915
Views
41
CrossRef citations to date
0
Altmetric
Review Article

Sequestosome 1/p62: across diseases

, , &
Pages 99-103 | Received 28 Dec 2011, Accepted 28 Dec 2011, Published online: 01 Feb 2012

References

  • Alves-Rodrigues A, Gregori L, Figueiredo-Pereira ME. (1998). Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci 21:516–520.
  • Babu JR, Geetha T, Wooten MW. (2005). Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem 94:192–203.
  • Bardag-Gorce F, Riley NE, Nan L, Montgomery RO, Li J, French BA, Lue YH, French SW. (2004). The proteasome inhibitor, PS-341, causes cytokeratin aggresome formation. Exp Mol Pathol 76:9–16.
  • Braak H, Thal DR, Del Tredici K. (2011). Nerve cells immunoreactive for p62 in select hypothalamic and brainstem nuclei of controls and Parkinson’s disease cases. J Neural Transm 118:809–819.
  • Brummelkamp TR, Nijman SM, Dirac AM, Bernards R. (2003). Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424:797–801.
  • Cavey JR, Ralston SH, Sheppard PW, Ciani B, Gallagher TR, Long JE, Searle MS, Layfield R. (2006). Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget’s disease of bone. Calcif Tissue Int 78:271–277.
  • Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M; STOP-NIDDM Trail Research Group. (2002). Acarbose for prevention of type 2 diabetes mellitus: The STOP-NIDDM randomised trial. Lancet 359:2072–2077.
  • Chiasson JL, Josse RG, Leiter LA, Mihic M, Nathan DM, Palmason C, Cohen RM, Wolever TM. (1996). The effect of acarbose on insulin sensitivity in subjects with impaired glucose tolerance. Diabetes Care 19:1190–1193.
  • Copple IM, Lister A, Obeng AD, Kitteringham NR, Jenkins RE, Layfield R, Foster BJ, Goldring CE, Park BK. (2010). Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J Biol Chem 285:16782–16788.
  • Donohue TM Jr, Kharbanda KK, Casey CA, Nanji AA. (2004). Decreased proteasome activity is associated with increased severity of liver pathology and oxidative stress in experimental alcoholic liver disease. Alcohol Clin Exp Res 28:1257–1263.
  • Du Y, Wooten MC, Wooten MW. (2009). Oxidative damage to the promoter region of SQSTM1/p62 is common to neurodegenerative disease. Neurobiol Dis 35:302–310.
  • Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco MT. (2011). p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell 44:134–146.
  • Durán A, Serrano M, Leitges M, Flores JM, Picard S, Brown JP, Moscat J, Diaz-Meco MT. (2004). The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell 6:303–309.
  • Fataccioli V, Andraud E, Gentil M, French SW, Rouach H. (1999). Effects of chronic ethanol administration on rat liver proteasome activities: Relationship with oxidative stress. Hepatology 29:14–20.
  • Garner TP, Long J, Layfield R, Searle MS. (2011). Impact of p62/SQSTM1 UBA domain mutations linked to Paget’s disease of bone on ubiquitin recognition. Biochemistry 50:4665–4674.
  • Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131.
  • Giasson BI, Lee VM. (2001). Parkin and the molecular pathways of Parkinson’s disease. Neuron 31:885–888.
  • Goedert M. (2001). α-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2:492–501.
  • Goode A, Layfield R. (2010). Recent advances in understanding the molecular basis of Paget disease of bone. J Clin Pathol 63:199–203.
  • Hayes JD, McMahon M. (2009). NRF2 and KEAP1 mutations: Permanent activation of an adaptive response in cancer. Trends Biochem Sci 34:176–188.
  • Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M, Lee MS, Tanaka K, Komatsu M. (2011). Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193:275–284.
  • Jain A, Lamark T, Sjøttem E, Larsen KB, Awuh JA, Øvervatn A, McMahon M, Hayes JD, Johansen T. (2010). p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285:22576–22591.
  • Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, Wright A, Zhang M, You J, Sun SC. (2008). Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest 118:1858–1866.
  • Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR, Ashkenazi A. (2009). Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137:721–735.
  • Joazeiro CA, Weissman AM. (2000). RING finger proteins: Mediators of ubiquitin ligase activity. Cell 102:549–552.
  • Joung I, Strominger JL, Shin J. (1996). Molecular cloning of a phosphotyrosine-independent ligand of the p56lck SH2 domain. Proc Natl Acad Sci USA 93:5991–5995.
  • Keller JN, Hanni KB, Markesbery WR. (2000). Impaired proteasome function in Alzheimer’s disease. J Neurochem 75:436–439.
  • Komatsu M, Ichimura Y. (2010). Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584:1374–1378.
  • Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M. (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223.
  • Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–1163.
  • Kovalenko A, Chable-Bessia C, Cantarella G, Israël A, Wallach D, Courtois G. (2003). The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424:801–805.
  • Kuusisto E, Salminen A, Alafuzoff I. (2001a). Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12:2085–2090.
  • Kuusisto E, Salminen A, Alafuzoff I. (2002). Early accumulation of p62 in neurofibrillary tangles in Alzheimer’s disease: Possible role in tangle formation. Neuropathol Appl Neurobiol 28:228–237.
  • Kuusisto E, Suuronen T, Salminen A. (2001b). Ubiquitin-binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells. Biochem Biophys Res Commun 280:223–228.
  • Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T, Sun Z, White E, Zhang DD. (2010). A noncanonical mechanism of Nrf2 activation by autophagy deficiency: Direct interaction between Keap1 and p62. Mol Cell Biol 30:3275–3285.
  • Laurin N, Brown JP, Morissette J, Raymond V. (2002). Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet 70:1582–1588.
  • Layfield R, Cavey JR, Najat D, Long J, Sheppard PW, Ralston SH, Searle MS. (2006). p62 mutations, ubiquitin recognition and Paget’s disease of bone. Biochem Soc Trans 34:735–737.
  • Layfield R, Ciani B, Ralston SH, Hocking LJ, Sheppard PW, Searle MS, Cavey JR. (2004). Structural and functional studies of mutations affecting the UBA domain of SQSTM1 (p62) which cause Paget’s disease of bone. Biochem Soc Trans 32:728–730.
  • Lowe J, Mayer J, Landon M, Layfield R. (2001). Ubiquitin and the molecular pathology of neurodegenerative diseases. Adv Exp Med Biol 487:169–186.
  • Lu M, Nakamura RM, Dent ED, Zhang JY, Nielsen FC, Christiansen J, Chan EK, Tan EM. (2001). Aberrant expression of fetal RNA-binding protein p62 in liver cancer and liver cirrhosis. Am J Pathol 159:945–953.
  • Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza-Wadsworth V, White E. (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell 137:1062–1075.
  • Michou L, Collet C, Laplanche JL, Orcel P, Cornélis F. (2006). Genetics of Paget’s disease of bone. Joint Bone Spine 73:243–248.
  • Morales-Piga AA, Rey-Rey JS, Corres-González J, García-Sagredo JM, López-Abente G. (1995). Frequency and characteristics of familial aggregation of Paget’s disease of bone. J Bone Miner Res 10:663–670.
  • Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Titani K, Ihara Y. (1993). Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments. Neuron 10:1151–1160.
  • Moscat J, Diaz-Meco MT. (2000). The atypical protein kinase Cs. Functional specificity mediated by specific protein adapters. EMBO Rep 1:399–403.
  • Moscat J, Diaz-Meco MT. (2011). Feedback on fat: P62-mTORC1-autophagy connections. Cell 147:724–727.
  • Nakaso K, Yoshimoto Y, Nakano T, Takeshima T, Fukuhara Y, Yasui K, Araga S, Yanagawa T, Ishii T, Nakashima K. (2004). Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: Possible mechanisms and the role in Lewy body formation in Parkinson’s disease. Brain Res 1012:42–51.
