150
Views
0
CrossRef citations to date
0
Altmetric
Physiopathology of fungal colonization of the airways and/or fungal respiratory infections

Local innate host response and filamentous fungi in patients with cystic fibrosis

&
Pages S22-S31 | Received 26 Apr 2010, Accepted 23 Jul 2010, Published online: 10 Nov 2010

References

  • Panagopoulou P, Filioti J, Petrikkos G, . Environmental surveillance of filamentous fungi in three tertiary care hospitals in Greece. J Hosp Infect 2002; 52: 185–191.
  • Pihet M, Carrere J, Cimon B, . Occurrence and relevance of filamentous fungi in respiratory secretions of patients with cystic fibrosis – a review. Med Mycol 2009; 47: 387–397.
  • Sudfeld CR, Dasenbrook EC, Merz WG, Carroll KC, Boyle MP. Prevalence and risk factors for recovery of filamentous fungi in individuals with cystic fibrosis. J Cyst Fibros 2010; 9: 110–116.
  • Whittaker LA, Teneback C. Atypical mycobacterial and fungal infections in cystic fibrosis. Semin Respir Crit Care Med 2009; 30: 539–546.
  • Hope WW, Walsh TJ, Denning DW. The invasive and saprophytic syndromes due to Aspergillus spp. Med Mycol 2005; 43(Suppl. 1): S207–238.
  • Amin R, Dupuis A, Aaron SD, Ratjen F. The effect of chronic infection with Aspergillusfumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest 2010; 137: 171–176.
  • Maguire CP, Hayes JP, Hayes M, Masterson J, FitzGerald MX. Three cases of pulmonary aspergilloma in adult patients with cystic fibrosis. Thorax 1995; 50: 805–806.
  • Bartlett JA, Fischer AJ, McCray PB, Jr. Innate immune functions of the airway epithelium. Contrib Microbiol 2008; 15: 147–163.
  • Chilvers MA, O’Callaghan C. Local mucociliary defence mechanisms. Paediatr Respir Rev 2000; 1: 27–34.
  • Balloy V, Chignard M. The innate immune response to Aspergillus fumigatus. Microbes Infect 2009; 11: 919–927.
  • Aimanianda V, Bayry J, Bozza S, . Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 2009; 460: 1117–1121.
  • Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 1997; 61: 136–169.
  • Wasylnka JA, Moore MM. Uptake of Aspergillus fumigatus conidia by phagocytic and nonphagocytic cells in vitro: quantitation using strains expressing green fluorescent protein. Infect Immun 2002; 70: 3156–3163.
  • Holt PG, Stumbles PA, McWilliam AS. Functional studies on dendritic cells in the respiratory tract and related mucosal tissues. J Leukoc Biol 1999; 66: 272–275.
  • Akbari O, DeKruyff RH, Umetsu DT. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2001; 2: 725–731.
  • Montagnoli C, Bozza S, Gaziano R, . Immunity and tolerance to Aspergillus fumigatus. Novartis Found Symp 2006; 279: 66–77; discussion 77–69, 216–219.
  • Xu Y, Tertilt C, Krause A, . Influence of the cystic fibrosis transmembrane conductance regulator on expression of lipid metabolism-related genes in dendritic cells. Respir Res 2009; 10: 26.
  • Walsh TJ, Roilides E, Cortez K, . Control, immunoregulation, and expression of innate pulmonary host defenses against Aspergillus fumigatus. Med Mycol 2005; 43: S165–S172.
  • Soubani AO, Chandrasekar PH. The clinical spectrum of pulmonary aspergillosis. Chest 2002; 121: 1988–1999.
  • Netea MG, Van der Meer JW, Kullberg BJ. Role of the dual interaction of fungal pathogens with pattern recognition receptors in the activation and modulation of host defence. Clin Microbiol Infect 2006; 12: 404–409.
  • Ferwerda G, Meyer-Wentrup F, Kullberg BJ, Netea MG, Adema GJ. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol 2008; 10: 2058–2066.
  • van de Veerdonk FL, Kullberg BJ, van der Meer JW, Gow NA, Netea MG. Host-microbe interactions: innate pattern recognition of fungal pathogens. Curr Opin Microbiol 2008; 11: 305–312.
  • Chamilos G, Lewis RE, Lamaris G, Walsh TJ, Kontoyiannis DP. Zygomycetes hyphae trigger an early, robust proinflammatory response in human polymorphonuclear neutrophils through toll-like receptor 2 induction but display relative resistance to oxidative damage. Antimicrob Agents Chemother 2008; 52: 722–724.
  • Bellocchio S, Moretti S, Perruccio K, . TLRs govern neutrophil activity in aspergillosis. J Immunol 2004; 173: 7406–7415.
