216
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Antioxidant activity of idebenone-loaded neutral and cationic solid–lipid nanoparticles

, , &
Pages 716-723 | Received 29 Jan 2014, Accepted 31 Mar 2014, Published online: 06 May 2014

References

  • Suno M, Nagaoka A. Inhibition of lipid peroxidation by idebenone in brain mitochondria in the presence of succinate. Arch Gerontol Geriatr 1989;8:291–297
  • Rauchova H, Vrbacky M, Bergamini C, et al. Inhibition of glycerophosphate-dependent H2O2 generation in brown fat mitochondria by idebenone. Biochem Biophys Res Commun 2006;339:362–366
  • Carbone C, Cupri S, Leonardi A, et al. Lipid-based nanocarriers for drug delivery and targeting: a patent survey of methods of production and characterization. Pharma Pat Analyst 2013;2:665–677
  • Sugiyama Y, Fujita T, Matsumoto M, et al. Effects of idebenone (CV-2619) and its metabolites on respiratory activity and lipid peroxidation in brain mitochondria from rats and dogs. J Pharmacobiodyn 1985;8:1006–1017
  • Haefeli RH, Erb M, Gemperli AC, et al. NQO1-dependent redox cycling of idebenone: effects on cellular redoxpotential and energy levels. PLoS One 2011;6:e17963
  • Firuzi O, Miri R, Tavakkoli M, Saso L. Antioxidant therapy: current status and future prospects. Curr Med Chem 2011;18:3871–3888
  • Giorgio V, Petronilli V, Ghelli A, et al. The effects of idebenone on mitochondrial bioenergetics. Biochim Biophys Acta 2012;1817:363–369
  • Becker C, Bray-French K, Drewe J. Pharmacokinetic evaluation of idebenone. Expert Opin Drug Metab Toxicol 2010;6:1437–1434
  • Orsucci D, Mancuso M, Ienco EC, et al. Targeting mitochondrial dysfunction and neurodegeneration by means of coenzyme Q10 and its analogues. Curr Med Chem 2011;18:4053–4064
  • Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies – disease mechanisms and therapeutic strategies. Prog Retin Eye Res 2011;30:81–114
  • Barnils N, Mesa E, Muñoz S, et al. Response to idebenone and multivitamin therapy in Leber’s hereditary optic neuropathy. Arch Soc Esp Oftalmol 2007;82:377–380
  • Sabet-Peyman EJ, Khaderi KR, Sadun AA. Is leber hereditary optic neuropathy treatable? Encouraging results with idebenone in both prospective and retrospective trials and an illustrative case. J Neuro Ophthalmol 2012;32:54–57
  • Sadun AA, La Morgia C, Carelli V. Leber’s hereditary optic neuropathy, current treatment options in neurology. Curr Treat Options Neurol 2011;13:109–117
  • Heitz FD, Erb M, Anklin C, et al. Idebenone protects against retinal damage and loss of vision in a mouse model of Leber’s hereditary optic neuropathy. PLoS One 2012;7:e45182
  • Klopstock T, Yu-Wai-Man P, Dimitriadis K, et al. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain 2011;134:2677–2686
  • Carelli V, La Morgia C, Valentino ML, et al. Idebenone treatment in Leber’s hereditary optic neuropathy. Brain 2011;134:e188
  • Iyer S. Novel therapeutic approaches for Leber’s hereditary optic neuropathy. Discov Med 2013;15:141–149
  • Muller RH, Mader K, Gohla S. Solid–lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 2000;50:161–177
  • Muller RH, Shegokar R, Keck CM. 20 Years of lipid nanoparticles (SLN & NLC): present state of development & industrial applications. Curr Drug Discov Technol 2011;8:207–227
  • Stancampiano AH, Acquaviva R, Campisi A, et al. Technological and biological characterization of idebenone-loaded solid–lipid nanoparticles prepared by a modified solvent injection technique. J Biomed Nanotechnol 2006;2:253–260
  • Montenegro L, Campisi A, Sarpietro MG, et al. In vitro evaluation of idebenone-loaded solid–lipid nanoparticles for drug delivery to the brain. Drug Dev Ind Pharm 2011;37:737–746
  • Montenegro L, Trapani A, Latrofa A, Puglisi G. In vitro evaluation on a model of blood brain barrier of idebenone-loaded solid–lipid nanoparticles. J Nanosci Nanotechnol 2012;12:330–337
  • Montenegro L, Sinico C, Castangia I, et al. Idebenone-loaded solid–lipid nanoparticles for drug delivery to the skin: in vitro evaluation. Int J Pharm 2012;434:169–174
  • Merrell JG, McLaughlin SW, Tie L, et al. Curcumin-loaded poly(epsilon-caprolactone) nanofibres: diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin Exp Pharmacol Physiol 2009;36:1149–1156
  • Li B, Ge Z-Q. Nanostructured lipid carriers improve skin permeation and chemical stability of idebenone. AAPS PharmSciTech 2012;13:276–283
  • Fangueiro JF, Gonzalez-Mira E, Martins-Lopes P, et al. A novel lipid nanocarrier for insulin delivery: production, characterization and toxicity testing. Pharm Dev Technol 2013;18:545–549
  • Fangueiro JF, Andreani T, Egea MA, et al. Design of cationic lipid nanoparticles for ocular delivery: development, characterization and cytotoxicity. Int J Pharm 2014;461:64–73
  • Manosroi A, Thathang K, Werner RG, et al. Development of highly stable and lo toxic cationic liposomes for gene therapy. Arzneimittelforschung 2008;58:485–492
  • Masotti A, Mossa G, Cametti C, et al. Comparison of different commercially available cationic liposome-DNA lipoplexes: parameters influencing toxicity and transfection efficiency. Colloids Surf B Biointerfaces 2009;68:136–144
  • Liebert MA. Final Report on the safety assessment of oleic acid, lauric acid, palmitic acid, myristic acid, and stearic acid. Int J Toxicol 1987;6:321–401
  • HERA: Human & Environmental Risk Assessment on ingredients of European household cleaning products. Fatty Acid Salts – Human Health Risk Assessment, 2002. Available from: http://www.heraproject.com/files/5-HH-04-HERA%20Fatty%20acid%20salts%20HH%20web%20wd.pdf [last accessed April 2014]
  • Martins De Lima T, Cury-Boaventura MF, et al. Comparative toxicity of fatty acids on a macrophage cell line (J774). Clin Sci 2006;111:307–317
  • Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf B Biointerfaces 2010;81:412–421
  • Kalam MA, Sultana Y, Ali A, et al. Preparation, characterization, and evaluation of gatifloxacin loaded solid–lipid nanoparticles as colloidal ocular drug delivery system. J Drug Target 2010;18:191–204
  • González-Mira E, Nikolić S, García ML, et al. Potential use of nanostructured lipid carriers for topical delivery of flurbiprofen. J Pharm Sci 2011;100:242–251
  • Basha M, Abd El-Alim SH, Shamma RN, Awad GE. Design and optimization of surfactant-based nanovesicles for ocular delivery of clotrimazole. J Liposome Res 2013;23:203–210
  • Hippalgaonkar K, Adelli GR, Hippalgaonkar K, et al. Indomethacin-loaded solid–lipid nanoparticles for ocular delivery: development, characterization, and in vitro evaluation. J Ocul Pharmacol Ther 2013;29:216–228

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.