  • Okada K, Yanagawa T, Warabi E, Yamastu K, Uwayama J, Takeda K, Utsunomiya H, Yoshida H, Shoda J, Ishii T. (2009). The α-glucosidase inhibitor acarbose prevents obesity and simple steatosis in sequestosome 1/A170/p62 deficient mice. Hepatol Res 39:490–500.
  • Okatsu K, Saisho K, Shimanuki M, Nakada K, Shitara H, Sou YS, Kimura M, Sato S, Hattori N, Komatsu M, Tanaka K, Matsuda N. (2010). p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 15:887–900.
  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G, Johansen T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145.
  • Perry G, Friedman R, Shaw G, Chau V. (1987). Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci USA 84:3033–3036.
  • Ramesh Babu J, Lamar Seibenhener M, Peng J, Strom AL, Kemppainen R, Cox N, Zhu H, Wooten MC, Diaz-Meco MT, Moscat J, Wooten MW. (2008). Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J Neurochem 106:107–120.
  • Riley BE, Kaiser SE, Shaler TA, Ng AC, Hara T, Hipp MS, Lage K, Xavier RJ, Ryu KY, Taguchi K, Yamamoto M, Tanaka K, Mizushima N, Komatsu M, Kopito RR. (2010). Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: A potential role for protein aggregation in autophagic substrate selection. J Cell Biol 191:537–552.
  • Rodriguez A, Durán A, Selloum M, Champy MF, Diez-Guerra FJ, Flores JM, Serrano M, Auwerx J, Diaz-Meco MT, Moscat J. (2006). Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab 3:211–222.
  • Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW. (2004). Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24:8055–8068.
  • Shin J. (1998). P62 and the sequestosome, a novel mechanism for protein metabolism. Arch Pharm Res 21:629–633.
  • Spataro V, Norbury C, Harris AL. (1998). The ubiquitin-proteasome pathway in cancer. Br J Cancer 77:448–455.
  • Stumptner C, Fuchsbichler A, Heid H, Zatloukal K, Denk H. (2002). Mallory body–a disease-associated type of sequestosome. Hepatology 35:1053–1062.
  • Sundaram K, Shanmugarajan S, Rao DS, Reddy SV. (2011). Mutant p62P392L stimulation of osteoclast differentiation in Paget’s disease of bone. Endocrinology 152:4180–4189.
  • Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N. (2011). Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25:795–800.
  • Terry RD, Masliah E, Hansen LA. (1999). The neuropathology of Alzheimer disease and the structural basis of its cognitive alteractions. In: Terry RD, Katzman R, Bick KL, Sisodia SS (eds). Alzheimer Disease, 2nd edn, New York: Lippincott Williams & Wilkins, pp. 187–206.
  • Thompson HG, Harris JW, Wold BJ, Lin F, Brody JP. (2003). p62 overexpression in breast tumors and regulation by prostate-derived Ets factor in breast cancer cells. Oncogene 22:2322–2333.
  • Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G. (2003). CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424:793–796.
  • Tybl E, Shi FD, Kessler SM, Tierling S, Walter J, Bohle RM, Wieland S, Zhang J, Tan EM, Kiemer AK. (2011). Overexpression of the IGF2-mRNA binding protein p62 in transgenic mice induces a steatotic phenotype. J Hepatol 54:994–1001.
  • Vadlamudi RK, Shin J. (1998). Genomic structure and promoter analysis of the p62 gene encoding a non-proteasomal multiubiquitin chain binding protein. FEBS Lett 435:138–142.
  • Visconti MR, Langston AL, Alonso N, Goodman K, Selby PL, Fraser WD, Ralston SH. (2010). Mutations of SQSTM1 are associated with severity and clinical outcome in paget disease of bone. J Bone Miner Res 25:2368–2373.
  • Wooten MW, Geetha T, Babu JR, Seibenhener ML, Peng J, Cox N, Diaz-Meco MT, Moscat J. (2008). Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins. J Biol Chem 283:6783–6789.
  • Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M, Aguzzi A, Denk H. (2002). p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160:255–263.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.