  • Sha Q, Truong-Tran AQ, Plitt JR, Beck LA, Schleimer RP. Activation of airway epithelial cells by toll-like receptor agonists. Am J Respir Cell Mol Biol 2004; 31: 358–364.
  • Lamaris GA, Chamilos G, Lewis RE, Kontoyiannis DP. Virulence studies of Scedosporium and Fusarium species in Drosophila melanogaster. J Infect Dis 2007; 196: 1860–1864.
  • Lamaris GA, Lewis RE, Chamilos G, . Caspofungin-mediated beta-glucan unmasking and enhancement of human polymorphonuclear neutrophil activity against Aspergillus and non-Aspergillus hyphae. J Infect Dis 2008; 198: 186–192.
  • Hohl TM, Feldmesser M, Perlin DS, Pamer EG. Caspofungin modulates inflammatory responses to Aspergillus fumigatus through stage-specific effects on fungal beta-glucan exposure. J Infect Dis 2008; 198: 176–185.
  • Bittencourt VC, Figueiredo RT, da Silva RB, . An alpha-glucan of Pseudallescheria boydii is involved in fungal phagocytosis and Toll-like receptor activation. J Biol Chem 2006; 281: 22614–22623.
  • Blohmke CJ, Victor RE, Hirschfeld AF, . Innate immunity mediated by TLR5 as a novel antiinflammatory target for cystic fibrosis lung disease. J Immunol 2008; 180: 7764–7773.
  • Greene CM, Branagan P, McElvaney NG. Toll-like receptors as therapeutic targets in cystic fibrosis. Expert Opin Ther Targets 2008; 12: 1481–1495.
  • Waldorf AR. Pulmonary defense mechanisms against opportunistic fungal pathogens. Immunol Ser 1989; 47: 243–271.
  • Babior BM. Phagocytes and oxidative stress. Am J Med 2000; 109: 33–44.
  • Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 1998; 92: 3007–3017.
  • De Lucca AJ, Walsh TJ. Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob Agents Chemother 1999; 43: 1–11.
  • Ramanathan B, Davis EG, Ross CR, Blecha F. Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes Infect 2002; 4: 361–372.
  • Yang D, Biragyn A, Kwak LW, Oppenheim JJ. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 2002; 23: 291–296.
  • Mircescu MM, Lipuma L, van Rooijen N, Pamer EG, Hohl TM. Essential role for neutrophils but not alveolar macrophages at early time points following Aspergillus fumigatus infection. J Infect Dis 2009; 200: 647–656.
  • Gil-Lamaignere C, Roilides E, Lyman CA, . Human phagocytic cell responses to Scedosporium apiospermum (Pseudallescheria boydii): variable susceptibility to oxidative injury. Infect Immun 2003; 71: 6472–6478.
  • Gil-Lamaignere C, Maloukou A, Rodriguez-Tudela JL, Roilides E. Human phagocytic cell responses to Scedosporium prolificans. Med Mycol 2001; 39: 169–175.
  • Romani L. Immunity to fungal infections. Nat Rev Immunol 2004; 4: 1–23.
  • Shoham S, Roilides E, Walsh TJ. Immunomodulation of fungal infections: from the bench to the bedside. Current Fungal Infection Reports 2009; 3: 186–191.
  • Warris A, Netea MG, Verweij PE, . Cytokine responses and regulation of interferon-gamma release by human mononuclear cells to Aspergillus fumigatus and other filamentous fungi. Med Mycol 2005; 43: 613–621.
  • Brieland JK, Jackson C, Menzel F, . Cytokine networking in lungs of immunocompetent mice in response to inhaled Aspergillus fumigatus. Infect Immun 2001; 96: 1554–1560.
  • Steinbach WJ, Perfect JR. Scedosporium species infections and treatments. J Chemother 2003; 15(Suppl. 2): 16–27.
  • Winn RM, Gil-Lamaignere C, Roilides E, . Effects of interleukin-15 on antifungal responses of human polymorphonuclear leukocytes against Fusarium spp. and Scedosporium spp. Cytokine 2005; 31: 1–8.
  • Roilides E, Holmes A, Blake C, . Antifungal activity of elutriated human monocytes against Aspergillus fumigatus hyphae: enhancement by granulocyte-macrophage colony-stimulating factor and interferon-γ. J Infect Dis 1994; 170: 894–899.
  • Gil-Lamaignere C, Winn RM, Simitsopoulou M, . Inteferon gamma and granulocyte-macrophage colony-stimulating factor augment the antifungal activity of human polymorphonuclear leukocytes against Scedosporium spp.: comparison with Aspergillus spp. Med Mycol 2005; 43: 253–260.
