43
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Methodological considerations with the use of urine samples for assessment of mercury excretion and markers of renal damage

, , &
Pages 639-645 | Received 27 May 2010, Accepted 20 Jul 2010, Published online: 23 Sep 2010

References

  • Agirbasli M, Radhakrishnamurthy B, Jiang X, Bao W, Berenson G.S. (1996). Urinary N-acetyl-beta-D-glucosaminidase changes in relation to agesexraceand diastolic and systolic blood pressure in a young adult biracial population. The Bogalusa Heart Study. Am J Hypertens 9:157–61.
  • Anon. (2003a). The Children’s Amalgam Trial: design and methods. Control ClinTrials 24:795–814.
  • Araki S, Aono H, Murata K. (1986). Adjustment of urinary concentration to urinary volume in relation to erythrocyte and plasma concentrations: an evaluation of urinary heavy metals and organic substances. Arch Environ Health 41:171–7.
  • Barber TE, Wallis G. (1986).Correction of urinary mercury concentration by specific gravityosmolality and creatinine. J Occup Med 28:354–9.
  • Bast-Pettersen R, Ellingsen DG, Efskind J, Jordskogen R,Thomassen Y. (2005). A neurobehavioral study of chloralkali workers after the cessation of exposure to mercury vapor. Neurotoxicology 26:427–37.
  • Bellinger DC, Trachtenberg F, Barregard L, Tavares M, Cernichiari E, Daniel D,Mckinlay S. (2006). Neuropsychological and renal effects of dental amalgam in children: a randomized clinical trial. JAMA 295:1775–83.
  • Bergdahl IA, Schutz A, Hansson GA. (1995). Automated determination of inorganic mercury in blood after sulfuric acid treatment using cold vapour atomic absorption spectrometry and an inductively heated gold trap. Analyst 120:1205–9.
  • Boeniger MF, Lowry LK, Rosenberg J. (1993). Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review. Am Ind Hyg Assoc J 54:615–27.
  • Cardenas A, Roels H, Bernard AM, Barbon R, Buchet JP, Lauwerys RR, Rosello J, Hotter G, Mutti A, Franchini I, et al. (1993). Markers of early renal changes induced by industrial pollutants. I. Application to workers exposed to mercury vapour. Br J Ind Med 50:17–27.
  • Clarkson TW. (2002). The three modern faces of mercury. Environ Health Perspect 110 (Suppl. 1):11–23.
  • Davies AG, Postlethwaite RJ, Price DA, Burn JL, Houlton CA, Fielding BA. (1984). Urinary albumin excretion in school children. Arch Dis Child 59:625–30.
  • Dunn JE, Trachtenberg FL, Barregard L, Bellinger D, Mckinlay S. (2008). Scalp hair and urine mercury content of children in the Northeast United States: the New England Children’s Amalgam Trial. Environ Res 107:79–88.
  • Dye BA, Schober SE, Dillon CF, Jones RL, Fryar C, Mcdowell M, Sinks TH. (2005). Urinary mercury concentrations associated with dental restorations in adult women aged 16–49 years: United States1999–2000. Occup Environ Med 62:368–75.
  • Echeverria D, Woods JS, Heyer NJ, Rohlman D, Farin FM, Li T, Garabedian CE. (2006). The association between a genetic polymorphism of coproporphyrinogen oxidasedental mercury exposure and neurobehavioral response in humans. Neurotoxicol Teratol 28:39–48.
  • Erman A, Rabinov M, Rosenfeld J. (1988). Albumin determination in frozen urines – underestimated results. Clin Chim Acta 174:255–61.
  • Factor-Litvak P, Hasselgren G, Jacobs D, Begg M, Kline J, Geier J, Mervish N, Schoenholtz S, Graziano J. (2003). Mercury derived from dental amalgams and neuropsychologic function. Environ Health Perspect 111:719–23.
  • Gaspari F, Perico N, Remuzzi G. (2006). Timed urine collections are not needed to measure urine protein excretion in clinical practice. Am J Kidney Dis 47:1–7.
  • Gibb DM,Shah V,Preece M, Barratt TM. (1989). Variability of urine albumin excretion in normal and diabetic children. Pediatr Nephrol 3414–9.
  • Green LW. (1970). Manual for scoring socioeconomic status for research on health behavior. Public Health Rep 85:815–27.
  • Greenberg GN, Levine RJ. (1989). Urinary creatinine excretion is not stable: a new method for assessing urinary toxic substance concentrations. J Occup Med 31:832–8.
  • Hornung R, Reed L. (1990). Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg 5:46–51.
  • Jones CA, Francis ME, Eberhardt MS, Chavers B, Coresh J, Engelgau M, Kusek J, W, Byrd-Holt D, Narayan KM, Herman WH, Jones CP, Salive M, Agodoa L. Y. (2002). Microalbuminuria in the US population: third National Health and Nutrition Examination Survey. Am J Kidney Dis 39:445–59.
