara M., Mitsui K., Yokouchi M., Ohtsubo M., Misawa H., Miyajima A., Yoshimura A. CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 1997; 89: 3148–3154
  • Ascherman D. P., Migone T. S., Friedmann M. C., Leonard W. J. Interleukin-2 (IL-2)-mediated induction of the IL-2 receptor alpha chain gene. Critical role of two functionally redundant tyrosine residues in the IL-2 receptor beta chain cytoplasmic domain and suggestion that these residues mediate more than Stat5 activation. J. Biol. Chem. 1997; 272: 8704–8709
  • Delphin S., Stavnezer J. Characterization of an interleukin 4 (il-4) responsive region in the immunoglobulin heavy chain germline epsilon promoter - regulation by nf-il-4, a c/ebp family member and nf-kappa-b p50. J. Exp. Med. 1995; 181: 181–192
  • Kotanides H., Reich N. C. Interleukin-4-induced stat6 recognizes and activates a target site in the promoter of the interleukin-4 receptor gene. J. Biol. Chem. 1996; 271: 25555–25561
  • Lederer J. A., Perez V. L., Desroches L., Kim S. M., Abbas A. K., Lichtman A. H. Cytokine transcriptional events during helper t cell subset differentiation. J. Exp. Med. 1996; 184: 397–406
  • Curiel R. E., Lahesmaa R., Subleski J., Cippitelli M., Kirken R. A., Young H. A., Ghosh P. Identification of a Stat-6-responsive element in the promoter of the human interleukin-4 gene. Eur. J. Immunol. 1997; 27: 1982–1987
  • Gouilleuxgruart V., Gouilleux F., Desaint C., Claisse J. F., Capiod J. C., Delobel J., Webernordt R., Dusanterfourt I., Dreyfus F., Groner B., Prin L. Stat-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. Blood 1996; 87: 1692–1697
  • Webernordt R. M., Egen C., Wehinger J., Ludwig W., Gouilleuxgruart V., Mertelsmann R., Finke J. Constitutive activation of stat proteins in primary lymphoid and myeloid leukemia cells and in epstein-barr virus (ebv)-related lymphoma cell lines. Blood 1996; 88: 809–816
  • Aronica M. G., Brizzi M. F., Dentelli P., Rosso A., Yarden Y., Pegoraro L. P91 Stat1 activation in interleukin-3-stimulated primary acute myeloid leukemia cells. Oncogene 1996; 13: 1017–1026
  • Shuai K., Halpern J., Tenhoeve J., Rao X. P., Sawyers C. L. Constitutive Activation of stat5 by the bcr-abl oncogene in chronic myelogenous leukemia. Oncogene 1996; 13: 247–254
  • Carlesso N., Frank D. A., Griffin J. D. Tyrosyl phosphorylation and dna binding activity of signal transducers and activators of transcription (stat) proteins in hematopoietic cell lines transformed by bcr/abl. J. Exp. Med. 1996; 183: 811–820
  • Frank D. A., Varticovski L. Bcr/Abl leads to the constitutive activation of stat proteins, and shares an epitope with tyrosine phosphorylated Stats. Leukemia 1996; 10: 1724–1730
  • Ilaria R. L., Vanetten R. A. P210 and P190(Bcr/Abl) induce the tyrosine phosphorylation and dna binding activity of multiple specific stat family members. J. Biol. Chem. 1996; 271: 31704–31710
  • Frank D. A., Mahajan S., Ritz J. B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J. Clin. Invest 1997; 100: 3140–3148
  • Zhang Q., Nowak I., Vonderheid E. C., Rook A. H., Kadin M. E., Nowell P. C., Shaw L. M., Wasik M. A. Activation of jak/stat proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant t lymphocytes derived from cutaneous anaplastic large t-cell lymphoma and sezary syndrome. Proc. Natl. Acad. Sci. USA 1996; 93: 9148–9153
  • Hoefsloot L. H., Van Amelsvoort M. P., Broeders L. C., van der Plas D. C., Van Lom K., Hoogerbrugge H., Touw I. P., Lowenberg B. Erythropoietin-induced activation of STAT5 is impaired in the myelodysplastic syndrome. Blood 1997; 89: 1690–1700
  • Nielsen M., Kaltoft K., Nordahl M., Ropke C., Geisler C., Mustelin T., Dobson P., Svejgaard A., Odum N. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc. Natl. Acad. Sci. USA 1997; 94: 6764–6769
  • Sartor C. I., Dziubinski M. L., Yu C. L., Jove R., Ethier S. P. Role of epidermal growth factor receptor and STAT-3 activation in autonomous proliferation of SUM-102PT human breast cancer cells. Cancer Research 1997; 57: 978–987
  • Su W. C., Kitagawa M., Xue N., Xie B., Garofalo S., Cho J., Deng C., Horton W. A., Fu X. Y. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature 1997; 386: 288–292

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.