  • Simitsopoulou M, Gil-Lamaignere C, Avramidis N, . Antifungal activities of posaconazole and granulocyte-macrophage colony- stimulating factor ex vivo and in mice with disseminated infection due to Scedosporium prolificans. Antimicrob Agents Chemother 2004; 48: 3801–3805.
  • Safdar A, Shelburne SA, Evans SE, Dickey BF. Inhaled therapeutics for prevention and treatment of pneumonia. Expert Opin Drug Saf 2009; 8: 435–449.
  • Antachopoulos C, Roilides E. Cytokines and fungal infections. Br J Haematol 2005; 129: 583–596.
  • Ortoneda M, Capilla J, Pujol I, . Liposomal amphotericin B and granulocyte colony-stimulating factor therapy in a murine model of invasive infection by Scedosporium prolificans. J Antimicrob Chemother 2002; 49: 525–529.
  • Ortoneda M, Capilla J, Pastor FJ, Serena C, Guarro J. Interaction of granulocyte colony-stimulating factor and high doses of liposomal amphotericin B in the treatment of systemic murine scedosporiosis. Diagn Microbiol Infect Dis 2004; 50: 247–251.
  • Gil-Lamaignere C, Roilides E, Maloukou A, . Amphotericin B lipid complex exerts additive antifungal activity in combination with polymorphonuclear leucocytes against Scedosporium prolificans and Scedosporium apiospermum. J Antimicrob Chemother 2002; 50: 1027–1030.
  • Gil-Lamaignere C, Roilides E, Mosquera J, Maloukou A, Walsh TJ. Antifungal triazoles and polymorphonuclear leukocytes synergize to cause increased hyphal damage to Scedosporium prolificans and Scedosporium apiospermum. Antimicrob Agents Chemother 2002; 46: 2234–2237.
  • Moskwa P, Lorentzen D, Excoffon KJ, . A novel host defense system of airways is defective in cystic fibrosis. Am J Respir Crit Care Med 2007; 175: 174–183.
  • Brennan S. Innate immune activation and cystic fibrosis. Paediatr Respir Rev 2008; 9: 271–279; quiz 279–280.
  • Seidler MJ, Salvenmoser S, Muller FM. Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob Agents Chemother 2008; 52: 4130–4136.
  • Voynow JA, Fischer BM, Zheng S. Proteases and cystic fibrosis. Int J Biochem Cell Biol 2008; 40: 1238–1245.
  • Skinner ML, Schlosser RJ, Lathers D, . Innate and adaptive mediators in cystic fibrosis and allergic fungal rhinosinusitis. Am J Rhinol 2007; 21: 538–541.
  • Brazova J, Sediva A, Pospisilova D, . Differential cytokine profile in children with cystic fibrosis. Clin Immunol 2005; 115: 210–215.
  • Allard JB, Poynter ME, Marr KA, . Aspergillus fumigatus generates an enhanced Th2-biased immune response in mice with defective cystic fibrosis transmembrane conductance regulator. J Immunol 2006; 177: 5186–5194.
  • Moraes TJ, Plumb J, Martin R, . Abnormalities in the pulmonary innate immune system in cystic fibrosis. Am J Respir Cell Mol Biol 2006; 34: 364–374.
  • Simitsopoulou M, Hatziagorou E, Georgiadou E, Tsanakas JN, Roilides E. Antifungal drug susceptibility of Aspergillus spp. strains isolated from cystic fibrosis patients and immune responses against them. Mycoses 2009; 52: 85–86.
  • Gibson PG. Allergic bronchopulmonary aspergillosis. Semin Respir Crit Care Med 2006; 27: 185–191.
  • Kauffman HF. Immunopathogenesis of allergic bronchopulmonary aspergillosis and airway remodeling. Front Biosci 2003; 8: e190–196.
  • Stergiopoulou T, Meletiadis J, Roilides E, . Host-dependent patterns of tissue injury in invasive pulmonary aspergillosis. Am J Clin Pathol 2007; 127: 349–355.
  • Chauhan B, Santiago L, Hutcheson PS, . Evidence for the involvement of two different MHC class II regions in susceptibility or protection in allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol 2000; 106: 723–729.
  • Hartl D, Latzin P, Zissel G, . Chemokines indicate allergic bronchopulmonary aspergillosis in patients with cystic fibrosis. Am J Respir Crit Care Med 2006; 173: 1370–1376.
  • Miller PW, Hamosh A, Macek M, Jr., . Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in allergic bronchopulmonary aspergillosis. Am J Hum Genet 1996; 59: 45–51.
  • Tillie-Leblond I, Tonnel AB. Allergic bronchopulmonary aspergillosis. Allergy 2005; 60: 1004–1013.
  • Hatziagorou E, Walsh TJ, Tsanakas JN, Roilides E. Aspergillus and the paediatric lung. Paediatr Respir Rev 2009; 10: 178–185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.