  • Jung K, Hempel A, Grutzmann KD, Hempel RD, Schreiber G. (1990). Age-dependent excretion of alanine aminopeptidasealkaline phosphatasegamma-glutamyltransferase and N-acetyl-beta-D-glucosaminidase in human urine. Enzyme 43:10–16.
  • Jung K, Schulze G. (1986).Diuresis-dependent excretion of multiple forms of renal brush-border enzymes in urine. Clin Chim Acta 156:77–83.
  • Jung K, Schulze G, Reinholdt C. (1986). Different diuresis-dependent excretions of urinary enzymes: N-acetyl-beta-D-glucosaminidasealanine aminopeptidasealkaline phosphataseand gamma-glutamyltransferase. Clin Chem 32:529–32.
  • Kingman A, Albertini T, Brown LJ. (1998). Mercury concentrations in urine and whole blood associated with amalgam exposure in a US military population. J Dent Res 77:461–71.
  • Klasen IS, Reichert LJ, De Kat Angelino CM, Wetzels JF. (1999). Quantitative determination of low and high molecular weight proteins in human urine: influence of temperature and storage time. Clin Chem 45:430–2.
  • Loeb WF, Das SR, Trout JR. (1997).The effect of erythritol on the stability of gamma-glutamyl transpeptidase and N-acetyl glucosaminidase in human urine. Toxicol Pathol 25:264–7.
  • Macneil ML, Mueller PW, Caudill SP, Steinberg KK. (1991). Considerations when measuring urinary albumin: precisionsubstances that may interfereand conditions for sample storage. Clin Chem 37:2120–3.
  • Magos L, Clarkson TW. (1972). Atomic absorption determination of totalinorganicand organic mercury in blood. J Assoc Off Anal Chem 55:966–71.
  • Manley SE, Burton ME, Fisher KE, Cull CA, Turner RC. (1992). Decreases in albumin/creatinine and N-acetylglucosaminidase/creatinine ratios in urine samples stored at -20 degrees C. Clin Chem 38:2294–9.
  • Matteucci E, Gregori G, Pellegrini L, Navalesi R, Giampietro O. (1991). Effects of storage time and temperature on urinary enzymes. Clin Chem 37:1436–41.
  • Mattix HJ, Hsu CY, Shaykevich S, Curhan G. (2002). Use of the albumin/creatinine ratio to detect microalbuminuria: implications of sex and race. J Am Soc Nephrol 13:1034–9.
  • Piotrowski JK, Trojanowska B, Mogilnicka EM. (1975). Excretion kinetics and variability of urinary mercury in workers exposed to mercury vapour. Int Arch Occup Environ Health 35:245–6.
  • Schultz CJ, Dalton RN, Turner C, Neil HA, Dunger DB. (2000). Freezing method affects the concentration and variability of urine proteins and the interpretation of data on microalbuminuria. The Oxford Regional Prospective Study Group. Diabet Med 17:7–14.
  • Shidham G, Hebert LA. (2006). Timed urine collections are not needed to measure urine protein excretion in clinical practice. Am J Kidney Dis 47:8–14.
  • Skinner AM, Addison GM, Price DA. (1996). Changes in the urinary excretion of creatininealbumin and N-acetyl-beta-D-glucosaminidase with increasing age and maturity in healthy schoolchildren. Eur J Pediatr 155:596–602.
  • Tencer J, Thysell H, Andersson K, Grubb A. (1997). Long-term stability of albuminprotein HCimmunoglobulin Gkappa- and lambda-chain-immunoreactivityorosomucoid and alpha 1-antitrypsin in urine stored at -20 degrees C. Scand J Urol Nephrol 31:67–71.
  • Trachtenberg F, Barregard L. (2007).The effect of agesexand race on urinary markers of kidney damage in children. Am J Kidney Dis 50:938–45.
  • Trachtenberg F, Barregård L. (2010). The effect of storage time at -20°C on markers used for assessment of renal damage in children: albumin-glutamyl transpeptidaseN-acetyl-D-glucosaminidaseand alpha1-microglobulin. Scand J Urol Nephrol June 21 (Epub ahead of print).
  • Trachtenberg F, Barregard L, Mckinlay S. (2008). The influence of urinary flow rate in children on excretion of markers used for assessment of renal damage: albumingamma-glutamyl transpeptidase N-acetyl-beta-D -glucosaminidaseand alpha1-microglobulin. Pediatr Nephrol 23:445–56.
  • Trachtenberg F, Barregard L, Mckinlay S. (2009). The influence of urinary flow rate on mercury excretion in children. J Trace Elem Med Biol 24:31–5.
  • Wellwood JM, Ellis BG, Price RG, Hammond K, Thompson AE, Jones NF. (1975). Urinary N-acetyl- beta-D-glucosaminidase activities in patients with renal disease. Br Med J 3:408–11.
  • WHO. (2003). Concise International Chemical Assessment Document 50. Elemental mercury and inorganic mercury compounds: human health aspects. Geneva: World Health Organization.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.